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Inhuence of surface anisotropy on the magnetization of the Heisenberg ferromagnet
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We examine theoretically the inhuence of surface anisotropy on the magnetization of the Heisen-
berg ferromagnet in its outermost layers. Emphasis is on the case where the surface spins sense an
easy axis normal to the surface and at temperatures where spin-wave theory may be applied. For
parameters in the range of those that emerge from recent analyses of Fe surfaces and interfaces, we
find the inhuence of surface anisotropy to be very modest, except at rather low temperatures (10-K
range). A key element in the analysis is a cancellation between the surface spin-wave contribution
to the magnetization and that from a "hole" produced in the density of the bulk waves, when the
surface wave is removed from the bulk spin-wave bands. Our theoretical analysis is based on a
Green's-function method.

I. INTRODUCTION

The nature of magnetism at crystal surfaces, and at the
interface between magnetic solids and other materials,
has been an active topic of discussion in the recent litera-
ture. Advances in both sample preparation and experi-
mental technique now allow one to explore these issues in
a remarkably quantitative manner.

It is clear from recent experiments that the spins that
reside in the outermost layer of a ferromagnetic crystal or
very thin film can experience anisotropy fields very much
larger than realized in the bulk of crystals. For materials
such as Fe, where one has cubic site symmetry in the
bulk, such a result is expected when the inhuence of
spin-orbit coupling on the magnetic energy is considered,
in combination with the low site symmetry in the sur-
face. ' It is found quite frequently ' that there is an easy
axis normal to the surface, for spins in the surface of sin-
gle crystal Fe, or ultrathin Fe films. The effective surface
anisotropy field can be inferred to be in the range of
50—100kG in such samples. The purpose of this paper is
to explore the inAuence of such a surface anisotropy field
on the temperature variation of the magnetization near
the surface of semi-infinite Heisenberg ferromagnet. We
begin with comments on the motivation for our study.

The temperature variation of the magnetization near
the surface of the Heisenberg ferromagnet, with surface
anisotropy absent, has been explored in the theoretical
literature. Suppose we let (S,(l) ) be the magnetization
within the layer l atomic planes from the surface, and
write

Deep in the bulk, and at temperatures low enough for
spin-wave theory to be valid, we have the well-known
Bloch law b, ( oo ) =C T ~, with T the temperature. One
inquires about the behavior of b, (l), as l approaches the
surface.

This question was addressed first by Rado, in a very

brief abstract. An expression was given for b, (l) in the
spin-wave regime, for a simple cubic Heisenberg fer-
romagnet with nearest-neighbor exchange, and (100) sur-
face. With l =0 the surface layer, Rado's result gave
b, (0)=2C T . One realizes the T ~ law in the surface
also, with coefticient larger than the bulk by a factor of 2.

The model explored by Rado is a very special, indeed
almost singular, example. Quite generally, surfaces of
Heisenberg ferromagnet support surface spin waves as
elementary. excitations, as noted in an example some
years ago. If the exchange interactions are short ranged
(not necessarily confined to nearest neighbors), subse-
quent discussion showed that one realizes surface spin
waves below the bulk spin wave bands quite similar to
those explored in Ref. 5 for a broad class of models.
Such waves are found any time exchange bonds non-
normal to the surface are broken when the surface is
formed by cutting all exchange couplings which cross a
mathematical plane located between two adjacent atomic
planes. This statement assumes all exchange couplings
near the surface are identical to the corresponding cou-
plings in the bulk; the surface spin waves remain even if
surface exchange constants differ considerably from the
bulk.

Rado's model admits no such surface spin waves, and
in fact the bulk waves are simple standing waves with
wave vector perpendicular to the surface kz"'=nm/L,
with L the film thickness. If we write 6(0)=C, T ~, the
result C, =2C follows at once by noting each spin wave
has a simple antinode right at the surface.

We have noted, however, that low-frequency long-
wavelength surface spin waves occur in the model quite
generally. These are present as thermal excitations, and
will lead to a contribution b, , (l) to the magnetization
near the surface not contained in Rado's special case.
Maradudin and Mills carried out a detailed analysis of
b(l) for a model that contains surface spin waves. They
demonstrated that one must consider, in addition to
b, , (l), the infiuence of the surface on the frequency distri-
bution and amplitude of bulk spin waves, to obtain the
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total magnetization deficit b, (l). These authors showed
the total bulk spin-wave contribution is given by

b.s ( l ) =2 C„T b—, ( I),
so the total is once again 2C T . From a subsequent
discussion, one sees this cancellation occurs not only for
the particular model structure explored by Maradudin
and Mills, but for a wide class of surface geometries.

What has happened is the following. The long-
wavelength surface spin waves are rather weakly bound
on the surface of the Heisenberg ferromagnet, in a sense
discussed earlier ' ' and mentioned again in the follow-
ing. The perturbation provided by the surface pulls them
out of and below the bulk spin-wave bands in frequency;
when this is done, a "hole" is left behind in the density of
bulk spin-wave states, near the bottom of the band. This
hole adds the piece —h, (l) to the bulk spin-wave contri-
bution b,s(l) to the mean spin deviation near the surface.
When the surface and the bulk contributions are added
together, the piece from the hole cancels the surface wave
contribution. We refer to this result as the cancellation
theorem. The analysis of Maradudin and Mills derived
this result, again for a particular model, within the frame-
work of a Green's function analysis. The present author
showed how it emerges from an analysis of standing spin
waves in a film of thickness L, in the limit L —+ ~. This
was done within a calculation that can be applied to a
variety of low index surfaces for a range of crystal struc-
tures, with the exchange in the surface layer possibly
different from the bulk. This shows the result
6(0)= C2„T~ to be rather general in the limit of low
temperatures.

Quite recently Rado' has presented a calculation
which explores the role of surface anisotropy on the tem-
perature dependence of b, (0). He argues that thermally
excited surface spin waves, which owe their presence to
easy-axis surface anisotropy, can produce a term in b,(l)
"quasilinear" in the absolute temperature T. In his
analysis, Rado does not explore the inhuence of bulk spin
waves on the behavior of A(l) near the surface.
Mossbauer studies of the magnetization of an Fe film
overlaid by MnFz suggests b, (0) exhibits a linear varia-
tion in temperature over a wide range. "

While the connection between Rado's model and the
sample used in the experiment is not entirely clear, his re-
marks suggest one should explore theoretically the
influence of the surface anisotropy field on the tempera-
ture variation of the surface magnetization. The purpose
of this paper is to address this question in the spin-wave
regime. A central issue is the cancellation theorem, and
the question of whether the presence of surface anisotro-
py changes its character. The analysis presented here
shows that corrections to the result b,(0)=2C„T~ are
quite small except at rather low temperatures ( T 5 10 K),
if we have parameters appropriate to Fe surfaces and in-
terfaces in mind. The basic reason is that the cance11a-
tion theorem holds to good approximation, even when
the thermally excited surface spin waves and their bulk
counterparts are perturbed by the presence of surface an-
isotropy. We obtain a "quasi linear" term equivalent to

that displayed in Rado's paper with origin in surface spin
waves, but as we shall see this is canceled, leaving a small
residue.

