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Ground states of infinite-range spin- —' quantum Heisenberg antiferromagnets
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We study a class of infinite-range spin- —quantum Heisenberg antiferromagnets. We show that,

in addition to ground states with macroscopic net spin in one or several sublattices ("Neel states"),
there are valence-bond (VB) states that are local spin singlets. We show that there is a class of per-
turbations that stabilizes the VB state. We characterize the excitation spectrum and find an order
parameter for the VB states. Finally, we extend our method to find perturbations that stabilize mi-

croscopic as well as macroscopic chiral states.

I. INTRODUCTION

The subject of the possible ground states of quantum
antiferromagnets has attracted considerable interest in
the past year or so. Much of this effort is connected with
the search of a possible magnetic mechanism for high-

- temperature superconductivity. However, this is a sub-
ject of considerable importance in its own right, in view
of our poor understanding of what generically are called
"Mott insulators. "

Much of the recent effort has concentrated on classify-
ing the possible ground states of these systems, particu-
larly in two dimensions. In addition to various Neel

- states, ' a host of new "phases" have been proposed:
resonating valence bonds (RVB) (both in its long-range
and short-range ' forms), valence-bond (VB) crystals, '

flux phases, ' Laughlin states, ' and parity-broken
states. "' Mean-field theories for Neel-type states are
fairly standard and well understood. Usually they be-
come exact in high dimensions, particularly in the
infinite-range limit. This limit has been studied exten-
sively in the framework of the theory of classical spin
glasses. '

The present understanding of the "less conventional"
phases is quite sketchy. In this paper, we study the
infinite-range version of the Heisenberg model with an
eye at developing a mean-field theory for "unconvention-
al" ground states of the antiferromagnet using techniques
which are well understood for Neel states. This may
seem rather surprising at first sight. Indeed, common
wisdom has it that the Neel state is stable at higher di-
mensions because the system effectively becomes classi-
cal. This, however, is not necessarily so. We show here
that an infinite-range quantum Heisenberg antiferromag-
net can have "unconventional" ground states just as easi-
ly. In fact, we have been able to generalize the infinite-
range model so as to stabilize (i) Neel states (with two or
more sublattices; this issue has been recently addressed
by Ma' ), (ii) valence-bond crystals, and (iii) chiral states.
The RVB state does not have any simple representation
in this model. Interestingly enough we find two types of
chiral states. One type breaks parity at the microscopic
level while the other does so at the macroscopic level.

The paper is organized as follows. In Sec. II, we dis-
cuss the infinite-range quantum Heisenberg antiferromag-

net for spin —,'. In Sec. III, we introduce a hierarchy of in-

teractions (an "architecture") which stabilizes either a
Neel state or a VB crystal. We also discuss the low-
energy spectrum associated with both regimes. In Sec.
IV, we discuss microscopic and macroscopic chiral
states. As a bonus multisublattice Neel states also are
found. Section V is devoted to the conclusion.

II. INFINITE-RANGE
QUANTUM HEISENBERG HAMILTONIAN

Let us consider the infinite-range quantum Heisenberg
antiferromagnet for a system 0 of N (even) spins —,'. The
Hamiltonian is

N

Ho=JQS, S (2.1)

where the coupling constant J is positive. The operators
S;, i =1,. . . ,N, represent spin- —,

' degrees of freedom and
satisfy the algebra

[S,', S ]=5, (e' 'S;), i,j =1, ,N . (2.2)

H =—(S ——'N) .J=2 '-' (2.3)

The eigenvalues of Hp are labeled with the quantum
number s of the total spin

Eo(s) =—[s(s+ 1)——,'N], s =0, 1, . .. , —.
J

(2.4)

The tensorial basis of the Hilbert space

~( II ) =&]/2 ' 131Jv]/2

=ao~o ' ' 63aN/2~N/2 (2.&)

diagonalizes Ho. &&., j=0,—,', 1, . . . , denotes the j (j +1)-
dimensional Hilbert space associated with an irreducible

