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Quasicrystals, although lacking translational periodicity, have 5-function spectra in their
diffraction patterns. An appropriate question to ask is whether there are propagating modes of
well-defined wavelengths in the neighborhood of these 6 functions. To test this, we have investigat-
ed the dynamic response S(k, co) for a model system consisting of ferromagnetically coupled spins
situated on the vertices of a Penrose tiling. It is shown that the dispersion relation at low energies is
isotropic around the 6 functions, with the spin-wave stiffness equal to that around the origin and
with the weighting of the low-energy peaks of S(k, co) correlating with the weighting of the associat-
ed Bragg peaks. Analytic relations have been obtained for the first and second moments of the
S(k, co) at low k and used to conjecture an approximate form for S(k, co). Our results are of
relevance to real quasicrystals and have implications for amorphous systems.

I. INTRODUCTION

As yet most theoretical work in real quasicrystals has
been concerned with their structural and static proper-
ties. Work on their dynamical and temperature-
dependent properties has been hampered because (i) the
positions of atoms in these structures have not yet been
determined satisfactorily, and (ii) even if their positions
were known, the lack of periodic translational symmetry
severely complicates analysis. However, problems of a
general nature can still be addressed and experimental
predictions made. Among the dynamical studies to date
most work has concentrated on the density of states. The
issue of particular interest here concerns the properties of
propagating modes.

Quasicrystals' appear to lie intermediate between to-
p ologically disordered materials at one extreme and
periodic crystals at the other. They have 6-function spec-
tra in their static structure factors but are without
translational periodicity. These 5 functions are densely
packed but their weights are strongly peaked around cer-
tain points in reciprocal space with characteristic point-
group symmetry; indeed, it was the observation of a five-
fold diffraction pattern which heralded the experimental
discovery of quasicrystals. We refer to these extremes as
Bragg (or quasi-Bragg) peaks. A pertinent question is to
ask how we~ll defined are the propagating states: is the
wave vector a good quantum number near the Bragg
peaks, as in conventional crystals, or ill defined away
from the origin, as in amorphous solids. To investigate
this and to get a better understanding of propagating
states in quasicrystals, the dynamic response of a model
system has been computed. The dynamic response func-
tion is a correlation function which quantifies how well
defined a propagating state is for a particular wave vec-
tor. Furthermore, it is a quantity which could be ob-
tained from an inelastic neutron scattering experiment.
The system that has been investigated consists of spins lo-
cated on the vertices of a Penrose tilting, which are fer-

romagnetically coupled with Heisenberg interactions and
treated within the spin-wave approximation at zero tem-
perature.

In choosing this model we are motivated by a number
of factors. Primarily, this is the simplest model contain-
ing a noncrystallographic point-group symmetry in the
diffraction pattern. Additionally, the inflation and
delation symmetries of Penrose tilings make some quan-
tities tractable analytically.

From an experimental perspective and to introduce a
degree of realism for our model, we note that (i) suscepti-
bility measurements ' in icosahedral A1Mn and UPdSi
show a Curie law behavior indicating that the Mn and U
atoms have localized moments, and (ii) there is evidence
for a spin-glass or antiferromagnetic transition, ' show-
ing the moments also interact. A possible relevance of
the Penrose tiling is appreciated when we consider that
the T phase of AlMn (Ref. 9) is believed to be a stacking
of two-dimensional quasicrystals of decagonal point-
group symmetry.

Nevertheless, leaving all this aside, the questions that
are of prime interest are of a general nature. We want to
get some insight into the universal characteristics of
propagating modes in quasicrystals.

The paper is organized as follows. In Sec. II we define
the Hamiltonian. Then in Sec. III we discuss the method
used for computing the dynamic structure factor. In Sec.
IV the results for a tiling having 4181 sites are presented.
Among other things, they show that low-energy modes
are well-defined around the Bragg peaks with the same
stiffness and with weights scaling as the corresponding
diffraction peak weights. An approximate analytic rela-
tion is shown to explain this result. We then, in Sec. V,
compute the first and second moments of the dynamic
structure factor. These demonstrate the existence of
higher-energy contributions to the long-wavelength-limit
dynamic-response function, scaling as the square of the
momentum transfer. Finally, in Sec. VI we give a sum-
mary and discussion of the results.
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II. THE HAMII. TONIAN