Our conclusions depend on certain assumptions about
the relative order of magnitude of characteristic energies
in the problem. These are outlined in Sec. II, and will be
invoked as the discussion proceeds. Our conclusions do
not apply, for example, if the strength of the surface an-
isotropy field approaches the strength of the exchange
field felt by a spin in the lattice. This circumstance might
be realized if the exchange itself is highly anisotropic
within the surface layer; from a physical point of view,
there is little difference in the inAuence of single-site an-
isotropy and exchange anisotropy at low temperatures,
where the wavelength of thermally excited spin waves
exceeds the (assumed microscopic) range of the exchange
interactions. So one can conceive of surfaces and inter-
faces described by parameters whose relative orders of
magnitude differ substantially from the assumptions used
here.

We proceed by means of a Green's-function approach
that generates an exact and complete solution to the
model Hamiltonian, in the spin-wave regime. Because of
this, strictly speaking, we need not invoke the assump-
tions just mentioned. The general expressions for h(l)
are quite cumbersome and suitable only for numerical
computation. Our aim in this paper is to provide insight
into the various contributions and to obtain analytic re-
sults that are simple. As we shaH see, this can be accom-
plished for models whose parameters approximate an im-
portant class of systems studied experimentally.

The outline of this paper is as follows. Section II is de-
voted to setting up the Green's-function formalism, and
here we obtain an exact expression for it, in the presence
of uniaxial surface anisotropy. In Sec. III, we study the
effect of surface anisotropy on surface spin waves and ob-
tain explicit expressions for the various contributions to
the mean spin deviation. The latter discussion is neces-
sarily rather technical, unfortunately. In Sec. IV, we col-
lect together various results and discuss their implication.

II. GENERAL REMARKS AND FORMAL RESULTS

While we have Fe surfaces and interfaces in mind, we
use a Heisenberg model rather than the proper itinerant
electron description appropriate to such a material. It
remains a challenge to carry through a complete descrip-
tion of surface spin dynamics in an itinerant model, even
in the spin-wave regime. '

We have a semi-infinite Heisenberg ferromagnet placed
in a magnetic field Ho parallel to the surface. We sup-
pose the spins in the outermost layer experience an
effective anisotropy field H, normal to the surface, and
thus normal to Ho. Our primary emphasis will be on the
case where the direction normal to the surface is an easy
axis. A spin also sits in an exchange field H„from its
neighbors; we assume exchange couplings within the sur-
face layer may differ from those in the bulk, but that the
exchange field felt by a surface spin does not differ in or-
der of magnitude by that experienced by bulk spin. We
are interested in the case where H is substantially larger
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than Ho and H, . Thus, we assume H„H,«H . The
temperature T is such that ks T «H„,but except at the
lowest temperatures ( —10 K) we also have HO, H,
& kz T «H . We can obtain rather simple results in the
end if we invoke these assumptions.

As the spins precess when a surface or bulk spin wave
is excited, dipolar fields are generated. Their strength is
measured by 4aM, with M the magnetization. One has
4m.M-Ho, H„but in the interest of simplicity we ignore
the inAuence of dipolar fields here. Earlier studies of sur-
face spin waves show that for these modes, and bulk
waves as well, one must superimpose three waves, each
with its own propagation constant normal to the surface
to satisfy the boundary conditions there. ' ' The past
analyses which include dipolar coupling also confine their
attention to an approximate description of exchange by
introducing a term proportional to V in the equations of
motion of the spin system. Such a procedure fails to gen-
erate the exchange dominated surface spin waves studied
in Ref. 5 and which, in our view, play the primary role in
the thermodynamics of the surface region, in the range of
temperatures of interest here. Because the introduction
of dipolar effects in the lattice description of the problem
used here produces substantial technical complications,
we ignore them in this study. It would be of interest to
explore their role in subsequent work.

We shall orient a Cartesian coordinated system with z
axis parallel to the surface and to an applied external
magnetic field Ho. The y axis is normal to the surface.
The position of a given spin is given by 1=lll+yl~, and
l =0 refers to the surface plane. Our Hamiltonian is
written, with S(l

~~
1» ) the spin at site 1,

H = —
—,
' ++J,(5,~)$(1~~0).S(1~~+5,~, 0)

—
—,
' g g g J(5i)$(l((1 ).$(1((+5((,l )

—g g g J(h, (()S(l((l ).S(l((+h((, 1 +1)

IC, Q— S»(l», 0)—Hog g S,(l~~l») . (2.1)

1
a (l((l )= Q a(k)(l )exp(ik(( l((), (2.2)

with a similar transformation applied to a (k~~1 ). Here
X, is the number of sites in a basic quantization area, and

kll lies within the surface Brillouin zone. When constant
terms in H are discarded, we have the spin-wave Hamil-
tonian

The first two terms describe intraplanar exchange cou-
plings, and the third describes interplanar couplings. Ex-
change within the surface layer may differ from that in
the bulk. The parameter K, is the strength of the surface
anisotropy. %'e have an easy axis normal to the surface
with the choice E, & 0.

We proceed in the spin-wave regime by resorting to the
Holstein-Primakoft' transformation. ' If a (1~~1 ) and
a (1~~ 1» ) are the boson annihilation and creation operation
in the site representation, we let

H,„=g jHO —
—,'H, + [I,(0)—I (kii)]+Ii(0) I t(kiiO)a(kllO)

kll

+ P P ]HO+ [I(0) I(k~~ )]+2Ii(0)la (kil» )a(k~~1» )

kll I =]

—g g Ii(k~~)[a "(k~~1 )a(k~~1 +1)+at(k~~1 +1)a(k~~1»)]+ ,'H, g [a (k~~0)—a ( —k~~0)+a(k~~0)a( —
k~~0)] .

kll I =o
II

(2.3a)

We have introduced H, =2K,S, which may be viewed as
an effective magnetic field acting on the surface spins,
with origin in the anisotropy. In Eq. (2.3) we have
defined

(1 )= —(,(1,1 ) &
= y ( '(k, , ) (, , ) &

s
kll

(2.4)

I, (k(() =Sg J, (5(()exp(ik().5((), (2.3b) As remarked earlier, we do this by means of a Green's-
function method. We introduce

I(k„)=S &J(5„)exp(tk„.5~, ) (2.3c)
t;1 '1)=i8(t)(a(kll 1» '~ kll~»'0 ] (2.5)

and

Ii(k)() =Sg J(dL(()exp(ik((. h(() .
II

(2.3d)
where a (k~~1»;t) is the operator a(k~~1») in the Heisenberg
representation. One introduces the Fourier transform
with respect to time by writing

as
We wish to calculate the spin deviation 6(l ), defined (2.6)
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It is straightforward to show that

a(iy)= .
' y f '

dQn(Q)lm[G(k~~Q+ig;lyly)].
l&

(2.7)

where n(Q)=(e~ —1) ' and P= llkiiT. The reader
should note we use units within which Pi=1. For what
follows, it is important to keep in mind that the integral
on frequency in Eq. (2.7) ranges over negative as well as
positive frequencies.