In this form, the infinite-range nature of the interaction
is equivalent to the invariance of Hp under any permuta-
tion of the N spins. To obtain the spectrum of Hp and its
eigenstates we make explicit the invariance of Hp under
global rotations of the system. If we denote with S the
total spin of the system 0, the Hamiltonian can be
rewritten in the form
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representation of SU(2), and the a are integers. The de-
generacy of the global singlet subspace is ao. This degen-
eracy is a result of the discrete permutation symmetry.
The states with the lowest energy Eo(0) are global sing-
lets. They span the subspace &0(Q)—:ao&0 which is, for
example, one dimensional for %=2 and two dimensional
for N =4. In general, the dimensionality ao of &o(Q) is'

N/2+1

Our goal is to construct for a large, even number of
spins a class of perturbations of Ho which lifts the degen-
eracy of the ground states. To this end, we need to un-
derstand the structure of &o(Q). First, we choose a pro-
cedure for obtaining the total spin S. There are —,'3P. sys-
tems of basis which diagonalize S. Each system corre-
sponds to the particular order chosen to add the spins.
To motivate our choice consider four spins. Label them
and add them according to the rule

S=(S,+S~)+(S3+S4)—:S„+S,2 . (2.6)

Now, S11 and S12 can be both in a singlet or in a triplet
state while adding to a global singlet state. The global
singlet subspace is thus two dimensional and a possible
basis can be labeled, respectively, with the quantum num-
ber (s, s&&,s,z)=(0;0,0) and (s,s», s,2)=(0;1,1).

To extend this method to larger X, assume that

%=2", n =1,2, 3,4, . . . .

Represent the basis elements of gfo(A) with binary trees
constructed in such a way that their vertices are associat-
ed with the total spin S; of a subset 0; of spin —,

' belong-
ing to the set A. More precisely,

i, —1

s( '
1 ) Oy J 1 y ~ ~ ~ p 2

S
(2.9)

Other global singlet states are generated by breaking two
singlet bonds, say the singlet bonding between the pairs
(S+ 3 SQ 2) and (Sz „Sz),and by requiring that those
triplet states combine into a singlet whenever they are
added later on in the tree. The global singlets are not al-
ways uniquely characterized by i, . The bipartite (semi-
classical) Neel state [see (4.10c) and Ref. 16] corresponds,
in this picture, to the global singlet state with i, =1 and
with the maximum, partial spin quantum number
s» =N/4. We will denote it with ~fN;, &)2'. In terms of
the tree-like basis,

More generally, we will call those global singlet states
with one or several "sublattices" (0;J ) having a macro-
scopic net spin, Neel states. Whether we mean the bipar-
tite Neel state or some less symmetric Neel state should
be clear depending on the context.

III. NKEL STATE AND UALENCE-BAND STATE

A. Lifting of the degeneracy

For example, we can pair S, and S2 into a singlet bond
and repeat this for the remaining %/2 —1 distinct pairs
of spin —,'. The N/2 partial spins S~„,~~J~

are by assump-
tion singlets. Therefore, the associated global singlet is
characterized uniquely by i, =n. This state is called the
valence-bond (VB) state and will be denoted with ~gvB).
In terms of the tree-like basis,

~1t„)=~0;[0,0I, . . . , [o, . . . , oI, [-,', . . . , —,'I & .

Sij =S(i+1)(2j—1)+S(i+1)(2j)

i =1, . . . , n and j=1, . . . , 2';
S„—=S., j=1, . . . , X;
ij =(i+1)(2j —1) U(i+1)(2j) &

(2.7)

We are now in position for constructing a class of per-
turbations which lifts the degeneracy of the subspace of
global singlets &o(Q). The idea is simply to introduce an
operator which

differ

entiate between basis states
~0;[s;~I ) of &0(Q). A possible choice is the class of
operators

i =1, . . . , n and j=1, . . . , 2';

A„=[jI, j=l, . .. ,N .

n 2

V([A,, I)= g g A, , S;
i =1j=l

(3.1)

s,j =O, 1, . . . , 2" (2.8)'

We denote with ~s, m, ; [s," J ), m, = —s, . . . , +s, a state
with total spin quantum number s and which can be
viewed symbolically as a binary tree carrying the quan-
tum numbers si on its vertices. When s=0 the global
singlet ~0; [s; I ) is uniquely defined up to a normalization
constant. A necessary and sufhcient condition for
~s, m„[s;, I ) to be a global singlet is that there exists a
generation i, with

The first index i labels the ith generation of the tree. It
runs from 1 to n. . The second index j labels the branch of
a given generation i. It runs from 1 to 2'. A subset 0;.
contains 2" ' elements (spin —,') and hence the conserved
partial spin quantum numbers s;j take the values

n 2'

