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The effects of acoustical attenuation and optical absorption on light scattering by acoustic pho-
nons propagating along the superlattice axis are theoretically analyzed and experimentally probed
in GaAs/AlAs and Si/Sig sGeg s superlattices. It is shown that the linewidth of the acoustic modes
undergoes a clear narrowing near the Brillouin-zone edge due to the decrease of the group velocity
of the phonons. It is also demonstrated that the damping of the acoustic waves makes the high-
frequency modes at the Brillouin-zone edge shift into the “forbidden gaps” which have been evi-
denced in the case of lossless media. We have observed such a shift in a Si/Sij sGe, s superlattice
sample at phonon energies around 14 cm™! for which the acoustic attenuation can no longer be
neglected. It is also shown that the effects of optical absorption on the relative intensity of the fold-
ed acoustic modes are particularly sensitive in the condition where the incident light is Bragg
reflected by the interfaces. This intensity behavior has been observed in a GaAs/AlAs superlattice
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and agrees with the theoretical analysis.

I. INTRODUCTION

Raman scattering is a useful and versatile technique for
the characterization of semiconductor superlattices. A
great deal of information concerning the alternating-layer
properties and the superlattice structure and quality can
be obtained from the frequencies, linewidths, and relative
intensities of the Raman phonon lines! and many Raman
studies have been reported in different superlattice sys-
tems.2” 18

The folding effect, due to the artificial period D of the
superlattice along its growth axis, gives rise to additional
photon branches separated by energy gaps. The frequen-
cies of the folded acoustic modes have been well account-
ed for by both the elastic continuum'*?° and linear chain
models.?%?! As to the relative intensities of the longitudi-
nal acoustic mode (LA or Brillouin mode) and the folded
longitudinal acoustic modes (FLA), a good agreement be-
tween theory and experiments has been obtained for a
wide range of scattering wave vectors g by a recent model
in which the scattered electromagnetic field is strictly cal-
culated from Maxwell’s equations and boundary con-
tinuity conditions.?? (The scattering wave vector g is
defined as the change of light-wave vector in the scatter-
ing process. In the backscattering geometry used in most
experiments, g is twice the wave vector of the incident
light.)

All previous models concerning the FLA frequencies
and intensities have ignored the effects of the acoustic at-
tenuation and optical absorption. Indeed these effects
can be neglected as far as one considers scattering wave
vectors g not too close to the Brillouin-zone edges
(gq=m/D,2w/D, ...). Actually most of the previous ex-
periments have been performed with g away from these
values. In this paper we particularly focus on the scatter-
ing wave vectors ranging around /D, which corre-
sponds to Bragg reflection for the acoustic phonons, and
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near 27 /D, where Bragg reflection occurs for both acous-
tic and light waves. In these critical regions one can ex-
pect an enhancement of the effects of the acoustic at-
tenuation and optical absorption since both of them
significantly change the Bragg reflections.

As in any other medium, the damping of the light and
acoustic waves in the superlattice induces a broadening of
the peaks in the light scattering spectra. This broadening
effect has been analyzed by considering the superlattice as
an effective medium in Refs. 9 and 14. Such an approxi-
mation is valid only for scattering wave vectors far from
the critical values O,7/D,2w/D, ..., as shown in this
paper by using a more strict treatment. In addition, due
to the acoustic and optical damping, a partial loss of the
translational symmetry D of the wave functions along the
growth axis occurs. This must affect the phonon disper-
sion curve and the intensity of the light scattered by these
phonons. In this paper we consider the coefficients of op-
tical absorption and acoustic attenuation not too large
(<1/D) so that the waves can sweep several superlattice
unit cells, otherwise the superlattice notion would be
meaningless. Two kinds of superlattices were available
for our experimental investigations: Si/Si;_,Ge, and
GaAs/AlAs superlattices oriented along [001]. Their
periods were chosen in order to allow the study of the
scattering wave vectors ranging around g=w/D and
q =2 /D, respectively.