The equation of motion of the Green's function is

G(k„t;lyly') = —5(t)5i, +le(t}&[a(k„ly,t},H, ],a'«~I», 0) & .. a
(2.8)

One finds

QG(k~~Q lyly) 5i i +5i odi~~ i(k(~)G(k(~Q Ol )+(1 5i o)d~~(k~~)G(k~~Q I I )
II

di(k~~)G(k~~Q'I»+1 ly } (1 5i )G(k~~Q'Iy 1 ly } —H. 5i 0[G(k~~Q'Oiy } D (k~~Q'OIy }] .
V V

In this equation, we encounter a new Green s function, D(k~~Q;1»I»'), which is the Fourier transform with respect to
time of

D(k~~t;I I')=ie(t)([a ( —k~~1;t), a (k~~l'0)]& .

We have also defined

) =H, + [r, (0)—S (kii)]+r, (0),

dpi kii Ho+[I( 0) I kii ]+2I,(0),
and

(2.10)

(2.11a)

(2.11b)

d, (k„}=I,(k„)
The theory is closed when we find the equation of motion for D (k~~t; I I' }. For its Fourier transform one has

QD(k~~Q I I ) 5i od~~' (k(~)D(k~~Q I '" ) (1 5i o)d(~(k~~)D(k~(Q I ly)+(1 5i o)di(k~~)D(k~~Q ly 1 I )lyO II II II
' xz y II II II

+di(k~~)D(k~~Q;1»+ 1,1» )+ zHs[D (k~~Q;01»') —G(k~~Q;0» )] .

(2.11c)

(2.12)

M (ly I» ) =5i i~ [5i od
~~

+ ( 1 5i o)d
~~

]—
—5., . .di —5. . .(1—5i o)di, (2.13)

so the two equations of motion become

g [z5i i„—M(lyly")]G(z;ly"ly')
l" yy

5 ' ~H 5'5i o[G(z Oly) D(z Oly)]

and

(2.14a)

These equations may be solved in closed form. In what
follows, for the sake of brevity, we suppress reference to
the dependence of various quantities in the above equa-
tions on @II. It will be useful to replace the frequency '0
by the complex frequency z which in the end will be al-
lowed to approach the real axis from above.

We proceed by introducing the operator

g [z5i i„+M(1»1")]D(z; I"I')
l" yy

—,'H 5i o[D(z'Ol ) G(z'Ol )] (2.14b)

If we introduce the Green's function G, (z;I I') of the
semi-infinite Heisenberg ferromagnet with surface anisot-
ropy H, set to zero, Eq. (2.14) may be written

and

G(z I ly) G (z lyly)+ ~~H G (z ly0)

X [G(z;Ol') D(z;Ol')]—
(2.15a)

D (z; I I') = —
—,'H, G, ( —z; I 0)[6(z;01') D(z;Ol')] . —

(2.15b)

To obtain these results, one uses

G, (z;I I')=[z5, ,
—M(l I')]

y v

It is a simple matter to solve Eqs. (2.15):
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G, (z; I 0)G, (z;Ol»')
' ll (H—, /2)[ 6, ( z;00) +6, (

—z;00)]J (2.16)

Our final task is to obtain G, (z; I I'). This has been done elsewhere, but for completeness we sketch the derivation.
The equation obeyed by this function is

zG, (z;I I')= —5», +5, OdI~'G, (z;0/»)+(1 —5, o]d~~G, (z;I„/')—diG, (z;I +1,1')—(1—
5& o)di6, (z;/ —1,l') .l&0 II s 'yy l s 'y 'y 1,0 J. s

(2.17)

One considers l' fixed, and considers 6, to be a function of I . For l„&0, we have the simple structure

zG, (z;I I') —diiG, (z;/ /') —diG, (z;I +1,/')+diG, (z;I —1,l')= —5i i, . (2.18)

while for l =0, assuming I' & 0 for the moment, we have

zG, (z;Ol') —dI'G, (z; 0/') diG—, (z;1,/') =0 . (2.19)

We divide the line 0 ~ I & oo into two segments, I ~ I'
and 0 ~ I (I'. We then introduce ~i(z), determined by

G, (z;I I')= A

while for 0 ~ I ~ I„'we have

(2.21a)

(2.21b)
(d,

~

—z)
cos[~i(z) ]= (2.20)

where xj(z) is chosen always so that Im(ai)) 0. For
ly ly, we have

The two forms for 6, must agree at l = I', and must also
satisfy Eq. (2.18) and Eq. (2.19). From these, we may
determine the three coefBcients 3, A, and
When this is done, one finds

I

2disin xi
dll+ die'"

IK~
hdll+d~e

i K~(, 1 +1 )
e (2.22)

We have defined

(2.23)

Our interest is in the full Green's function G(z;I»/»)
evaluated at ly Iy This may be expressed compactly in
terms of

and

g„(z)=
2disin[~i(z) ]

g, (z)= 1

b,d,
~

+d, exp[ il~, (z)]—

(2.24)

(2.25)

One finds, after a bit of algebra,

G (z; I I )= [1—exp(i2xi/» ) ]g (z)

+g, (z)exp( i 2m i/ )

g, (z)
X 1+-,'H,'

1 ,'H, [g, (z)+g, ( ——z)—]

(2.26)

Upon noting Im(xi) )0, one sees that as I ~ ao,

G(z;I»/»)~g (z) independent of I». Thus, g (z) is the
bulk Green's function from which the spin deviation deep
in the crystal is determined. With H, =0, at ly =0

Qii(kiiki ) =dpi(kii)
—2di(kii)cos(kid ), (2.27)

where d is the spacing between adjacent planes parallel to
the surface. We assume both d~~(k~~) and dj(k~~) are posi-
tive, as they will be in the long-wavelength limit ap-
propriate to our subsequent discussion of thermally excit-
ed spin waves.

Then for fixed kll, the band of bulk frequencies is

G (z;00) reduces to g, (z). This function thus controls the
spin deviation at the surface of the ferromagnet, in the
absence of surface anisotropy.

The result in Eq. (2.26) is an exact solution of the prob-
lem, in the spin-wave limit. At this point, we have made
no assumptions about the relative order of magnitude of
the various terms in the Hamiltonian. This will be done
is Sec. III, when we extract explicit results from the
Careen's functions.

We conclude with a few general remarks on the behav-
ior of the function I~i(z), whose analytic structure con-
trols that of the Green's function.

We begin with remarks on the bulk properties of the
model. The crystal admits bulk spin waves of plane wave
character. Their dispersion relation can be expressed in
terms of the quantities introduced above. In the bulk, the
wave vector k=kll+yk~ is a three-dimensional wave vec-
tor, of course. The frequency Q~(k~~ki) of a spin wave of
wave vector k is easily shown to be
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bounded from below by Q (k~~) and above by QM(k ),
where

Q (k(() =d()(k)() —2dJ (k[[)

Q (k„)=d„(k„)+2d,(k„).
Then Eq. (2.20) becomes

(2.28a)

(2.28b)

cos[ir(z) ]= 1 —2
M jf m

(2.29)

Now let z~Q+ig, with q infinitesimal. There are
three frequency regimes, and i~i(z) behaves as follows.