V([A, , I )= g A, , g S2. . (3.2)

where [A,; I is a set of real coupling constants. Although
this class of operators has a degenerate spectrum in the

where [A,; I is a set of real coupling constants. The effect
of this perturbation is to merely change the couplings be-
tween pairs of spin —,'. Any operator of this form com-
mutes with Ho and, by construction, has only diagonal
matrix elements in the basis [ ~ 0; [s; I ) I of the global
singlet subspace. Any element of this basis can have its
unperturbed energy Eo(0) lowered by the perturbation
relative to all other basis states if the parameters A, ; are
chosen appropriately. For our purpose it is sufBcient to
consider the subclass of perturbations
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subspace of global singlet states, the VB state as well as
the bipartite Neel state are nondegenerate in &o(Q) and
have, respectively, the lowest and largest eigenvalues pro-
vided the A,;, i = 1, . . . , n, are strictly positive:

The perturbation V( IA, , } ) lifts the degeneracy of the
subspace &o(Q) by partially breaking the discrete permu-
tation symmetry. This is clearly seen if we rewrite (3.2) in
the form

V =—'NA, n

VNeel y g 2i

r

2i+1 2i+1

(3.3a)

(3.3b)

V([X, })= y J,.',"'([X,})S, S,
i j =1

The N XN matrix J,.'"' is obtained with the recursive for-
mula

J'" "([l, , l, })+A, 1'" 0
J'" "([k A, })+A, 1'"

J

1(n —1)

and initially,

~(n —2) . . . 1(n —2)

1(n —2) . . . 1(n —2)

n cc—
N

Conditions (3.6a) and (3.6b) are met if we choose

JoJ=, Jo &0,

(3.6b)

0
J(1)

ij — 0
1 1

and 1 =
1 1

(1) (3.4b)
Ao)0 .

Xp
(3.7a)

E (N)= ———+1F J N N
2 2 2 4

+ QA, ,
2'

2i+1 2i +1

J—+—„'g, N
, 2'

J n

+ ——+—,'gA, ; N .
4 2 I (3.5)

Since the ferromagnetic energy (3.5) is an upper bound to
the spectrum of Ho+ V( IA, ; } ), the thermodynamic limit
exists if and only if

1Joc—
N ' (3.6a)

One is easily convinced by explicitly constructing the
effective interaction J "'(A, i, . . . , A,„)between two spin- —,

'

S; and S. for, say, n =4 or 8, that this effective interac-
tion is determined solely by the position in the tree I Q;1 }
of their first common ancestor Qkr. (In other words,

I J
Qk I is the smallest subset of 0 which contains the ith

J
and jth spin —,'.) The class of perturbations (3.2) has in-

duced an ultrametric topology in the space of coupling
constants [J~g'~i,j=1, . . . , N }.

The positive parameters A,;, i = 1, . . . , n, are not arbi-
trary for the thermodynamic limit N=2"~ ~ to be well
defined. Consider the ferromagnetic state

~y, )=~Ny2, m, ;[2"-" "}).

The sum of its unperturbed energy and perturbation ener-

gy 1s

With this choice, we get

n

[1—( —,
' )"],N

~o lnN
ln2

(3.7b)

Consequently with the choice (3.7a), as N goes to infinity
the contribution to the energy (3.5) from g," &A, , /2' is of

n

order N while the contribution from g; &A,; is of order
lnN. This is important since it means that, on one hand,
all those global singlets which are characterized by
limz i, '=0 [e.g. , the VB state; see (2.9)] are again de-
generate. Here, the largest subsets 0; . of those global

S

singlets which carry nonvanishing partial spins S;, only
S

contain a finite number of spin —,
' in the thermodynamic

limit. On the other hand, the perturbation still lifts par-
tially the degeneracy of the global singlet states which
have macroscopically large subsets of spin —,

' carrying
nonvanishing, partial spin. The lifting is partial because
two tree-like states are degenerate in the thermodynamic
limit when they are characterized by i, . &i,-& ~ and
when they share the same quantum numbers s;, i ~i,-,
while the s;, s(,. +,), . . . , s(; 1) are finite for the state

S

with i, But two tree-like states which differ only by hav-
ing different macroscopic partial spins on the same gen-
erations of the tree, remain nondegenerate. Finally, we
note that the preceding discussion is a simple conse-
quence of the thermodynamic limit (3.6a) and (3.6b) and
does not depend on the choice (3.7a) and (3.7b).