The system under consideration is described by the
Heisenberg Hamiltonian,

H= —
—,'QJJS; SJ,

V

where the S, are Heisenberg spins located at the sites
(vertices) i of a two-dimensional Penrose tiling and we
choose J,"=J as a ferromagnetic exchange interaction be-
tween pairs of spins connected by a single edge of the til-
ing (referring to hereafter as nearest neighbors), with
J, =0 otherwise. We consider explicitly small spin devia-
tions about the ferromagnetic ground state, in which case
the Hamiltonian can be expressed to harmonic order as

H =F.o+g J;JS(a;ta; —a; aj ), (2)
V

where E0 is the ground-state energy, a; and a, are the
Holstein-Primako8' spin deviation annihilation and
creation operators, satisfying the Bose commutation rela-
tion [a, , a ]=5;, and S is the spin length. Within the
corresponding approximation

S =S —a;a;,
S;+ =&2Sa, ,

S; =-&2Sa;t .

We shall take JS =1. Henceforth (2) will effectively be
the defining equation for our model system. It may be
viewed as an idealization for several types of interaction:
as an idealized magnon system, as already discussed; an
idealized scalar phonon model, subject to minor changes
such as the interpretation of the energy eigenvalue as the
square of the phonon energy; or for electronic band struc-
ture, when an appropriate on-site term is added.

Several authors have looked at the excitation spectrum
of (2) or one of its close relations on Penrose tilings. Our
interest, however is in the dynamic response relating en-
ergy and wave-vector transfer, as characterized by the
dynamic structure factor S(k, co). Klenin' has also stud-
ied S(k, co) on a Penrose tiling, for an acoustic model.
She also demonstrated that acoustic modes are quite well
defined near Bragg peaks, but our analyses are comple-
mentary and independent.

In principle S(k, co) can be obtained by finding all the
eigenmodes and eigenvectors, but computationally this
can only be done for a few hundred degrees of freedom.
Furthermore, for S(k, ai) we do not require the complete
eigenfunctions of the individual modes. Rather, averaged
spectra will su%ce.

We employ here a method of Alben et al." for com-
puting S(k, co). It involves iterating the equation of
motion for a site correlation function and then Fourier
transforming to energy co and collective coordinates k.

The correlation function employed here is defined by

g;„(()= (a(()g, a,. (0)e
J 0

It obeys the equation of motion

ig, i,(t) =g Ji)S[g,k(t) —
gqi, (t)],

J
(6)

with the initial condition

S(k, co)= Re J dt e' 'e ' pe 'g, k(t),
'jT 0

where the numerical integration time T is set by the re-
quired numerical resolution, ' 6&v=2~/T, and a Gauss-
ian damping e ' is introduced to remove ripple, with
the heuristic value a=3/T; this term alone would yield—co /4o.a resolution-broadening function e

IV. DYNAMIC STRUCTURE FACTOR
AT THE BRAGG PEAKS

In Fig. 1 is shown a section of the Penrose tiling about
the axis of fivefold symmetry. Several tilings, of two
diFerent sizes, have been investigated but the results
presented here refer to one which has 4181 sites. It is
composed of rhombuses, the fat and the thin rhombuses
(Fig. 2), which have sides of equal length, here taken to
be unity. It was constructed by means of the deAation
procedure. ' ' In Figs. 3 and 4 are shown its structure
factor,

ik-r, .

q;„(t =0)=e

S(k, co) is the Fourier transform of g, k(t). For a finite-
time evaluation of g,k(t) it may be approximated by

III. COMPUTATION OF S{k,co)
2

S(k) =—g e (9)

When restricted to zero temperature and normalized to
unity, S(k, co) is given by

S(k,co)= J dt e ' 'g e2~&

X (a;(t)a (0)) (4)

where r; is the position of the ith spin and X is the num-
ber of spins; ( . )0 refers to a ground-state average.
The operators a,.(t) and a (t) are in Heisenberg represen-
tation. Our interest is directed towards the character of
S(k, co) for k close to the Bragg peaks of the static struc-
ture factor and towards the moments of S(k, co).

along the x and y directions about the global fivefold axis,
as defined in Fig. 1.'