In this study we follow the general treatment used in
Ref. 22 for the intensity calculation and adapt it to the
case where the acoustic attenuation and optical absorp-
tion are considered. The notations are essentially the
same as used in this reference. The normalized frequen-
cies Q (Q=wD /27wC, C being the light velocity in vacu-
um) of the excited phonon modes as a function of the re-
duced scattering wave vector Q (Q=¢gD /m) are repro-
duced in Fig. 1, and the different branches FLA , are in-
dicated in different Brillouin zones (Q ranges between
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FIG. 1. Frequencies of the excited phonon branches as a
function of the reduced scattering wave vector (Q=g¢gD /).
The indexes m of the FLA,, are indicated according to Ref. 22.

0-1, 1-2,2-3,...).
mately the relation

For each FLA,, one has approxi-

Q=%fQ/2+m| . (1)

Here V is the mean acoustic velocity (V/D=d,/v;
+d,/v,), and m is the label associated with the folded
longitudinal acoustic branch; m =0 corresponds to the
direct acoustic mode (Brillouin line) whose frequency is
essentially independent on the superlattice periods. For
g > /D one can find folded acoustic modes at frequen-
cies lower than the Brillouin mode.'®

This paper is divided into five sections. In Sec. II we
calculate the phonon dispersion curve and the acoustic
attenuation as a function of the phonon energy in the
case of acoustically absorbing superlattice layers. The ex-
perimental determination of the acoustic mode frequen-
cies on a Si/Si, sGe, 5 superlattice near the Brillouin-zone
edge are compared to the theoretical calculations. In
Sec. III a study is performed of the broadening of the
phonon modes by acoustical attenuation and optical ab-
sorption, and a parallel is made with the situation in
homogeneous media. The effects induced by the optical
absorption on the relative intensities of the phonon
modes are depicted in Sec. IV with experiments in a
long-period GaAs/AlAs superlattice (gD =~2). A brief
conclusion (Sec. V) summarizes the whole set of the re-
sults obtained here.

II. EFFECT OF THE ACOUSTIC ATTENUATION
ON THE PHONON DISPERSION CURVES

For superlattices with a sufficient number of mono-
layers in the unit cell, the elastic continuum model can be
applied to determine the acoustic behavior of the system.
Because of the periodical modulation of the acoustic
properties in the superlattice, the elastic wave which de-
scribes the propagation of the acoustic phonons along the
superlattice axis is a Bloch function. In the case of
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acoustically nonabsorbing media, the wave vector K and
the frequency @ of the phonon in the superlattice are re-
lated by the dispersion relation'®

1

cosKD=cosk1dlcosk2d2——2— sink dsink,d, ,

1
Z+—=
z

(2)

where k|, =w/v,, k,=w/v,, and Z=p,v,/pv,; p,v,d
are, respectively, the mass density, acoustic velocity, and
layer thickness, with subscripts 1 and 2 referring to the
first or second layer in the superlattice unit cell. The
period of the superlattice is then D =d | +d,. One of the
characteristics of the acoustic phonon dispersion curves
in lossless superlattices is the existence of the energy
gaps, or stop bands at the Brillouin-zone edges. In these
gaps, the wave vector K is complex (K =k +ia) and the
real part corresponds to k =#/D,2mw /D, etc. The acous-
tic wave is evanescent, and one can consider that it un-
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FIG. 2. Calculated dispersion curve (a) and attenuation-
frequency relation (b) of the acoustic phonons in the Si-
Siy sGeq 5 superlattice (d, =d, =140 A). The increase of the at-
tenuation at high frequency changes markedly the feature of the
gap at k=37/D [see the inset of Fig. 1(a)]. We have used
p1=2.33 g/cm’, p,=3.83 g/cm?, v, =8433 m/s, v, =7330 m/s,
with subscripts 1 and 2 referring to Si and Si, sGe, s, respective-
ly. As to the acoustic attenuation, we have used a;=0,
a,= Aw? with different A4 values indicated in the figure (o, are
expressed in cm ™).
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dergoes an attenuation in the direction of the propaga-
tion. These gaps have been evidenced either by Raman
scattering®® or by phonon-transmission experiments?* ™2
for low-frequency phonons or in superlattices consisting
of crystals with small acoustic attenuation.