To recover the VB state as the nondegenerate ground
state in the thermodynamic limit, we just modify a 6nite
number of parameters [A,;} so as to penalize all other
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H —=Mo+ V( IA, ; j;p, ),
where 1,; )O, i =1,.. . , n, p1) 0, and

2l

(3.8)

basis elements of &0(Q). Define the class of Hamiltonian E(1)=—[1(1+1)]J
2

n 1

+l(1+1)g (A,;+5„,;pi)+E (0) . (3.10)

v(IA. , j;p, )
—= g (A, , +5„,,p, ) g s,

'~

The parameters J and I A, ; j are chosen so as to insure that
the spectrum of H is extensive [condition (3.6)). The in-
dices of the positive parameter p1 stress the fact that a
finite number of positive couplings can be introduced to
stabilize other basis elements of &o(0 ). For example, in
the context of a microscopic, chiral ground state, we will
replace 5„,;p1 with 5„2;p2. -In any case, the Hamil-
tonian (3.8) has the VB state for ground state or, if we
were to reverse the sign of all IA,; j at once, the bipartite
Neel state for ground state.

B. Excitation spectrum and order parameter
for the Neel and VB state

E (0)=E (0)+—,'NA, „. (3.9)

There are X/2 ways of breaking one singlet bond of the
VB state. The resulting states, say

l 1; I l, oj, . . . , [1,0, ... , 0j, I —,', . . . , —,
'

j ),
have a global spin in the triplet state and the energy

The VB state,

ly„) —= lo; Iooj, . . . , Io, . . . , oj, I-,', . . . , —,
'

is the ground state of the class of Hamiltonians (3.8).
There are N/2 pairs of spin- —,

' or valence bonds which are
each forming a spin singlet. The energy of the VB state is

More generally, the breaking of I, 1 ~ m ~ N/2, singlet
bonds of the VB state costs at least an amount
1(1+1)mp, in perturbation energy. The energy cost
l(1+1)p, is a lower bound to the energy differences be-
tween the VB state and all the other states ls, m, ; Is; j )
which can only become exact when m =1 and 1V—+ao.
As a result, in the thermodynamic limit, the lowest exci-
tation states of (3.8) form an (N/2) —dimensional sub-
space of &, [see (2.5)] and the energy gap between the VB
state and those global spin-1 states is 2p, .

The operator

(3.11a)

has the eigenvalues

Io, —1X2,—2X2, . . . , —m X2, . . . ,
—(N/2) X2j

(3.11b)

for our tree-like basis. The VB state is a nondegenerate
eigenstate of M wi. th the largest eigenvalue. The states
obtained by breaking one, two, . . . , all the bonds of the
VB state have decreasing eigenvalues. The bipartite Neel
state and, in this respect, the ferromagnetic state belong
to the same eigenspace of M (namely, the one with the
lowest possible eigenvalue). For this reason we interpret
the operator M as the order operator for the VB state.

If we reverse the sign of all parameters I A, ; j, the bipar-
tite Neel state becomes the ground state of (3.8). For ex-
arnple, the global singlet state

lo; IN/4 —1,N/4 —1 j, IN/8, . . . , N/8j, . . . , I 1/2, , 1/2j )

~Neel gz gz
2 = 11 12

with the eigenvalues

Io, +1, . . . , +N/2j .

(3.12a)

(3.12b)

Here, the bipartite Neel state is the nondegenerate eigen-
state with the eigenvalue of magnitude N/2 while the VB
state as well as the ferromagnetic state are eigenstates
with the eigenvalue 0. The bipartite Neel state order
operator is not invariant under a uniform rotation of all
spin —, in the system. This behavior is crucially different
from that of the VB order operator (3.1la) which is left

has the excitation energy l
A, , l

N =
l
A,o l, while the global

triplet state l 1,m„' I2" '+"
j ) has the excitation energy

(Jo/2N )1(1+1). We see that in the thermodynamic lim-
it, all the states with s11=s12=%/4 and s finite are de-
generate in energy with the bipartite Neel state.

