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Directional solidification near minimum c„:
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Mullins and Sekerka showed, using linear-stability theory, that for fixed temperature gradient, the

planar interface is stable for all pulling speeds V when the solute concentration c„(c*„.When

c )c, there is a low-speed instability when the melt is constitutionally undercooled and a high-

speed stabilization due to surface energy when the absolute-stability criterion is reached. The two

branches meet at c . In this paper two-dimensional weakly nonlinear instabilities are studied for

small ~c„c„~—so both the low- and high-speed bifurcations can be simultaneously described.

When the thermal-conductivity ratio n =kz/kL is small (large), both bifurcations are supercritical

(subcritical) and shallow (deep) cells emerge. For intermediate n there is complex behavior exhibit-

ing multiple transitions, separated branches (isolas), and multiple cellular states.

I. INTRODUCTION

%'hen a dilute binary mixture is directional-solidified,
the initially planar solidification front undergoes an insta-
bility that depends on values of the various control pa-
rameters: the concentration c of solute, the tempera-
ture gradient 6, and pulling speed V.

Experimentally it has been found' for fixed 6 and c
that for low speeds V the planar interface is stable; at
some critical speed the planar interface undergoes a tran-
sition to cellular structure with well-defined wavelength

As V is increased further, the cell roots deepen until
there is a dendritic transition. At high enough pulling
speeds the effect of surface energy begins to dominate;
there is a transition from dendrites to cells whose ampli-
tudes slowly diminish with increasing V until another
critical pulling speed is reached at which the planar inter-
face regains stability.

In order to predict these critical values Mullins and
Sekerka carried out a linear-stability analysis of the pla-
nar front. They examined the effects of perturbations to
the interface of the form exp(crt +iax), where o is the
growth rate and a is the wave number in the x direction
along the planar interface. Under neutral conditions,
a =0, they found values for the critical pulling speed V,
and wave length A., f r the onset of instability and values
of V, and A,„where the planar interface regains stability.
In Fig. 1 we show the neutral stability curve for a SCN-
acetone mixture (where SCN is succinonitrile) direction-
ally solidified at a temperature gradient of 6 = 150
K/cm. From this it can be seen that there exist two
branches of the neutral stability curve. The lower
branch, corresponding to the onset of instability V= V„
is associated with the constitutional undercooling condi-
tion which is a balance between solute rejection and
thermal stabilization. Below this branch the planar inter-
face is stable. The upper branch, corresponding to
V = V„ is called the absolute stability limit and balances
solute rejection with surface energy. Above this branch

the planar interface is stable. Both stability branches join
to form a limit point located at (c",V*). The solid line
indicates where the weakly nonlinear theory (to be de-
scribed below) predicts smooth transitions to shallow
two-dimensional cells; the dashed line shows the region
where jump transitions in the interface are predicted to
occur. The transition point that separates these is denot-
ed by TP. Similar neutral curves for the Al-Cu mixture
at a temperature gradient of 200 K/cm have appeared in
Coriell and Sekerka and Coriell et al.

In order to follow the time evolution of the solid/liquid
interface, Wollkind and Segel ignored the effects of la-
tent heat and performed a two-dimensional weakly non-
linear analysis valid near the neutral curve. They derived
an evolution equation for the leading-order disturbance
amplitude 3,
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FIG. 1. Neutral stability curve for SCN-acetone at a temper-
ature gradient 6 =150 K/cm. The region inside the curve cor-
responds to an unstable planar interface. The dashed lines indi-

cate regions of subcritical bifurcation (Ref. 7), the solid line su-

percritical bifurcation (Ref. 7), and TP denotes the transition
point that separates these. The limit point is located at
(c* V*)
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Here o. is the linear theory growth rate, while a, is the
Landau coefficient. If it turns out that al )0, then small
amplitude steady-state two-dimensional cells exist and
the bifurcation is termed supercritical; if a I & 0, then no
small amplitude steady states exist and as V—+ V, , the
disturbance jumps to some finite-amplitude state through
a subcritical bifurcation. The position where a I =0
identifies the transition point.

Alexander et al. included the effects of latent heat in
the weakly nonlinear analysis of Wollkind and Segel.
They found that latent heat is important in the nonlinear
theory when the ratio n of thermal conductivities of solid
to liquid, respectively, is near unity.

Merchant and Davis presented the two-dimensional
bifurcation results of Alexander et aI. on the neutral sta-
bility curve for a SCN-acetone system and showed that
the effect of latent heat with n near unity is to extend the
region of supercritical bifurcation into experimentally ac-
cessible parameter ranges.