Now let us consider the effect of the acoustic attenua-
tion of the constitutive materials in the case of a longitu-
dinal acoustic wave propagating along the superlattice
growth axis z. In a medium with acoustic attenuation,
the relation between the stress T and the strain du /9z is
given by*® T=c(du/3z)+n(d%u /3z3t), instead of
T=c(du /9z) in a perfect elastic medium. Here c,7 are
the appropriate component of the elastic and viscosity

coshaD coskD +i sinhaD sinkD =

+

+i

+i

For a;,=a,=0, one finds again Eq. (2) corresponding to
lossless media.

The dispersion curve (w-k) and the a-o relation ob-
tained by numerical resolution of Eq. (4) are drawn, re-
spectively, in Figs. 2(a) and 2(b) for a Si/Sij sGeg 5 super-
lattice (d, =d, =140 A) and compared to the ones calcu-
lated without acoustic attenuation. The coefficients of at-
tenuation of Si and Sij sGe, 5 are apparently unreported
in the literature, as well as their exact variation law as a
function of the acoustic frequency. It is generally con-
sidered that the acoustic attenuation is proportional to
o" with 1 <y <2, depending on the frequency range.'*?’
We have assumed that the acoustic attenuation in alloys
is stronger than in pure crystals because of the disorder
of substitution. We have thus taken almost arbitrarily
a,;=0 for Si and a,=aw? for Siy sGe, 5 (a is a constant).
In any case, the general features of the acoustic attenua-
tion effects discussed in the following are independent of
this choice of the parameters a, and «,.

From Fig. 2 we see that in the case without attenuation
(a¢;=a,=0), the dispersion curve displays gaps at
k=nw/D(n=1,2,3,...). The imaginary part of the
wave vector is different from zero only at these gaps and
the larger the gap, the higher the acoustic attenuation.
When the acoustic attenuation of the constitutive materi-
als is considered, the feature of the dispersion curve is
changed [Fig. 2(a)]. The “gaps” seems to disappear at
high frequency and at the place of the “gaps” there is
only a continuous change of slope. At low frequency, as

coskd cosk,d, ——
_Sinkldlsink2d2+'_

. 1 1
smkld,coskzdz-i-z Z+—=

Coskldlsinkzdz +E
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tensor, respectively. This leads to the equation of wave
propagation in each medium
Pu__ ou, o
Prar?  “az2 " Toz%ar
with p=1,2 referring to the two different layers. The
solution is similar to that in perfect elastic media'® except

that the wave vector in each medium is now replaced by
a complex number K,=k,+ia, with k,=w/v,

w u
w,=V'e,/p,) @,

(3)

=17“w‘ll/2p:v,3‘ (assuming a, <<k, or
wmn,<<c,). The phonon wave vector in the superlattice
becomes also a complex number (K=k +ia) and the
dispersion relation turns out to be

sink ,d sink,d, |cosha,d,cosha,d,

1
Z+—
z

1

3 Z+% coskdcosk,d, |sinha,d sinha,d,

coskdsink,d, |sinha,d,cosha,d,

VA

1 1

Z+—

- sink,dcosk,d,

cosha 1d 1 Sinhazdz . (4)

the acoustic attenuation is small, .the slope change is
abrupt and the dispersion curve is scarcely different from
the one obtained by neglecting the acoustic attenuation.
As to the imaginary part a of the wave vector, it in-
creases with the frequency and still displays peaks at
k=nw/D [Fig. 2(b)], but the peaks are less conspicuous
and even almost disappear when the attenuation of the
constitutive materials is very strong. The disappearance
of the gaps and the attenuation peaks for high-frequency
phonons has been evidenced by phonon-transmission
spectroscopy,?* in which the expected transmission mini-
ma corresponding to the “gaps” at high frequency have
not been observed.