The order operator for the bipartite Neel state is the
staggered magnetization

unchanged under the local transformation

2n 2

eXP t ~ a~n —1]j S(n —1)jj=l
where the o.~„1~., j =1,...,2", are local angles of ro-
tation. In other words, the Neel state breaks spontane-
ously the rotational symmetry of the Hamiltonian (3.8) in
sharp contrast to the VB state. It would seem that, in ac-
cordance to Goldstone theorem, it is precisely the spon-
taneous symmetry breaking of the rotational symmetry
for the Neel case which causes the energy spectrum to be-
come gapless in the thermodynamic limit. Conversely,
the absence of spontaneous symmetry breaking of a con-
tinuous symmetry in the VB case explains why the energy
spectrum has a gap in the thermodynamic limit. In the
present context, however, the former result cannot be ob-
tained from Goldstone theorem since the theorem only
applies to spontaneously broken theories with sufFiciently
local (i.e., short range) interactions. ' For example, the
infinite-range ferromagnetic Heisenberg model (2.1) with
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J & 0 has an energy gap between the ground-state energy
and the first excited energy level which survives the ther-
modynamic limit, namely

lim [Ep(s)—E(](s 1)]I —]vga IJpI
&—+ oo

Hence, the prediction of the Goldstone theorem is not
fulfilled in the ferromagnetic case since no new degen-
erate states are added to the ground-state subspace &]v&2
[see (2.5)] in the thermodynamic limit.

Finally, we note that the perturbation (3.1) could be
used to stabilize any global singlet state. In particular, it
can stabilize extensions of the bipartite Neel state to 2-
partite Neel state (i finite). First, define for i =I, . .. , n,
the operator

2'

M; = g (
—1 )jS,' .

j=1
(3.13)

Note that the VB state is an eigenstate with eigenvalue 0
for M;, i =1,. . . , n —1, while it is projected onto its or-
thogonal space when i =n. Consequently, the expecta-
tion value of (3.13) for the VB state vanishes for all gen-
erations i. Now, the 2-partite Neel state is the global
singlet state which is the nondegenerate eigenstate of
(3.13) with the eigenvalue of magnitude N/2 and for
which the S; give extensive eigenvalues of magnitude
N/2'+', i =i, being independent of N when the thermo-
dynamic limit is taken [i.e., i =i, is finite and according

to the discussion following (2.9), there are macroscopical-
ly large subsets of spin- —,

' carrying a macroscopic partial
spin].

IV. MICROSCOPIC AND
MACROSCOPIC CHIRAL STATES

A. Microscopic chiral state and excitation spectrum

2n 2
(4.1a)

which all commute with S'&23 S4j —3+S4j —2+ S4j
j=1,. . . , 2" [although'not with the spins on the nth
and on the (n —1)th branches of the binary tree] and
moreover have the eigenvalues c = —1,0, +1 with the
corresponding eigenstates

Besides the VB state or the bipartite Neel state, other
types of ground states can be stabilized starting from the
class of infinite-range Hamiltonian (3.8). For example,
the analog of the chiral state introduced on a square lat-
tice' can be obtained as follows. Consider the class of
Hamiltonian (3.8) with ]]],] replaced by ]M&. In other
words, the ground-state subspace is now 2 ~ dimension-
al. It is spanned by all those tree-like states with singlet,
partial spin on all the disjoint subsets Q[„
j= 1, .. .,N /4, consisting of four spin —,'. Define the
operators

() 4
X]23= . 4 —3 4j — j—»J

s]23)+ (j) )c' & + I I t 2m]/ w 31 &) I )rm3/))0&) I 2)]ii]/2 tl & I) ']]i (j) s]33& . t +s]23
123 123

(4.1b)

Any arbitrary yIjz]3 breaks parity (P) and time-reversal (T) symmetry. Indeed under a time-reversal transformation the
spin operators change signs. The y'iz'3 also changes sign under an odd permutation of the three spin operators. Geome-
trically, an odd permutation of (123) amounts to reversing the direction of circulation around a triangle with vertices la-
beled 1,2,3. In this sense, the nonvanishing expectation value of y', 2'3 is interpreted as the breaking of parity. Conse-
quently, the chiral state

1 1 1 1 1 1 1 1

j=]
(4.2)

is one such that the expectation value ( I cj I Igj2'3I I cj J & is
nonvanishing for any jE I1, . . . , 2"