In directional solidification standard length and time
scales are D/V and D/V, respectively, where D is the
diffusion coefficient of solute in the liquid phase. If these
are used to nondimensionalize the system, the control pa-
rameters become the morphological number M, which
measures the degree of constitutional undercooling, I a
measure of surface energy, and k the segregation
coefficient measuring the amount of solute rejected (or in-
corporated) at the interface. Sivashinsky noted that as
the segregation coefficient k approached zero, M~1
with the nondimensional A,,~~. By taking advantage
of the long-wave behavior for small k, he derived an evo-
lution equation valid for M near 1, and found the bifurca-
tion to two-dimensional cells to be subcritical. Brattkus
and Davis' identified another long-wave limit near abso-
lute stability and derived a strongly nonlinear evolution
equation. Here they found that the bifurcation to cells is
supercritical. This was also observed experimentally by
Trivedi et al. Recently, Riley and Davis" were able to
extend the small-k analysis to systems with large I, and
they derived successive evolution equations valid for all
values of M and, in the frozen temperature approxima-
tion (equal thermal conductivities and negligible latent
heat), they found the transition point between subcritical
and supercritical behavior to be located at M =—', . These
equations are thus intermediate between those of
Sivashinsky and Brattkus and Davis. '

In most of the previous analytical work the control pa-
rarneters used were proportional to the morphological
number M and the surface energy I . Unfortunately, a
system controlled using these parameters no longer has
the pulling speed V isolated as a control parameter, and
the relationship with the underlying experimental situa-
tion is often lost. In order to isolate the control parame-
ters that reAect the operation of an experiment, but retain
the advantages of nondimensional variables, Ungar and
Brown' introduced a reference wavelength A,

* and used
the Peclet number P = VA, /D as the control parameter.
They numerically follow the bifurcation structure for

II. FORMULATION

The aim is to isolate the control parameters V and c„.
New length 5L and time 5z scales, independent of V andc, are chosen based on capillary scales; these are

and

5L = (r TM /LG )
'" (2.1a)

5z
=

Y TM /LGL D, (2.1b)

respectively. Here TM is the melting point of the pure
solvent, y is the interfacial energy, L the latent heat, and
GL the temperature gradient in the liquid at the interface.
In the analysis to follow, GI is taken to be independent
of V. This assumption is valid as long as the length
L (in the z direction) of the experimental box satisfies
L «a~I s~/V, where ~~i s~ are thermal difFusion
coefficients for the liquid and solid phases. For low
speeds this is the case, but for higher speeds (perhaps
near absolute stability) this assumption may be violated.
In this case curvature in the temperature field is impor-
tant. For high-enough pulling speeds interface attach-

large amplitude disturbances using periodic boundary
conditions. In treating the solidification model as a pure
bifurcation problem with V as the bifurcation parameter
Haug' considered the interaction of discrete wave-
lengths, allowed by considering solidification in a very
small periodic box, and identified the normal forms possi-
ble using symmetry arguments but never identified when
they occurred. Also his analysis was restricted to k and n
near unity.

We choose a different approach and introduce new
length and time scales based on the capillary length, in a
similar fashion to Haug, ' and redraw the neutral stabili-
ty curves in new control parameters proportional to V
and c„. These curves retain the features of the dirnen-
sional version discussed earlier and shown in Fig. 1.

In these control variables there is a limit point of the
neutral stability curve, and by analyzing a neighborhood
of this limit point we are able to simultaneously capture
the interfacial transitions to two-dimensional cells at both
V = V, and V = V, . By performing a weakly nonlinear
analysis in this region we derive two new amplitude equa-
tions describing the time evolution of the most unstable
disturbance. The first, containing cubic nonlinearities, is
valid when the transition point is an O(1) distance from
the limit point as c ~c . When the transition point is
an O(~c„—c*„~'~ ) distance away from the limit point,
the original amplitude equation derived is no longer valid
and a higher-order equation, including both cubic and
quintic nonlinearities, applies. These amplitude equa-
tions describe a rich variety of transitions to steady two-
dirnensional cells and are able to show the asymmetry of
the bifurcation structure present near both V= V, and
V= V, . Interesting phenomena such as disconnected
solution branches are found in regions where lineai
theory predicts stability. Bifurcation structures which
bend back over themselves leading to the possibility of
large jump transitions are also found.
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ment kinetics would also become important.
The sohdification system, in a reference frame moving

at speed V with the interface, rescaled using (2.1) as
length and time scales, becomes

liquid: z )h (x, t),

and

I D

kJ GI. Tm
(2.3c)

V c+Vci =cg

solid: z &h(x, t),

V T =0S
interface: z =h (x, t),

TL =Ts=ec+Ii„„(1+hz)
(1+h, )[1+(k—1)c]=c,—h„c„,
I ( 1+h, ) =n ( Tq —h Ts ) —( T~ —h„T~ ),

where

2= m (k —1)2l.c

k GI yTM

(2.2a)