(i) QM &Q& ~: Hereiri(z)~ivr+y (Q), where

Q —0
cosh(y )=2 —1 . (2.30)

M m

(ii) Q & Q & Q~: One has I~i real, with
r 0—0

cos(iri) = 1 —2
M m

(2.31)

(iii) —a& & Q, & +Q: In this regime, i~i is pure imagi-
nary, ~j =iy, where

0, —0
cosh(y ) = 1+2

QM —Q
(2.32)

In our Green's function, we also encounter iri( —z),
where z =0+i'. For this quantity we have the follow-
ing.

(i) —~ &Q & —QM: One has

~i( z) =i m—+y (
~

.Q
~ ),

where

d~~ (k~~~ ) =Ho +2H + HQ ok ~~—

H. a4," '(k'+6k'k'+k')+
384 x x z z

2

384

(3.1a)

(3.1b)

tailed study of the various contributions. For this pur-
pose, we require explicit expressions for the various func-
tions which enter the formulas of Sec. II. We turn to a
specific model for this purpose, the fcc crystal with (100)
surface. Within the surface, the exchange interactions as-
sume the value J„possibly different from the bulk ex-
change J. The range of all exchange couplings is confined
to nearest neighbors.

It should be emphasized that our conclusions do not
depend on this choice of model; one may see that the
variation with wave vector and frequency of various
characteristic quantities that enter the analysis are simi-
lar to those found below for a wide class of models. Only
numerical prefactors differ. It is essential that the range
of the exchange couplings is microscopic, and that altera-
tions in the strength of exchange couplings near the sur-
face are confined to a microscopic region near the surface
for these results to hold. Of course, J, must not differ so
markedly from J that the magnetic structure at the sur-
face differs from that found in the bulk. '

We let ao be the lattice constant of the fcc crystal;
ao/2 is then the distance between adjacent (100) planes.
We shall always consider modes whose wavelength is
long compared to a lattice constant. Thus, various quan-
tities defined in Sec. II may be approximated by long-
wavelength expansions. We let k~~

=xk +zk, to find

/Q/ Q—
cosh[y ( I

Q
I
)1=2

M m

(ii) —Q~ & Q & —Q: Here we have

(2.33) dI[ (k~~)=HO+ H + tH'Qokl

H
(k +6k, k, +k, ),384

(3.1c)

where

/Q/ Q—
cos[i~i(iQi )]=1—2

M m

(iii) —Q & Q & ~: Now

(2.34)

b,d(((k()) =H„——,'(1 —e)H„aok ()

H„(1—e)a o'(k4+6k'k'+ k")+
384 X X Z Z

(3.ld)

i~i( —z)~iy (Q)

where

0 +Q
cosh[y (Q)]=1+2

M m

(2.35)

We have introduced H =4JS, which serves as a measure
of the strength of the exchange field experienced by a spin
in the lattice. Also e=J, /J.

We now divide the discussion up into subsections.

III. EXPLICIT RESULTS
A. InAuence of surface anisotropy on surface spin waves

In the preceding section, we obtained formal results
which allow us to analyze the influence of surface anisot-
ropy on the surface magnetization of the Heisenberg
model in the spin-wave regime. We now turn to a de-

The surface spin waves of interest here have excitation '

energies which lie below the minimum bulk spin-wave
frequency Q (k~~) defined in Sec. II. For the fcc crystal
considered here, in the long-wavelength limit, one has
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H
Q-(kll}=HO+ 4H. a02k211 (k4+3k2k2+k4)+

rn
~~

o 4 o
~ 192

(3.2)

the present study.
We need an expression for g, (Q) in Eq. (33). In the

low-frequency, long-wavelength regime, in Eq. (2.25) we
may replace exp[ —iaz(z) ] by 1 —ilrz(z), so that

The surface spin waves appear as poles in the Green's
function, in the frequency regime Q

~
& Q . Such poles

may arise only from the terms involving g, (z) in Eq.
(2.26). The implicit dispersion relation is then

1 —
—,'H, [g, (Q, )+g, (

—Q, )]=0, (3.3)

Im[G(k„Q+i&;i,i, )]

is negative when A&0. The negative frequency pole at—Q„along with the branch cut on the negative frequen-
cy axis in the range —QM & 0 & —Q both contribute to
the zero point motion of the spins near the surface, at
T =0. We shall estimate its amplitude below, to find it
quite small under the conditions of primary interest to

where Q, (k~~) is the dispersion relation of the surface
mode.

Quite clearly, if +Q, (k~~) is a root of Eq. (3.3), so is
Q, (k~~). The surface wave gives rise to a pole both on

the positive real axis, and the negative real axis of the fre-
quency plane. In earlier work, for a given choice of k~~,

the spin-wave Green's function contained a surface wave
pole only on the positive real axis.

This new feature is introduced by surface anisotropy,
and its physical origin can be appreciated from a study of
the equations of motion of the spin system. With H, =0,
all bulk and surface spin waves are circularly polarized.
Mathematically, if one examines the equation of motion
of the operator S (I), which creates a single spin devia-
tion on site / in the spin-wave regime [S,(l) is replaced
by +S in the equations of motion in this limit], the
operator S ( I ) is coupled only to operators I S ( I' ) I

that describe single spin deviations on the same or
nearest-neighbor sites. The equations of motion admit
only positive-frequency solutions.

When H, WO, for a site I within the surface layer, the
linearized equation of motion for S (I ) contains terms in
S+(I ) also. It is easy to see that this induces elliptical
character in both the bulk and surface spin waves. If one
launches a circularly polarized bulk wave deep in the
crystal in the direction of the surface, the reAected. waves
will have elliptically polarized character. The residue of
the surface spin-wave pole on the negative frequency axis
can be viewed as a measure of the degree of ellipticity in
the wave; as H, —+0, this residue vanishes, leaving a con-
tribution to b, (l ) from only the positive frequency pole.

The presence of the surface anisotropy also leads to
zero point oscillations in the spin system near the surface,
at T=O. The fully aligned state, with spins along the
external magnetic field, is no longer an exact eigenstate of
the Hamiltonian, when H, AO. Mathematically, one sees
how the zero-point contributions to b, (l~) enter within
the present formalism by noting the identity

n ( —Q) = —1 n(Q), —

and that

g, (z) = 1

b d
l (k~~ )+d j(k~~ )

—
id(k~~ ) ~~v~(z)

(3.4)

and d~(k~~)a~(z) may be replaced by d~(0)~j(z). This pro-
vides a good approximation when Q (k

~~

) &&H, and
k ~~a~ && 1. When Eq. (2.20) is then used to relate a~(z) to
the frequency, for —0 ~ 0 ~ +Q, we find

where

(Q)—= 1

—H P ki~
+H' (Q —Q)' (3.5a)

P(k~~ )=—[1+2(1—e)]a (3.5b)

We shall assume throughout that e & —,'. If this inequal-

ity is not satisfied, one may demonstrate that when
H, =0, the long-wavelength surface spin waves studied in
Refs. 5, 6, and 9 are pushed up into the bulk spin-wave
bands by the presence of surface anisotropy.