We use (3.8) with p] replaced by pz to define

(4.3a)

E,(0)=E()(0)—Ih I— (4.3b)

where Hl= —g,' ] h(j)y",,'3 and h(j)%0, j=1,.. .,N/4.
The ground state of this class of Hamiltonian is unique
and has the form (4.2) in the thermodynamic limit (for
which the A.„„]vanish). If the "magnetic" field h (j) is
chosen to be uniform, then the quantum numbers of the
ground state are c =sgn(h), j=1, . . . , 2" . The
ground-state energy is given in the thermodynamic limit
by

If the "magnetic" field is staggered, then the ground state
has alternating quantum numbers c =sgn[h (j)],
j=1,... ,2", and the same energy as in the uniform
case. The manifold of low-lying excitation states is made
of two families of states. For a given "magnetic field"
h (j), j= 1, .. . ,2", the state obtained from the ground
state by "Gipping" the quantum number ck on the kth tri-
angle (4k —3)(4k —2)(4k —1) has the excitation energy
2Ih(k) I. Consequently when the magnitude of the "mag-
netic field" is uniform, there are N/4 independent states
with the excitation energy 2IhI. The second family of
low-lying excitations is obtained from the ground state
(4.2) by pairing the fourth spin —,

' on the kth branch of the
tree-like basis with the s']23= —,

' eigenstate (4.1b) into a
triplet. The excitation energy of this state is given in the
thermodynamic limit by 1(1+1)j42 [see (3.10)]. Pairing
the fourth spin —,

' with the s', 23 2 eigenstate costs an ex-
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tra ~h(k)~ in energy. We thus conclude that the Hamil-
tonian (4.3a) has a gap in its excitation spectrum. De-
pending on the ratio ~h ~/p2 the lowest excitation states
are global singlet or global spin-1 chiral states. The
chiral ground state is microscopic because the order
operator y', z'3 corresponds geometrically to the circula-
tion around a triangle on whose vertices the smallest pos-
sible spins are sitting.

B. Macroscopic chiral state

X„ac=—S„(SaXSC), (4.4a)

while belonging to the global, singlet eigenspace of the
unperturbed infinite-range Hamiltonian

Ho ——J(S~+Ss+Sc), J)0 . (4.4b)

I

We want to investigate the possibility of stabilizing a
macroscopic, chiral, singlet state, i.e., one which gen-
erates a nonvanishing expectation value for the order
operator

XABC 2( S—
A SB—Sc+SA SB Sc+SA SBSC

—S„S&Sc—S~Ss Sc +S'„Sa+Sc ) . (4.5)

Now, we note that the quantum number s„z & are not
arbitrary in the global singlet subspace. If we choose the
prescription S= ( S~ +Ss ) +Sc for adding the partial
spins, a necessary condition to have s=0 is that the
quantum number s„s (the notation is obvious) equals sc.
For example, for 6 spin —,

' the global singlet subspace is
five dimensional and its tensorial basis can be labeled
with

The macroscopic nature of this state comes about if the
spins Sz z c are constructed out of 3N, X even, spin —,

' by
partitioning those spin —, into three disjoint subsets

Q„z c which each contain X spin —,'.
We show that the operator y~z& has a nonvanishing

and macroscopic (i.e., proportional to N) expectation
value for some global singlet states. Our argument goes
as follows. We first introduce the raising and lowering
spin operators S+ and S in terms of which

ls„,.s, ,s,,~ & ~ t IO;0, 0,0&, lo;1, 1,0&, ll;1,0, 1&, ll;0, 1, 1&, ll;1, 1, 1& I . (4.6a)

Note that the last state on the right-hand side (RHS) of
(4.6a) is the tensorial representation of the semiclassical
triangular Neel state for which an alternative representa-
tion is given in terms of a Young tableau by Ma. '" An
explicit calculation yields, for this basis,

0 0 0 0 0'
0

~ =2
&

&' IXgac I 2 &
=

3
0
0

0 i —i 0
—i 0 i 0
i —i 0 0
0 0 0 0

(4.6b)

and c.p. (0) I (4.7a)

where c.p(0) represents the cyclic permutation of the 0.