Figure 3 shows the folded dispersion curves measured
from the Si/Si; sGe, s superlattice sample with scattering
wave vector g near the first-Brillouin-zone edge. The ex-
cited phonon modes correspond to wave vectors in the vi-
cinity of k~*w/D (LA and FLA_, branches) and

~=+37w/D (FLA ., and FLA _,). Because of the impor-
tant acoustic mismatch between Si and Sij sGe s, the en-
ergy gaps are sufficiently large to be detected by light
scattering experiments, contrary to GaAs/AlAs superlat-
tices. As the sample has d,=d,, the mode with even
folding orders are very weak,*?2 so we can only observe
three modes (LA and FLA,,) at low frequencies. The
measured frequencies of the lowest two modes (LA and
FLA _)) agree very well with the calculation obtained by
neglecting acoustic attenuation (solid and dashed lines)
and the gap (~1 cm™) is clearly evidenced. A precise
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FIG. 3. Frequencies of the excited phonon modes as a func-
tion of the reduced scattering wave vector Q from both sides of
the Brillouin-zone edge (Q =1) for the Si-Siy sGe, s superlattice
(dy=d,=140 A). Calculated values are drawn by solid or
dashed lines in the case without acoustic attenuation, or by dot-
ted lines in the case where the acoustic attenuation is con-
sidered. The crosses refer to experimental points. One finds
that the acoustic attenuation can only be neglected for low fre-
quencies (o <6 cm™!). .

measurement of this lowest-energy gap has been previ-
ously reported by Brugger.® As to the third mode which
corresponds to the dispersion curve near k =3 /D, how-
ever, the frequency increases continuously with the wave
vector and no abrupt change at the Brillouin-zone edge is
observed. This can be well explained by the dispersion
curve calculated here above, taking into account the
acoustic attenuation which increases with the phonon fre-
quency [inset of Fig. 2(a) and dotted line in Fig. 3].

It should be pointed out that although acoustic waves
are strongly attenuated in the superlattice layers at this
frequency region (~ 14 cm™!), their propagating distance
can still cover several superlattice unit cells. It clearly
appears that the phonon phase coherence in several su-
perlattice unit cells is sufficient to give rise to folded
acoustic modes in the Raman spectra. The existence of
the “forbidden gaps” in superlattices constituted by
acoustically lossless materials is due to the fact that the
phonon density of states, which is proportional to
dk /dw, is zero in the gaps. The presence of the acoustic
attenuation of the constitutive layers changes the feature
of the dispersion curve and increases significantly the
phonon density of states, thus allowing the observation of
the phonon modes in the “gap” through their coupling
with light.

III. BROADENING OF THE PHONON MODES
BY ACOUSTIC ATTENUATION
AND OPTICAL ABSORPTION

The propagation of the acoustic wave in the superlat-
tice produces periodic variation of strain. In the presence
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of the incident electromagnetic field, the photoelastic
effect leads to a polarization which can be written as

12— w;t)

P(z,t)=pSe/kz—on gk , 5)

where p is the photoelastic constant; S(E), k(k;), and
o(w;) are, respectively, the amplitude, the wave vector,
and the frequency of the strain (or the electric field of the
incident light beam). This polarization acts as the source
of the scattered light whose frequency is different to that
of the incident light. By solving the Maxwell’s equations
one can find that the scattered electric field (anti-Stokes
component) outside the superlattice for backward scatter-
ing can be expressed by??

iNUe+ k=D _
e —

E;=4 ik+ki=k)D_ 4 7 6
e —

where k, is the wave vector of the scattered light in the
superlattice, N is the number of superlattice unit cells,
and A4 is an amplitude factor which depends on the pho-
non frequency and on the structure of the superlattice.

When the acoustic attenuation is considered, the pho-
non wave vector k in Eq. (6) has to be replaced by the
complex wave vector kK +ia. Then in the limit N — o
(infinite superlattice), the intensity of the scattered light is
given by

|4

L=IE[*= (k—q)D D
sinz—%— +sinh2%—

@)

where g =k, —k; is the scattering wave vector. As the
frequency of the scattered light is very close to that of the
incident light, we can take k; =~ —k; in the case of back-
ward scattering. Then we have g =2k;.