The frequency of the surface spin waves is then found
from the implicit dispersion relation

[(Q —Q)' ' —H' 'P][(Q +Q)' ' —H,' 'P]

H,
,', [(Q —Q)' '+(Q +Q)' ' —2H„' 'P] .

X

(3.6)

In the absence of surface anisotropy, Eq. (3.6) admits
the solutions

lim Q, (k~~)=+[Q (k~~)
—H„P(k~~)] .

H 0
(3.7)

These surface waves are identical in character to those
studied some years ago, in analyses of the semi-infinite
Heisenberg ferromagnet. ' ' They lie lower in frequency
than the bulk spin waves, and in the limit k~~ao &&1 their
frequency differs from that of a bulk spin wave propaga-
ting parallel to the surface only by terms in (k~~a~).
They are thus very weakly bound compared to other ex-
amples of surface waves one encounters. For example,
Rayleigh surface acoustic waves propagate with a sound
velocity lower than that of any bulk phonon. For surface
acoustic waves, the surface mode dispersion relation thus
differs from that of any bulk wave to lowest order in

II
a
As the wave vector approaches zero, the frequency of

all bulk spin waves approaches the Zeeman frequency of
an isolated spin, which is H~ in our units. In the limit
H, ~O, the same statement applies to the surface spin
wave. Tkus, as k~~

—+0, the surface spin wave becomes de-
generate with the very-long-wavelength bulk spin waves.

Addition of even a small amount of surface anisotropy
splits the surface spin-wave frequency off below the bulk
bands, as k~|~0. In this limit, Eq. (3.6) may be solved in
closed form:
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2H,
lim Q, (k~~) H— H —

A,

k(( o
' 2H

with
1/2

H,

(3.8a)
k ooH„(H,/H„)

As a consequence, it does not reduce to Eq. (3.9) as

k~~ ~0. As noted in Appendix A, this form is appropriate
for our discussion of thermally excited spin waves in a
material such as Fe, everywhere but at rather low tem-
peratures.

In the limit of interest in this study, where Ho and H, are
similar in magnitude and both small compared to
H, A, = 1 to good approximation, and

1/2

lim Q (k~~)= Hp Hp-
k(( ~0 X

Notice that (when A. =- 1 ) if H, is so large that

H )H"=(2HpH )'

(3.9)

one finds Q, (0)(0. For surface anisotropy fields this
large, our assumed ground state, with spins in each layer
including the surface layer parallel to the external Zee-
man field, becomes unstable. For H, )H,", spins near
the surface will be canted away from the bulk magnetiza-
tion, in the direction of the easy axis.

Our model system is stabilized by the external field Ho.
In its absence, 0, is negative at k~~

=0 for any value of H, .
In a real system, where dipolar fields are present, in the
limit Ho —+0, the ground-state spin configuration is stabi-
lized near the surface by dipolar fields generated by cant-
ing of the spin array. This question has been studied by
the present author recently, ' and in the limit Ho —+0 the
spins in all layers, including the surface, prefer to align
parallel to the surface until

H. & H,"=4~m(g+1),
where g

-=(H„/4irM )' in present notation.
With H, in the range of a few tesla, and Ho the order

of a tesla or so, the values of H,"lie well above H„and
the ground state used here is appropriate. This may not
be the case in ferromagnetic materials whose Curie tem-
perature lies well below that of Fe or Ni, which are the
materials we have in mind in the present analysis.

The dependence of Q, (k~~) on the wave vector k~~ is
complicated, and we explore only one limit. This is the
character of the surface spin waves important in our up-
coming discussion of the thermally excited modes. These
have energies the order of kz T, which we assume is large
compared to H, and H, . The excitation energy of such
modes is dominated by exchange. The surface anistropy
field H, may then be viewed as a modest perturbation on
the frequency of these waves. In this regime, we show in
Appendix A that the dispersion relation of the surface
waves is approximated well by the expression

H,
Q, (k)~ ) -=Q (k~~) H„P+-

2H„ (3.10)

We shall use the following result in our study of the sur-
face wave contribution to the mean spin deviation near
the surface. Note, as demonstrated in Appendix A that
Eq. (3.10) requires for its validity

B. The surface spin-wave contribution
to the mean spin deviation

We must evaluate

ai=iy(n) (3.11a)

where, within the framework of the low-frequency, long-
wavelength limit of the previous paragraph, we have

(n —n)'"
izzH.'"

It will also be convenient to let

(3.11b)

D(z)=[g, (z)]

so in the frequency regime of interest,

D(n)=H "(n —n) ~ —H„pkll).

The first term in the Green's function in Eq. (2.26),

[1—exp(i2~ily )]g

is purely real, as is g, itself. We can then write

Im[G(l I;Q+i71)]=e 'Im
—2i (n)i, N (Q) (3.12)

where, letting g~0 in the numerator,

X(Q)=D ( —Q) —
—,'H, (3.13a)

and

F(Q) =D (Q+i il)D ( —Q —ii))
—

—,'H, [D (Q+iq)+D ( —Q i i))] . —(3.13b)

The discussion in Sec. III A shows F(Q) has zeros at
+Q„and consequently G(l l;Q+iri) has poles there.
We can perform a Taylor series expansion about each
pole, noting they are responsible for the nonvanishing
imaginary part of G. If F'(Q) =dF/d Q, we then have

Im[G(Q+iil;l l )],
for the Green's function displayed in Eq. (2.26). The fre-
quency regime of interest is —0 & Q & +Q where, as
we have seen from the preceding section, there are two
surface spin-wave poles at +Q, .

In this frequency regime, ~~ is pure imaginary. We let
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N(Q, ) N( —0, }
Im[G(l l;0+i'}]=exp[—2y(0)l ], 5(0—0,)+, 5(Q+0, )

l 1T F' n,

After a few lines of computation, one finds

(3.14)

Fi(0)—lH1/2 ( ]H +H P)[(0 0)—1/2 (0 +0)—I/2] Hl/2 n +n '" 'n —n
0 —0 Q +Q (3.15)

We define

(n —n, }'"
y+ H 1/2

X

(3.16}

For N(0, ), one sees

N(0 )=H' (0 +0, )' H„P—,'H, ——

=H ()' —1'—+ ) H=)' ~— (3.22)

and

to find

(n +n, }'"
H 1/2

X

(3.17)

Upon noting the (exact) identity

N(0, )N ( —0, ) =—,'H, ,

we have

F'(0)= —,
' (H P+ ,'H, )—1

y+

H,
N( —0, )=

Xy
(3.23)

y——H„
+

(3.18)

and F'( —0, ) = —F'(Q, ).
Under the conditions of interest, we may show that

y »y+. We may use Eq. (3.10) to evaluate y+ and lit-
tle error is involved if we replace 0, by 0 in the evalua-
tion of y . This gives

When these results are assembled, in the frequency re-
gime —0 & 0(+0, one finds

Im[G(l l;0+i')]=2y+e +'5(0 —0, )
l&

H, y+
e '5(0+Q, ) .