S(k, co) has been computed around three Bragg peaks,
k, =(0.0,0.0), ki, =(0.0, 12.516), and k, =(0.0, 32.768)
for increments of wave vector 6k =0.3, 0.5, 0.7 along the
positive and negative y directions and along the positive x
direction (negative x being equivalent by symmetry).
These particular Bragg peaks were picked because of
their high weighting and comparative isolation from oth-
er major peaks. Throughout, free boundary conditions
were employed and a computational resolution of
6co= 2'/T =0.03 has been used.
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FIG. 1. A section of the Penrose tiling about the center of
fivefold symmetry. FIG. 4. The Bragg peaks computed along the y direction.

Also indicated are the Bragg peaks where S(k, co} has been in-
vestigated (Ref. 15}.

FIG. 2. The fat and thin tiles with the labels used for the
diagonals. In terms of the golden mean r= ( 1+&5}/2;
r=&3—~, n=&2 —~, +=~&3—~.

In Figs. 5, 6, and 7 are shown the computed S(k, co)
around the respective Bragg peaks for the above values
and directions of 5k. As we are particularly interested in
the data at low energies we have only plotted for the
range m=0. 0 to co= 1.0. Figure 8 compares the response
for the three Bragg peaks. On inspection, these figures
clearly show that propagating modes of a well-defined
wave vector exist around these Brag g peaks. The
broadening of the peaks is in accord with expectations
based on the combination of resolution broadening due to
the truncation and smoothing imposed in Eq. (8) and the
further finite-size broadening 5k-2n.Dk/N' where N
is the number of sites in the tiling; this has been further
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FIG. 3. The Bragg peaks computed along the x direction.

FIG. 5. S(k, co) computed around the origin k„ for the posi-
tive x direction and positive y direction. The three separated
peaks correspond to k =0.3, 0.5, 0.7.
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FIG. 6. S(k, co) computed around the Bragg peak kb, for the
positive x direction, positive y direction and negative y direc-
tion. The three separated peaks correspond to 6k =0.3, 0.5, 0.7.

verified by studies of tilings of different N. In each case
the peak position can be quite well fitted to

~„,k(k) =D (k —k, )'+0 (k —k, )',
where kb is the position of the Bragg peak and D is a
spin-wave stiffness.

The computed spin-wave stiffnesses around the various
Bragg peaks agree within D =0.86+0.06, so indicating
that the spin-wave stiffness is isotropic and equal around
the peaks.

We have also computed the weights (areas) of these
low-energy peaks of S(k, co). In Fig. 9 they are plotted
against the weights of the associated Bragg peaks of
S(k). From the graph one may note that these quantities

FIG. 8. Averaged S(k, m) around the three Bragg peaks k„
kb and k, . The three separated peaks correspond to 5k=0.3,
0.5, 0.7.

are proportional to each other with a constant of propor-
tionality of unity.

So, to summarize, these results demonstrate that prop-
agating spin waves exist around the Bragg peaks, with
the spin-wave stiffness being equal and isotropic at the
Bragg peaks. In addition, the weights of the low-energy
peaks of S (k, co) scale with the weights of the correspond-
ing Bragg peaks.

These results are in accord with the approximate ana-
lytic relation' for S(k, co) at small co

S(k, co) =g S (k+q)5(~ —coq),
q

where mq is the long-wavelength dispersion, here
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FIG. 7. S(k, co) computed around the Bragg peak k„ for the
positive x direction, positive y direction and negative y direc-
tion. The three separated peaks correspond to 6k =0.3, 0.5, 0.7.

FICi. 9. %'eights of the Bragg peaks against the low-energy
weights of S(k, co), around a selection of Bragg peaks.
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co))Dk and a difference between the spin-wave stiffness
determined from the position of the principal peak and
that from the first moment. ' Furthermore, we see that if
a =b, so that the structure is relaxed, these new features
vanish. Also, the magnitude of D is unaltered by pinning
the ends and allowing the positions to relax under hy-
pothetical zero-natural-length springs (without altering
the exchange J).