The factor | 4 |? in expression (7) gives the intensity en-
velope function of the spectra, while the denominator of
expression (7) determines the positions and widths of the
phonon modes. One can obtain from Eq. (7) the wave-
vector selection rule

2mar

k=g +
77 p

(m=0,£1,%£2,...) . ()
The frequencies of the phonon modes are then deter-
mined by Eq. (8) and the dispersion relation (2) or (4).
The tolerance of selected wave vectors Ak (full width at
half maximum of I) is equal to 2a (for aD <<1). The
corresponding frequency linewidth of the phonon modes
is then given by
do

Aw,, =2aﬁ~=2a Ve s 9

where V, is the group velocity of the phonons, i.e., the
slope of the dispersion curve. For scattering wave vec-
tors far from the Brillouin-zone boundaries, the disper-
sion curve is approximately linear and the line shape
I,(w) of the phonon modes is Lorentzian.

As the linewidth due to the acoustic attenuation is pro-

portional to a, it increases with the phonon frequency
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and at low frequency the broadening is very small. In
fact, as the semiconductors are usually opaque for excita-
tion laser wavelength, the linewidth of the phonon modes
at low frequency is mainly due to the optical absorption.

cosha; Dcosk;D +i sinha;Dsink; D =

cosk;,d cosk;,d, -1

1125

In this case the wave vectors of the light in the two layers
of the superlattice are complex numbers and the disper-
sion relation of optical wave in the superlattice is formal-
ly the same as that of acoustic wave [Eq. (4)], i.e,

R#% sink;,d sink;,d, |cosha; d cosha;,d,

+ ——sinkildlsink,«zdz-{—% R+71€ cosk;d cosk;,d, |sinha;,d sinha;,d,
+1i sinkildlcoski2d2+% R+71‘; cosk;,d sink;,d, |sinha;,d cosha;,d,
+i coskildlsink,-zdz—i—% R+% sink;d cosk;,d, |cosha;,d sinha;,d, (10)

with R =k;,/k;,. Here k;, and «;, are, respectively, the
wave vector and absorption coefficient of the incident
light in the two media of the superlattice (u=1,2); k;,a;
are the ones corresponding to the superlattice. The wave
vectors of the incident and scattered light k;, k; in Eq. (6)
should then be replaced by complex numbers k; +ia;, k
+ia;. By neglecting the difference between o and a;
(a;~a;=a,,), we obtain the intensity of the scattered
light

2
L= 4]
. 2(k—q)D

)
sin —-——2—+smh agp,D

(11

The broadening due to optical absorption (FWHM) is
then given, assuming a,,D <<1, by

dw
Yor gk

and the line shape is also approximately Lorentzian for
scattering wave vector away from the Brillouin-zone
edges.

The linewidth thus derived [Egs. (9) and (12)] for pho-
non modes in superlattices is similar to the one deduced
for the Brillouin line in homogeneous bulk media by
Love?® and by Sandercock.?’ But contrary to the case of
homogeneous media where the phonon group velocity V,
is equal to the phase velocity and is k independent in the
probed frequency range (the scattering wave vector is
much smaller than the Brillouin zone of bulk crystals), V,
in superlattices undergoes strong variation versus k in the
vicinity of Brillouin-zone edges and also depends on the
considered phonon branch. Besides, the coefficient of
acoustic attenuation a and optical absorption a,, in su-
perlattice, as well as the wave vectors k,k;, are related to
those in constitutive media by the complex dispersion re-
lations [Eqs. (4) and (10)]. Only for wave vectors far from
the Brillouin-zone boundaries can the coefficient of
acoustic attenuation (optical absorption) in the superlat-

Aw,,~4 =4a,,V, (12)

tice be approximated by the average of those in the two
media.