2H

(3.24)

H,
y ~ —= +P(kll )

From Eq. (2.7), and the identity
(3.19a)

n ( —0)= —1 n(0), —
and

1
y —= kla, .

2
(3.19b)

1
( —,'H, +H„P H„y )—F'(0, ) =-

y+
H y

(1'+—
X —}—= —

—,'H (3.20)

Thus, we have

1 Im[G(l»l»'0+i')]
l&

[N(0, )e + '5(Q —0, )
H y

—N( —0, )e "5(0+0,)] . (3.21)

One sees kllao»p(kll) by noting p is of order (kllao) .
The remarks at the end of Appendix A establish that
kIIao is larger than H, /H„ in the thermal spin-wave re-
gime, for a material such as Fe.

We then have

we have the surface wave contribution to the mean spin
deviation, 5, (l» ), given by

l ) g y+(kll)exp[ —2y+(kll)1 ]n(Q (kll))= 1

+ ' g exp[ —2y (kll )l» ]
H, y+(kll)

Ns 2H k 1 (kll)
II

X [1+n (0 (kll ) ) ] (3 25)

We shall turn to the contribution from the bulk spin
waves next. Before we do, some general comments are in
order.

As the temperature T~O, the right-hand side of Eq.
(3.25} remains finite. The surface anisotropy has induced
zero-point motions in the spin system, in the near vicinity
of the surface. Mathematically, this contribution has its
origin in the pole which resides on the negative axis of
the frequency plane. While the presence of this contribu-
tion is surely interesting in principle, at least in the pa-
rameter regime we explore it is also quite small in magni-
tude, as one sees from the prefactor and our earlier con-
clusion that y &)y+.

The spatial dependence of b, contains two distinct de-
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cay constants y+ and y . One sees from an analysis of
the equations of motion of the spin system that when
H, WO, the surface spin wave eigenfunction contains these
two decay constants, y+ and y . When H, —:0, and we
have the simple Heisenberg ferromagnet, the surface spin
waves are circularly polarized, with a single decay con-
stant, for models in the class explored here. ' As soon as
H, WO, the wave becomes elliptically polarized; one has a
superposition of right and left circularly polarized waves,
each with its own decay constant. As demonstrated in
earlier papers, ' ' if dipolar interactions are incorporat-
ed into the theory, the surface wave eigenfunction con-
tains three decay constants, not just two. The discussion
then becomes quite complex.

As K, —+0, the expression for b,, (l ) in Eq. (3.25)
reduces to b, I '(l» ), where

b, ,' '(l )= g 2P(k~~)exp[ —2f3(k~~)l»]n{Q, (k~~ )) .
1

s
kII

(3.26)

This result is identical in form to that derived many years
ago by Maradudin and the present author.

1 f M dQn(Q)
2lr&, q

"& di(k~~ )sin[~i(Q)
II

(3.29)

One changes the integration on frequency to one on the
variable ki =2ili(Q)/ao to find

6( oo )= g J dkin{Q(k)),2+N, k o
II

(3.30)

where Q(k) is the frequency of a bulk spin wave of wave
vector k =kII+ zk~.

The expression in Eq. (3.30) may be shown to be identi-
cal to the mean spin deviation in the bulk of the crystal,
as provided by spin-wave theory. The Brillouin zone em-
ployed is different in shape (but not in volume) to the first
Brillopin zone commonly used in solid-state physics; this
is because our analysis is based on the surface Brillouin
zone for the network of k~~ values. Periodicity of Q(k) in
the reciprocal lattice ensures that our expression is identi-
cal to that which empl. oys the conventional first Brillouin
zone. At low temperatures, for 6 we have the well-
known Bloch T / law

C. The bulk spin-wave contribution
to the mean spin deviation

We are here concerned with the frequency regimes
Q ~Q~+QM, and also when H, WO, —QM~Q
~ —0 . We write

T3/2

where for our model

3/2

(3.3 la)

(3.31b)
G(z;l l )=g„(z)+bG(z;l ), (3.27)

and consider first the contribution from g„(z),which is
independent of ly.

As g +O, ~i—(Q+i g) approaches a real positive number,
for 0 in the range 0 ~ Q ~ AM, and it is pure imaginary
everywhere outside this range. It follows that
Im[g„(Q+iii)] is nonzero only for Q ~Q~QM. In
this frequency range

1
Im[g „(Q+ig)]= . . (3.2&)

~ = 1 1

l& 2'lT di kii sill Ki Q

Then calling this contribution to the mean spin deviation
&(~),

The contribution from AG (z; l» ) describes the contri-
bution from bulk spin waves to the spatial variation of
the magnetization near the surface. We separate the dis-
cussion of the regime 0 ~ A ~ QM from—QM ~Q~ —0

1. The frequency regime Q ~ Q ~ QM

As before, we write g, (z) = 1/D (z), and note that for
Q) 0, d ( —Q i li) has no —branch cut. Consequently, this
may be replaced by D (

—Q). Then one has

1m[kG(Q+iq;l»)]Im e
1 1

2idisinni D (Q+i rl) I (Q)— (3.32)

where

H, D ( —Q)r(Q)='—' D( —Q) ,'H, —— (3.33)

l 2K~i

Im[b, G(Q+iii;l» )]=Im
2ldisln ki

~dII —I.+d,.'"
is purely real. Upon recalling that

D(Q+iri)=bd~~+di e

a bit of rearrangement gives from which it follows that

~dII —I +d, e

(3.34)
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1 cos(2K~1» +2p)
Im[b G(Q+iq; I, )]=

2m' 2n jsin Kj

The angle g is found from the relation

(3.35)
ao 2m/ao

5Q', +2'(i )= — g f dkzcos(aok~l )
o

II

Xn(Q(k))sin (g), (3.4lb)

tan(l() =
djsin K~

(3 36) and

The results in Eqs. (3.35) and (3.36) are exact, within the
spin-wave limit.