This example partly confirms our prediction, but it can be
misleading in that it is too simple. For X)2, the quan-
tum numbers s„z,s~, sz, sc do not uniquely specifiy the
tensorial basis elements of the global singlet subspace as a
consequence of the permutation symmetry in each of the
subsets Oz z &. More disturbingly, nearly all of the ten-
sorial basis elements of the singlet subspace are mixed by

Nevertheless, the simple mixing found in (4.6b)
partly survives for larger X. The extension of the basis
elments (4.6a) to a set of three global singlet states
characterized by two of the spin quantum numbers sitting
on the vertices of the triangle ABC with the same arbi-
trary integer value I, l = 1, . . . , X/2, while the third spin
is in a singlet state, is

II1&, I2&, I3&f=—I(2I+1) '"
I

X y ( —1) +
~m, —m, o&,

m= —1

Explicit calculation for the matrix elements for these
three state gives

0
& ' ~Xaac ~J &

= (
I+) l(l +1) 1 l

—i 0
i —i 0

(4.7b)

~

—&=3 '
( —e ' ~1&+~2&—e+' ~3&),

10& =3-'"(I l &+ 12 &+13& ),
(+ &=3 ( e ' ll &+12&—e ' "13&)

(4.8a)

with the corresponding eigenvalues

—+3( —1) +' 0 +V 3( —1) +'
2l+1 ' ' ' 2l+ I

(4.8b)

We note that the eigenstates of the truncated chiral
operator are )inear superpositions of the basis (4.7a) with

Consequently, some matrix elements of g„zc in the ten-
sorial basis of the singlet subspace are proportional to
X/4 in the thermodynamic limit. This suggests that
y~~c can have extensive eigenvalues in the global singlet
subspace. But, in any case, we have proven the weaker
statement that there exists a global singlet state for which

y~~c has a macroscopic expectation value, namely, ei-
ther one of the two linear combinations of the states
(4.7a) which are eigenstates of the Hermitean matrix on
the RHS of (4.7b) with nonvanishing eigenvalues.

Let &&23 be the subspace which is spanned by the nor-
malized and orthogonal basis (4.7a). The corresponding
truncated chiral operator which is represented by (4.7b)
has the normalized eigenstates
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coefficients of uniform magnitude and that state
I

—) is
the complex conjugate of state I

+ ). The linear combina-
tion corresponding to the largest possible eigenvalue in
(4.8b) is a generic state for all those spin- —,

' configurations
for which one of the quantum numbers among s~, sz, sc
vanishes while the other two are in the largest possible
spin state l =X/2. This linear combination has the same
degeneracy as the global singlet subspace of X spin —,'.
&hen %=2",we know how to stabilize the bipartite Neel
state of, say, the subset Qc. Therefore, the perturbation
made of the appropriate function of y~zc added to the
appropriate class of Hamiltonian (3.2) could in principle
stablize a macroscopic, chiral, singlet state. The state is
pictured as a triangle ABC on whose vertices two macro-
scopic spins, which correspond to a ferromagnetic
configuration of spin —„are resonating with a singlet cor-
responding to a bipartite Neel-type configuration of the
underlying spin —,'. It is precisely the fact that g„~c and
the class of perturbation (3.2) do not commute that
causes the resonance. But this absence of commutativity
makes it more difBcult to construct the appropriate per-
turbation.

The simplest guess for the class of Hamiltonian stabil-
izing a macroscopic, chiral, singlet state is

I ) —Va( I ~ I ) —Vc( I ~; I ) —X~ac

(4.9)

and can be given a semiclassical interpretation since

(s„s,&=(s„.s, &

= ( Sii Sc ) =cos l(l+ 1) .
2m'

3
(4.10c)

This ground state mimics the con6guration of three two-
dimensional vectors of magnitude l +0(1/l ) which min-
imizes the classical version of (4.10) (see Refs. 1 —3 and
14). Hence, we call this ground state the semiclassical
Neel state for a tripartite partition of 3N spin —, and
denote it with IQN;„)3'. With respect to the tensorial
basis' (the notation is obvious)

)cl
( 2l + I )

—1/2

X g (
—1)' 'll m ), , I3I Il; —m ),

m= —1

l'= —.
2

The expectation value of Ho' and the analog of (4.10c)
for the eigenstates (4.8a) of the truncated chiral operator
are easily obtained from the fact that the states I1,2, 3)
are all eignestates of S„.Sz, Sz -Sz, and S~ Sc with the
eigenvalues —l(l+1) or 0. More precisely, in the sub-
space % i p3

The positive parameters J and I,;, i =1,. . . , n, satisfy con-
ditions (3.6). (We are implicitly assuming that y„~s has
an extensive spectrum. ) The matrix elements of H' with
respect to the basis elements (4.7a) are the same as in

s, s = —l(l+1)l»&ll,
S„Sc= l(l+1)I2)—(2I,
Sii Sc= —l(l+ 1) I 3) (3 I

.