At low frequencies the phonon dispersion curve in su-
perlattices presents gaps at the Brillouin-zone edge and
near the gaps the dispersion curve flattens [see Fig. 2(a)],
which means that the group velocity of the phonons be-
comes very small. As the linewidth is proportional to the
group velocity [Eq. (12)], it should decrease when the
wave vector of the phonon mode approaches the
Brillouin-zone edge. This is a particular feature of the
phonon linewidth in superlattices which has been
confirmed by our experiments.

Figure 4 shows the spectra of the Si/Si, sGe, s super-
lattice with different wavelengths of laser excitation cor-
responding to scattering wave vectors at both sides of the
first-Brillouin-zone edge (Q=~1). Let us focus on the
upper mode of the first doublet whose frequency is
around 5 cm™!. This mode corresponds to FLA_, for
Q <1 and to LA for Q > 1. Its intensity variation is quite
remarkable. For small values of Q this line is weak with
respect to the Brillouin line, but it grows rapidly for in-
creasing value of Q in the first Brillouin zone and be-
comes much more intense than the Brillouin line near
Q=1. This behavior does not depend on the nature of
the constitutive layers and has been carefully analyzed in
the case of GaAs/AlAs superlattices.!®??

Let us now examine the linewidth variation of this
well-defined mode at about 5 cm™!. This linewidth de-
creases from 0.72 cm ™! to 0.52 cm™! with increasing
values of Q in the range 0.92 < Q < 1, though the optical
absorption increases in this range (since the probing laser
wavelength varies from 530.9 to 488 nm). This variation
of linewidths can not be explained otherwise than by the
flattening of the FLA branches near Q =1 which de-
creases dw/dk. For Q > 1, the variation of dw/dk, the
increase of the optical absorption, and the decrease of the
experimental resolution all contribute to the increase of
the linewidth (from 0.52 cm ™! at Q =1 t0 0.93 cm ™! at
0=1.09). As to the highest-frequency mode in Fig. 4
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FIG. 4. Spectra of the same sample as in Fig. 3 with different
excitation laser wavelengths. A double-grating spectrometer
was used and the slit width was kept at 50 um, corresponding to
a resolution of about 0.5 cm ™! (varying slightly with laser wave-
length).
minimum at Q =1 due to the flatness of the dispersion curve.

which corresponds to FLA . ,, the linewidth is very large
because of the strong acoustic attenuation at this frequen-
cy and the disappearance of the gap in the dispersion
curve.

It should be noted that the variation of the thickness or
of the composition of the superlattice layers could also
contribute to the broadening of the phonon modes. Such
inhomogeneities can occur in the directions either paral-
lel or perpendicular to the layers. From Raman scatter-
ing and x-ray diffraction measurements on different
points of the sample, we have confirmed that the
broadening induced by such defects is negligible with
respect to that induced by optical and acoustical damp-
ing, in good-quality superlattices. Similar results have
been reported previously.!* To perform a systematical
study of the influence of these defects, one should create
them intentionally during the superlattice growth. This
is out of the scope of this paper.

Finally it is worth pointing out that in the case where
the optical absorption and acoustic attenuation are negli-
gible (for example, for low-frequency phonon modes ex-
cited by red or infrared laser wavelengths) the Raman
peaks are broadened by the limitation of the superlattice
thickness. From Eq. (6) one can obtain the intensity ex-
pression for this case

For low-frequency modes, the linewidth displays a
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in’[N(k—q)D]/2
sin’[(k —q)D]/2

which leads to a linewidth Aw=2#V, /ND, ND being the
total thickness of the superlattice. One can notice that
this linewidth is also proportional to the group velocity of

the phonon modes and can be the dominant cause of
broadening in the case of too-thin superlattices.