We might note that Eq. (30) also demonstrates that Eq.
(12) is only approximate, since the latter clearly does not
take account of the k-dependent correction to the low-
energy peak in the former. This rejects the fact that
a i, ~

0 ) is only an approximate eigenstate and that its over-
lap with the true eigenstate scales as [1—Ak
+0(k )]', a feature to be expected also of other unre-
laxed structures. The effect is, however, only of secon-
dary importance in the simulational comparisons of
S(k, co) and S(k) made above, since the wave vectors
considered are small measured from the relevant Bragg
wave vectors.

VI. CONCLUDING REMARKS

We have demonstrated here that propagating modes do
exist with the same dispersion relation around the origin
and around principal Bragg peaks of quasicrystals. This
result can be understood in terms of an approximate rela-
tionship between the dynamic response function S(k, co)

at low co and the static structure factor S(k), together
with the facts that S(k) has strong Bragg peaks and the
long-wavelength excitations are relatively well defined
and isotropic.

We have also seen that for small k, not only does
S(k, co) have a peak at the spin-wave energy cubi,

=Dk
but additionally a background covering ~))Dk with a
weight scaling as O(k ). This latter is attributed to the
unrelaxed nature of a Penrose tiling.

Our explicit study was based on magnetic excitations
associated with ferromagnetically interacting spins on a
Penrose tiling, but we believe that our observations are
more generic and are expected also for three-dimensional
quasicrystals and for other types of excitation, with ap-
propriate changes such as co —+m for acoustic phonons.
These predictions should be testable by inelastic neutron
scattering. Furthermore, the feature of extra relevant
weight in S(k, co) at long wavelengths, over and above
that in the dominant peak at low energy, should apply to
any unrelaxed structure, including, for example, amor-
phous solids. Thus the use of the first moment of S(k, co)
to obtain the spin-wave stiffness in an unrelaxed structure
would lead to an erroneous estimate of the low-energy
density of states for such systems and an apparent anom-
aly when compared with estimates from the magnetiza-
tion and the specific heat.

As yet there are a number of possible candidates for
structures which within experimental precision agree
with the observed icosahedral diffraction patterns.
Among the others are icosahedral glasses and con-
figurationally disordered quasicrystals. A common
characteristic of these structures is long-ranged bond
orientational order. Icosahedral glasses are randomly

packed icosahedral clusters arranged so as to preserve
long-range bond orientational order. Configurationally
disordered quasicrystals can be constructed from quasi-
crystals by making transformations to a finite arrange-
ment of unit cells which preserve the overall shape but
not the quasiperiodic order within the arrangement.

Investigating propagating modes and their dynamical
properties could assist in distinguishing between these
structures. For example, a two-dimensional analogue of
the icosahedral glass is the pentagonal glass, composed of
randomly packed pentagons joined at the vertices with
long-range bond orientational order ensured by requiring
that the center of the pentagons and the common vertex
are collinear; in addition the structure has to be further
constrained to have closed rings. We can also similarly
consider a configurationally disordered Penrose tiling.
Clearly the first moment (co(k) ), apart from a prefactor,
will be the same in analytic form for all these structures
since the only information needed to compute it comes
from the distribution of nearest-neighbor bond vectors.
However, distinguishing information can be gathered
from the second and higher moments as these contain in-
formation about the distribution of the next nearest and
further neighbor bonds, and so will differ for the various
structures.
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APPENDIX A:
EVALUATION OF THE SECOND MOMENT OF S (k, a) )

The sum of the first three terms of Eq. (26) is

(z2) 2(z2) (eik 5) (A 1)

where (z ) is the mean-square coordination number.
The fourth term includes contributions from the next-
nearest neighbors and requires a more involved calcula-
tion. It can be separated into

(A2)

where the latter expression represents the contribution of
consecutive bond vectors whose resultant is nonzero.
[This resultant, 5;+5;„will henceforth be referred to as
the next-nearest-neighbor bond vector (NNNB)]. The
sum can be further decomposed into two parts,

(A3)

a summation g' that represents the contribution of
NNNB vectors which intersect bond vectors and a sum-
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mation g" which represents the remainder.
The sum g" thus represents the contribution from