The contribution to the mean spin deviation from the
contribution in Eq. (3.35) will be called 5b, ',+'. We find,
when the integral on frequency is converted to one on k~,
where k~ =2K~/ao,

ao 2~/ao
5b, ',+'(l ) =- g f dkj cos(aokj I +2/)n(Q(k))

2mNs
II

ao 2m /ao
5b, ', 3 '(l )= — g f dk~cos(aokjl )n(Q(k))

o

Xsin(g)cos(f), (3 4lc)

where

3

5b, ',+'(1 )= g 5&'„+'(& ) .

when

Q(k) =
d(~ (k~()

—2d~(k~()cos(aok J /2)

(3.37) In Appendix B, we evaluate 5b, ', 2 '(1 ) and 5b, ', 3 '(1 ). It
is shown that, in the limit of interest here, one has

is the bulk spin-wave frequency. If we set g=—0 in this
expression, we recover Rado's early result. '

When Q)0, our long-wavelength low-frequency ap-
proximations allow us to. write

D ( Q) = H—.f3(kl )—+H„'~'(Q+Q.)'"
=H„'"(n+n )'"

in the regime of interest. Hence,

(3.38a)

(3.38b)

H H' '(Q+Q )'
I(Q)=

H„' (Q+Q„,)' ,'H, ——(3.39)

since, for our thermally excited spin waves,

H„' '(Q+Q )' =(H, k T)' '—&&H,

when we have both H„&&H„andk&T &H, . Then when

bd~~+d~cos(K~) is approximated by its long-wavelength
form, and we let Kj =aok~/2, one has

56',+'(I )= g f dkj cos(aok~l» )n (Q(k) )
2m%, k o

II

2 g y+(k)()exp[ —2y+(k(()l»]n(Q (k())) .
s

kII

(3.42)

We have now arrived at the cancellation theorem dis-
cussed in Sec. I. If we overlook the small difference be-
tween Q (k~~) and Q, (k~~) (their difference is small com-
pared to ks T when our basic assumptions are obeyed),
then the second term of Eq. (3.42) precisely cancels the
6rst and dominant term in the surface spin wave contri-
bution to the mean spin deviation described in Eq. (3.25).
Only the rather small second term in Eq. (3.25) remains
as a residue.

2. The frequency regime —Q~ 0 —0
a

tan(g) =—,
6

where

a =H„P+H,/2+H„(aok~) /8,

(3.40) We let z = —ln I
+ig, and then

K (z)=+iy ( —IQI),

where
and

b =H„aokj/2 . y ( —lnl)—= (Q +lnl)' '/H„' '.
Then note

We may split 55,'+ '(1 ) up into three terms, by expand-
ing cos(aok~l +2/). We define

ao 2n /ao
5g~+~(i )= g f dk~cos(aok, l»)n(Q(k))

o
I)

KJ{ z) KJ( lnl ) ( lnl Q ) /H

A useful identity is

D(lnl —ig) =D'(Inl+ig) .

(3.41a) After a bit of algebra,

H, exp[ —2y ( —Inl)l»] 1
Im

4i~ [D(—Inl) —-'H ]' d(lnl+iri) —I (Inl)
(3.43)
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We have

and this is large compared to H, /2. Also

D(IQI+iq) —1(IQI)= —[H, / +H, P(k„)]—i .'"(IQI —Q. )'",
following approximations analogous to those used earlier [in essence, in the earlier sections, we introduced the variable
k~, and wrote IQI =Q +H (kjap) /4]. Then a bit more algebra gives

1 H, exp[ —2y ( —IQI)l ] apk~(IQI)
Im[b, G( —Q +ig, l )]=-SwH„[y ( IQI )] y++ [(ap/2)ki( I

0
I )]

where

k, (IQI)=2(IQ —Q )'"/a H'"

H, exp —2y ( —Q )l»g J dQ[1+n(Q))
8~H + 0 [y ( —IQI)]'

and y+ is given in Eq. (3.19a).
We then have a contribution to the mean spin deviation near the surface we call b, (, '(1 ). This may be written

a,k, (IQI)g( —)(l
Y+ [(ap/2) L( IQI )]'

(3.44)

(3.45)

Because of the factor apk~(IQI ) in the numerator, the last factor falls oft' slowly enough with IQI that the regime of
principal importance is aok~ ))y+. Hence y+ in the denominator may be ignored, and the integral is converted to an
integral on kz. One then finds, noting

y —( I
Q

I

)'= (2Q + —,'apk,' )/H„,
aoH, dkib( '(l )= g J [1+n(Q(k))]exp[ —2y ( —IQI)l ] .4~H. &, „~2Q. (k„)+-,'a~, k',

(3.46)

This completes our analysis of the various contributions to the mean spin deviation near the surface, in the presence
of surface anisotropy fields.

IV. FINAL RKSULTS AND DISCUSSION

When the various contributions above are assembled, for the mean spin deviation one has, with 5 =2Hp /H,

b(l )= g j dk~[1+cos(apk~l )]n(Q(k))+ + y+ k(l)exp[ —2y+(kll)l»][n(Q k2~+, „o k
II

1

2iV,

„dk~exp —2y (
—IQ )

0 $+ a 0k
I I

+ a o

H, y+(k(()
exp[ —2y (k(()I ][1+n(Q,(k(())]~„y'—«(()

H,
H (4.1)

The erst term is the dominant term in the expression.
As l ~0, in the low-temperature limit, this provides the
contribution 2C T to the mean spin deviation. It is
possible to convert the integral into a rapidly converging
series, if one wishes to explore the dependence of the
mean spin deviation on l . ' The spin deviation returns
to its bulk value in a distance roughly equal to
(H„/k&T)'~ layers. There is a long tail, which varies
like l3'

The second term contains the contribution to the mean
spin deviation from the thermally excited surface spin
waves, and the "hole" produced in the bulk spin-wave
bands which nearly cancel it.

Consider first just the contribution of the surface waves
to the spin deviation in the outermost layer. This is given
by

a, (O) = g y+(k(()" (Q. (k(())= 2
II

II

(4.2)

Q (k(( ):Hp+H (apk(( ) /4

and we have

To good approximation, this may be evaluated by replac-
ing Q, (k„)by
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ao k~T H, k~T
&,(0)= ln4~H. H. H,

aors, ks T
g(2),

(4.3)
where g(s) is the Riemann g function of argument s.

We may compare the result in Eq. (4.3) with Rado's
principle result, ' displayed in his Eq. (42). The first term
of our Eq. (4.3) agrees with his Eq. (42) in the relevant
limit. Note that in his treatment,

H» +2mMO —2K„/Mo 2,
is the excitation energy of a surface spin wave of wave
vector kll=0. The term 2+Mo arises from his approxi-
mate' treatment of dipolar interactions. This must be
set to zero to compare the two results. The field Hz is
Ho in our treatment, and E„/MOA is analogous to our
H, /2H„. In our derivation of Eq. (4.3), we have as-
sumed Ho »H, /H„, and that the surface spin-wave gap
is small compared to k~T. In this limit, Rado's expres-
sion for the surface magnetization (set his g to zero) be-
comes (K„k+T/4rrA )ln(k&T/gp&H»), a result identi-
cal to the result in our Eq. (4.3) when one realizes his pa-
rameter E„and our H, are proportional, while his 3
corresponds to our H .

We must take cognizance of the cancellation between
the surface wave and the "hole" in the bulk spin-wave
bands, however. We note

Q, (kii ) =Q
(kii )—H„y+(kii),

and when our assumptions are obeyed, H y+ «k~T.
Thus

n(n, (kii)) —n(Q (kii))—= H„y2+(dn/—BQ) .

If we use this expansion, we have

2 +y+
kll

2H„
g y+, (4.4)

N,

y (k[i )=(H /2H )+P(kii )

in the limit of interest, where

P(kii ) =(~/16)(k

and A, =1+2(l e). —When ksT»HO, a short calcula-
tion gives

One may also show that the third and fourth terms in
Eq. (4.1) are quite small. It is interesting in principle that
at T =0, they lead to zero-point motion of small ampli-
tude near the surface. The zero-point contribution is of
the order of (H„/H„).