I=]4/?2 (13)

IV. OPTICAL-ABSORPTION EFFECT ON THE
RELATIVE INTENSITIES OF THE PHONON MODES

The intensities of the folded acoustic modes in the su-
perlattices are related to the interference of the light
waves scattered by different unit cells. We know that the
wave vector of the polarization produced by the photoe-
lastic effects is k +k; [see Eq. (5)]. From the wave-vector
selection rule [Eq. (8)], we find that the phase difference
A® between the scattered light and the polarization after
propagating one superlattice period D is A®=k, D —(k
+k;)D=2mm, which means that the scattered elec-
tromagnetic field created by the polarization in two suc-
cessive unit cells are coherently constructive. This can
also be seen from Eq. (6) which, in the condition of Eq.
(8) and in the absence of optical absorption and acoustic
attenuation, becomes E,=NA. This means that for the
excited phonon modes, the amplitude of the scattered
field is N times the one scattered from one unit cell. So
the relative intensities of the phonon modes are totally
determined by the factor | 4 |2

INTENSITY

16 17 18 19 2
Q(=qD/m)

FIG. 5. Calculated intensities of the phonon modes for a
GaAs/AlAs superlattice (d, =167 A, d, =458 A). The intensity
of the Brillouin (LA) mode is normalized to 1. We have used
(Refs. 30-32) n,(GaAs)=4.215, n,(AlAs)=3.287 for the real
parts of the refractive indexes. The imaginary parts are taken
n1=0.378, n;=6.8X107* for the case with optical absorption
(solid line) and nj=n3=0 for the case without absorption
(dashed line). The ratio of the Pockel’s photoelastic constants
of GaAs and AlAs is taken as 0.32 according to Ref. 16.
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second-Brillouin-zone edge. Here the optical absorption is not taken into account.
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The factor | 4]? is a complex function which depends
on the constitutive material characteristics and the struc-
ture of the superlattice unit cell. In Ref. 22 the relative
intensities have been calculated by taking into account
the modulation of the photoelastic, acoustic, and optical
properties in the superlattice, but the optical absorption
has been neglected. Indeed, for excitation laser wave-
length far from satisfying the Bragg condition, the optical
damping only diminishes the effective number N of the
superlattice unit cells and the relative intensities of the
phonon modes are little affected. Therefore, a good
agreement between the theory and experiments has been
obtained for a wide range of scattering wave vectors not
too close to the Brillouin-zone boundaries.!® However,
one can expect a significant effect of the optical absorp-
tion on the relative intensities for scattering wave vectors
near Brillouin-zone boundaries which correspond to
Q=¢qD /m=2,4,6,... . Figure 5 shows the intensity cal-
culated with (solid lines) or without (dashed lines) optical
absorption for a GaAs/AlAs superlattice (d; =167 A,
d, =458 A) for a scattering wave vector near the second-
Brillouin-zone edge (Q =2). The results with the con-
sideration of the optical absorption are obtained by the
same calculation as in Ref. 22, except that the wave vec-
tors of the light waves are replaced by complex numbers.
In Fig. 5 we see that the difference between the two cases
becomes very important for Q >1.85. When Q is very
close to 2, the intensities of the folded modes with respect
to the Brillouin line are much reduced by the optical ab-
sorption.

This effect of the optical absorption can be understood
schematically. Let us first consider the case of infinite su-
perlattices without optical absorption. As we have dis-
cussed here above, the light scattered in different unit
cells are constructive. It is therefore sufficient to consider
the intensity of the light scattered in one unit cell. When
the scattering wave vector tends to 2ir/D, the Bragg
reflection for the incident light occurs. For an arbitrary
unit cell of an infinite superlattice, the two semi-infinite
superlattices at its both sides can be equivalent to two
high-reflectivity mirrors which constitute a Fabry-Pérot
resonator. The light is then bounced back and forth
within the optical cavity and the effective interaction
length of the light beam with the phonons in the unit cell
is greatly increased. This will greatly enhance the inten-
sities of the phonon modes.

The intensity enhancement at Q~2 is different for
different modes. To understand this, one can consider
the distribution of the polarization corresponding to
different modes in a superlattice unit cell. Qualitatively,
if one neglects the reflection of the scattered waves at the
superlattice interfaces, the intensity of the scattered light
received by a detector outside the superlattice can be tak-
en as be proportional to the square of the integration of
the polarization amplitude in the volume of a unit cell,
similar to the case of homogeneous media.’* For Q =2,
the incident electromagnetic wave and the excited pho-
non modes (except for the lowest mode FLA_; whose
wavelength is much longer than the superlattice period
and which is not considered here) correspond to station-
ary waves. From the expressions given in Ref. 22 [Egs.