NNN8 vectors which lie along the diagonals of the
rhombuses. There are four types of such NNNB vector,
of different magnitudes, associated with the two types of
rhombuses; see Fig. 2. Each has a star of occurrence.
The contribution for a particular NNNB vector is pro-
portional to the fraction of the associated tiles. The ratio
of fat to thin rhombuses is ~:1; where r is the golden
mean r = ( I +&5 ) /2. Thus,

[.((.")+((."')) )
4

(1+r) P

+(&(."~&) +(.""&,)], (A4)

where [r,. I and I I; I are the tenfold set of diagonal vec-
tors of the fat tile, and I()(); I and I Q; I are the tenfold set
of diagonal vectors of the thin tile. The sets Ir; I and

IQ;] lie on a tenfold star orientated in coincidence with
the star of bond vectors. II; J and IP,. ] lie on a tenfold
star orientated at m. /10 to the bond vectors; this is indi-
cated by the double angular brackets (( . ))~.

The remaining summation g' can be obtained by
focusing on the vertices and their associated bonds and
enumerating the number of different ways of forming
NNNB vectors from the end points of those bonds which
cross one or more bond vectors originating from the ver-
tex.

For example, the vertex K (Table I), which is fourfold
coordinated, has two associated intersecting NNNB vec-
tors of length P. These vectors form a tenfold star IP; I

orientated at m/10 to the star of bond vectors. Thus the
contribution made by vertex K to g' is

g'=+2z n" pe
CTP n

with 5"=~5"„~, where z is the fraction of vertices of type
o and n" is the number of intersecting NNNB vectors of
length 5" associated with the vertex. The NNNB vectors
[5„) lie on a tenfold star, orientated either in coincidence
with or at m. /10 to the star of tenfold bond vectors.

What remains is to enumerate the frequency of oc-
currence of the vertices and their associated NNNB vec-
tors. In Table I are the vertex types and frequencies in de
Bruijn's notation. Here the usual labeling of the bond
vectors is irrelevant.

There are four types of intersecting NNNB vectors.

Ir;I; lr;l=r,
I25, I; [25, [=2,
II, };II, I

=«3—),

(A7a)

(A7b)

(A7c)

(A7d)

where the stars of (A7a) and (A7b) are orientated in coin-
cidence with the bond vectors, with (A7c) and (A7d)
orientated at m /10 to the bond vectors.

Also in Table I are enumerated, the occurrences of in-
tersecting NNNB vectors at the vertices. On substituting
for the frequencies and bond vectors into (A6) yields

4zx ((e'"'&», ;

where zz is the fraction of sites of type K. The prefactor
4 is made up of 2 for the two NNNB vectors at a vertex,
together with a further 2 since each vector can be orien-
tated in a positive or a negative direction.

So the summation g' can be reexpressed as

g'=(8 —4r)(e'"'& +(10—6r)(e'"' )z+(10—6r)((e'"'")) +(26—14r)((e' ~))~ .

Finally, collecting all the terms, the second moment becomes

(co(k) ) =(JS) [(70—30r)+( —132+60r)(e'"' ) +4(e'" )z+(8 —4r)(e'"' )~+(10—6r)(e'"' )~

+(6—2.)«.'" "»,+(34—1«)(&e "~
&&, ],

(AS)

(A9)

where we have also substituted into (Al) the value
(z )~ =660—30r computed from Table I.

I

where

co(q) =2JS (1—cosq ), (83)
APPENDIX B:

RESPONSE OF A SIMPLE UNRELAXED CHAIN

Consider a simple chain of spins on sites whose separa-
tions are alternatively a, b, interacting via nearest-
neighbor exchange J. Denoting the position of the nth
spin by x„,we take

1a =, pa„e'~" .
q .+ n

The response function is given by
2

S(k, m)= —X (0 a Xa+e 0l 0(m —m(q))
q m

=cos'(k (a b)/4)5(co ~(k (a—+b)/2))

(84)

a; n even
'- b. n odd (81)

H =Q co(q)ata (82)

Within the classical spin-wave approximation, excitations
are given by

+k (a —b) /165(co —4JS) . (86)

+sin (k (a —b)/4)5(co —n)(n- —k(a +b)/2)) .
(8&)

For small k this becomes to leading order
S(k,co)=[1—k (a b) /16]5(co JS(a—+b) k /4)—
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