(4.11)

(4.7b) except for the vanishing diagonal elements being
replaced by the parameter Isee (3.3b)] —3V '". Conse-
quently, the eigenvalues of this 3 X3 matrix become

3 P'Neel and

Ho' =J(S~ S~+S„sc+Sii Sc)

2
=-'(Ho —JS~ —Jsii —JSc ) .

The ground state has the energy

(4.10a)

3 VNee1+i/3( 1 )I + i (l +
(2l +1)

where l =N/2. The lowest eigenvalue

3 V N i Q 3
l ( I + 1 )

(2l +1)
of the truncated Hamiltonian H' acting on the three-
dimensional subspace &,z3 is an upper bound to the true
ground-state energy. The true ground state must neces-
sarily be a macroscopic, chiral, singlet state since—3V '" is the lowest eigenvalue of —V~(IA, ;J)—Va( I ~; I ) —Vc( t ~ I ).

To study the properties of the eigenstate (4.8a), we
compare them to the ground state of the infinite-range
Hamiltonian

when acting on the state with Ql and QJ in the bipartite
Neel state gives the eigenvalue —l(l+1), l=N/2, but
when acting on Ql or QJ in the singlet state gives the ei-
genvalue 0. This fact and the unitarity of the transforma-
tion relating (4.7a) to (4.8a) allows us to write

Ho' = —Jl(l +1)(l 1 & & ll+ I2& &2l+ I3 & & 3l+ )

= —Jl(l+1)(l —
&&

—I+lo&&ol+I+ &&+I+ . ) .

(4.12a)

The eigenstates (4.8a) are degenerate with the energy

E,"(0)= —Jl(l+ 1),
and give the expectation value

&Ils„s,II)=(Ils„s,I)

(4.12b)

=(IIS~ SclI) = —
—,'l(l+1), (4.12c)

To understand (4.11), recall that the basis states (4.7a) are
the tensorial product of a semiclassical N eel state
IQN;, i &~z

f'or a bipartition of 2N =4l spin —,
' with a singlet

state for N spin —,
' (see Ref. 16). Henceforth,

SI SJ= ,'(SI+Sq +S—ISJ+)+SI'Sq
& I,JH I A&B&CJ &

Eo (0)= —
—,'Jl(l+1), where l= —,N

(4. lob) where IE I —,0, + I and l =N/2. This shows that the
states

I

—) and I+ ) for which the chiral operator y„iic
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develops a macroscopic expectation value, are excited
states of the infinite-range antiferromagnetic Hamiltonian
on a tripartite sublattice and that they possess a tripartite
Neel order. The classical analog of these states is the
configuration of three three-dimensional vectors of mag-
nitude l +O(1/l ) such that they are directed along the
edges of a regular, triangular wedge with the angle
arccos( —1/3) between any pair of edges.

V. CONCLUSIONS

In this paper we have considered the infinite-range
quantum Heisenberg model. We showed that by simple
generalizations of this Hamiltonian it is possible to lift
the (infinite) degeneracy of the singlet subspace. We
formed, for the ground state, various Neel states as well
as VB and chiral states. We found the low-lying spec-
trum for the Neel, VB, and chiral phases. This work
shows that, contrary to common belief, it is possible to
think of VB's and even chiral states in a mean-field sense.

They are classical limits of states based on a singlet
description, such as quantum dimers and others. We find
that the Neel states have a gapless spectrum. This result,
while natural for local Hamiltonian, is far from obvious
in this singular limit. Conversely, we found that VB
states have a nonzero energy gap. The microscopic chiral
state was also shown to develop a gap. The macroscopic
chiral state is likely to retain some tripartite Neel order
and it is possible that it is gapless. We expect that these
results may help to elucidate the nature of mean-field
theory for these states. Finally, it would be quite interest-
ing to relate this study to the large d limit (d being the di-
mension of space) of a local Heisenberg model.
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