(13) and (23)], one can find that all the wave functions are
either symmetric or antisymmetric with regard to the
central plane of each layer. Consequently, the polariza-
tion produced by the photoelastic effect, which is propor-
tional to the product of the incident electric field and the
strain field, is also symmetric or antisymmetric. Figure 6
shows the distribution of the incident electric field, the
strain corresponding to different phonon modes, and the
polarization in a superlattice unit cell along its growth
axis for Q at the second-Brillouin-zone edge. If the polar-
ization is symmetric, the scattered electromagnetic waves
produced in the two halves of the layer will be construc-
tive. Contrarily, if the polarization is antisymmetric, the
light wave scattered in the layer will be self-compensated
and its contribution to the intensity of the scattered light
will be zero. The symmetry of the polarization is
different in the two different kinds of layers. For a
GaAs/AlAs superlattice, the symmetry in the GaAs lay-
er is determinant for the intensity of the scattered light
since its photoelastic constant is much larger than that of
AlAs. If the polarization is antisymmetric in the GaAs
layers, the intensity of the scattered light will be very
weak. This is the case for the Brillouin mode of our sam-
ple. Therefore, when Q approaches 2, the intensity of the
folded modes with respect to the Brillouin mode increase
greatly.

When the superlattice is optically absorbing, there is
no more symmetry (or antisymmetry) of the incident light
field with regard to the central planes of the layers. This
leads to the loss of the symmetry of the polarization. Be-
sides, the resonant “‘cavity” effect of the superlattice is
also much reduced since the light wave will be totally at-
tenuated after propagating several rounds in the “cavi-
ty.” Therefore, the optical absorption results in the
reduction of the intensities of the folded modes with

L‘A

FLAM
Q=1.76(514.5nm)

Q=1.86 (496 5nm)

Q=192(4765nm)

INTENSITY (arb. units)

FLA,
k0198 (4579nm)

0 2 JA [§]
Raman Shift (cm-1)

FIG. 7. Raman spectra of the same sample as in Fig. 5 with
scattering wave vectors near the second-Brillouin-zone edge

(Q~2).
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respect to the Brillouin mode, as shown in Fig. 5.

In Fig. 7 are reported the Raman spectra of this sam-
ple with scattering wave vectors near the second-
Brillouin-zone edge. We: see that when g approaches
2w /D, the intensity of the FLA _, mode begins by in-
creasing and becomes stronger than the LA mode for
0=1.92. Then when Q approaches further to the
Brillouin-zone edge (Q=1.98), the LA mode becomes
again dominant. Besides, though the two modes (FLA
and FLA _;) of the second doublet are not separated ex-
perimentally, an abnormally important shift of the peak
towards high frequency is observed at Q=1.98 which
may be attributed to the intensity decrease of the FLA |,
mode with respect to the FLA_; mode. All these
features agree qualitatively with the calculation when the
optical absorption is taken into account (see Fig. 5).

V. CONCLUSION

This study is complementary to previous ones'®?? in

which the alternating layers of the superlattice were con-
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sidered as lossless media. In the present paper we have
studied both theoretically and experimentally the effect of
acoustic attenuation and optical absorption on the Ra-
man scattering by superlattice acoustic phonons propa-
gating normally to the layers. At low frequency where
the acoustic attenuation is small, a reduction of the
linewidth at the Brillouin-zone edge is observed due to
the flatness of the phonon dispersion curve in this region.
At high frequency, due to the strong acoustic attenua-
tion, the translational symmetry D along the growth axis
is partially lost and as a consequence, the phonon disper-
sion curve displays no more feature of gaps at the
Brillouin-zone edges. The optical absorption of the su-
perlattice is found not only to broaden the phonon peak
linewidth, but also to affect the relative intensities for
scattering wave vectors near the second-Brillouin-zone
edge.
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