Our conclusion is then that in the low-temperature lim-
it, in theory the classical result 2C T describes the
mean spin deviation rather well in the surface, when the
assumptions stated are obeyed. These assumptions apply
to the surfaces of Fe crystals, and the surfaces and inter-
faces of ultra thin Fe films studied so far, where the an-
isotropy fields have been directly measured. When
H, =0, the surface spin waves are very weakly bound at
long wavelengths, and it is indeed the case that the pres-
ence of an easy-axis increases their binding energy sub-
stantially. However, their contribution to the mean spin
deviation near the surface is offset by the "hole" induced
by the surface in the density of bulk spin waves, just
above Q (kii). As emphasized some years ago, one
must always consider the two contributions together,
when the mean spin deviation near the surface is studied.

The conclusions we have reached do depend on the as-
sumption that, in our notation, one is in the domain
H, (k~ T (H„IfH, .and H„are comparable in-magni-
tude, or H, and k&T are, then the conclusions will be
modified. The full machinery required to explore these
domains (within spin-wave theory) has been put in place
in Sec. II, but to carry through a complete analysis will
be rather involved. The limit H, -kz T will arise at low
temperatures (below 10 K, for parameters characteristic
of Fe surfaces), and the case H, -H will arise at the sur-
face of materials with low Curie temperatures. This
latter case may also be appropriate to a situation where
the exchange in the surface is highly anisotropic. From
the physical point of view, there is little difference be-
tween the influence of anisotropic exchange or single site
anisotropy on long-wavelength spin waves. It is possible
at a complex interface such as that between MnF2 and Fe
that there is substantial exchange anisotropy.
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APPENDIX A: INFLUENCE OF SURFACE
ANISOTROPY ON THERMALLY EXCITED

SURFACE SPIN WAVES

ksT
128m. H

H,1+ +
k k~T

and if we expand this in powers of H, we find

2 g y+(kii)[n(Q, (kii)) —n(Q (kii))]
s

klan

(4.5)

As discussed in the text, we wish to examine the
influence of surface anisotropy on the dispersion relation
of surface spin waves in the regime where Q, (k)-k~T,
and we have HO, H, « kz T &&H .

In this regime, treat H, as small. We begin by rewrit-
ing Eq. (3.6) in the form

a contribution to the mean spin deviation at the surface
that is very small compared to the leading term
2C T . The cancellation theorem essentially elimi-
nates the surface wave contribution in the spin-wave tem-
perature regime.

(Q —Q )' H' P [(Q +—Q )' —H' P]—m s x 2H]/2 m s x

[(n n)'" —H—'"p]
f/p m s x
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or

H,
(Q —Q )'"=H'" P+Vl S X 2HX

H, [(Q —Q, )'" —H„'"P]
2Hl/2 [(Q +Q )i/2 Hi/2P]

(Q —Q, )' =H„' P+

H1 s 1

2v2 H k~~ o
(A3)

The last term may be neglected with respect to the first
correction H, /2H„'/ from surface anisotropy if
k~~ao))H /H . With k'T-H„(k~~ao), this requires

H,
kg T »H

H
(A4)

an inequality comfortably satisfied above temperatures in
the range of 10 K or so for a material such as Fe. We are
led to Eq. (3.10) of the text by neglecting the last term of
Eq. (A3).

As H, ~O, the quantity (Q —Q, )' H„'—p vanishes,
so if we consider an expansion of (Q —Q, )'/ in powers
of H„the second term on the right-hand side of Eq. (A2)
is of order H, . We examine the magnitude of this term
by replacing the numerator by its first approximation,
H, /2H, '/. Note also that Q and Q, are approximately
H„(k~~ao) /4 in the thermal spin-wave regime. Hence, in
the denominator H„' p is smaller than (Q +Q, )'/ by
the factor kllao, and Inay be neglected. Then we have

(Q +Q„)'"—=H„'"k,', /~Z .

When these various approximations are combined, we
have

APPENDIX 8: EVALUATION GF TWO
CONTRIBUTIONS TG THE SPIN DEVIATION

NEAR THE SURFACE

We examine the structure of 5b, ', z '(l~~ and 5b,'3 '(l~)
defined in Eqs. (3.4lb) and (3.41c) of the text. We begin
with 55', +, '(l ).

Consider first sin g, with the term in H„aokz/8 in the
quantity a ignored for the moment- One has

2

sin (g)= z z

7+
] 2I 2+y2

(Bl)

5b, ',+'(l }=— gy (k~~)exp[ —y (k~~)1 ]n(Q (k~~)).
1

kll

(B3)

With the term H„aoki/8 neglected once again,
the term 5b,,+3(l) becomes, upon writing sin(2$)
=2singcosg,

where y+ is defined in Eq. (3.19a). This function drops
o6' rapidly for aokj & y+, and the dominant contribution
to the integral comes from the regime aok~ & y+. Now if
we consider the role of the term H aok&/8 ignored in
Eq. (Bl), note that H, /2+H„p:Hy+, w—hile when
aoki-y+, one has H„aoki/8-H„y+/8. Since
y+ &&1, this term may be ignored. Then noting the
upper limit of the kL may be replaced by infinity at low
temperatures,

ao dkicos(aokil )y+
5b,,'z '(l ) = — g n(Q(k) }.

~&s g o y++ —'& ok
ll

(B2)

Now when aoki-y+, one may replace Q(k) by simply
Q (k~~). When this is done, the integral on ki may be
evaluated in closed form to give

ao „dkikisin(aokit )n(Q(k~~ki)) ao 5 „dkikicos(aokil)
2~%, „+o

ll
+ 4 0

II
4 0

When the remaining integral is evaluated after replacing n(Q(k~~ki)) by n(Q (k~~) },we have

M, ',2'(l )=56,,'3'(I ) .

(B4)

(B5)
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In the opening remarks of Sec. II in this paper, we note that
earlier authors (Refs. 13 and 14) have established that in the
presence of both dipole and exchange couplings (but with
H, =0), three (complex) decaying exponentials must be super-
imposed in the description of the surface wave for all bound-
ary conditions to be satisfied, but in his treatment, Rado has a
single exponential only. Note that in the limit of vanishing
surface anisotropy and exchange, his calculation fails to yield
the Damon-Eshbach surface spin wave known to be present
{Ref. 18) in this limit.

With 2+Mp set to zero, Rado's expression for the gap is some-
what difFerent than ours. We have seen that when H, =0, and
in our treatment with dipolar fields ignored, the surface spin
wave is a super position of two waves, each with an appropri-
ate decay constant normal to the surface. Rado includes only
one of the two waves, not both. Within a similar approxima-
tion scheme, our treatment provides Hp —H, /4H„ for the
surface spin-wave frequency at k~I =0, rather than the correct
expression displayed in Eq. (3.8a). Rado's result is a good ap-
proximation when H, &(4HpH .