(2.2b)

(2.2c)

(2.2d)

(2.2e)

(2.2f)

(2.3a)

(2.3b)

are pulling speed, concentration of solute, and latent-heat
parameters, respectively. The temperature in the solid
and liquid phases (Ts, TL ) is scaled on GI multiplied by
5L, and the concentration c is scaled on the concentration
gradient on the liquid side G, multiplied by 5I . Here kL
(ks) is the thermal conductivity of the liquid (solid) phase
and the ratio kz/kL is denoted by n. The additional di-
mensional parameters are the slope I of the liquidus, and
the segregation coefficient k. In deriving system (2.2) it is
assumed that the specific heats in both phases are equal,
c is small so that the phase diagram is locally linear,
convection in the melt is absent, there is negligible solute
diffusion in the solid, and the ratio of solute diffusion to
thermal diffusion is much less than unity.

A linear-stability analysis of the planar interface is per-
formed by examining perturbations of the form
exp(o r +iax), where the nondimensional wave number a
and growth rate o. are now scaled on 5I and 5z-, respec-
tively. The characteristic equation obtained is

n I V@(1+&)(&i V)—[Xi+V(k —1)][2+IV+@2(1+ii)]I
I [A i+ V(k —1)]+(1+n)Pa (2.4a)

where

A, , =—,
'

I V+ [V +4(a +o )]' I . (2.4b)

For Re(o ) )0, the solidification interface is unstable, and
for Re(o ) &0, it is stable. The principle of exchange of
stabilities holds for this system so that the neutral stabil-

ity curve is obtained by setting o =0 in (2.4). A neutral
curve in the (C, V) plane for / = 1.0, n =2.0, and k =0.2
is shown in Fig. 2. This curve retains all of the features
present in the dimensional neutral curve of Fig. 1. The
upper branch of the neutral stability curve approaches
the absolute stability asymptote 1 =1/k, or

V=C/k . (2.5a)

4
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The lower branch approaches the constitutional under-
cooling asymptote M = 1, or
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FIG. 2. Neutral stability curve for planar growth in the
(8,V) plane. The region inside the curve corresponds to an un-
stable planar interface. The dashed lines indicate regions of
subcritical bifurcation (Ref. 7), the solid line supercritical bifur-
cation (Ref. 7), and TP denotes the transition point that
separates these. The limit point is located at (C,V ).

One substantial difference between these new scalings
compared to the old is reQected in the wave number a,
which is now independent of pulling speed. As C~m,
near absolute stability a, ~~, while on the lower
branch, a, ~0. A diagram of the neutral stability curve
in the (C, a) plane is given in Fig. 3 with l = 1.0, n =2.0,
and k =0.2. Taking a cross section of the neutral stabili-
ty curve in the (C, V) plane at a fixed value of C =4.0
gives the variation of critical wave number with V. This
is shown in Fig. 4. Near the onset of instability, as noted
by Bennett and Brown, ' the neutral curve is very Hat and
so wavelength selection is weak. Near absolute stability
the presence of latent heat sharpens the neutral curve, '

thus creating the possibility of we11-defined wavelength
selection. Of course, this conclusion may be altered by
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FIG. 3. Neutral stability curve for planar growth in the (P,a)
plane. The region inside the curve corresponds to an unstable
planar interface. The dashed lines indicate regions of subcriti-
cal bifurcation (Ref. 7), the solid line supercritical bifurcation
(Ref. 7), and TP denotes the transition point that separates
these. The limit point is located at (C*,a *}.

other effects that are important at high pulling speeds
and not included in the current solidification model such
as attachment kinetics. The wave number of the most
unstable disturbance changes considerably depending on
whether the system is operating near the onset of instabil-
ity, V= V, or near absolute stability, V= V, .

An interesting feature of Fig. 2 is the occurrence of a
limit point in C. For all C above a critical value C* the
planar interface is linearly unstable for all pulling speeds
V in the range V, & V & V, . As C approaches C * both
V, and V, coalesce; when C & C*, the interface is linear-
ly stable for all pulling speeds. This was also noted by
Kelly and Ungar. ' The solidification model used is valid
for small concentrations of solute and at moderate pul-
ling speeds. Near the limit point of Fig. 2, C is certainly
small, while V is moderate (except in the small k limit as
will be shown in the next section) suggesting that the

1

FIG. 4. Neutral stability curve for planar growth in the
(a, V) plane. This is a cross section of Fig. 2 taken at C =4.0.
Due to the effects of latent heat the curve is much sharper near
absolute stability than at the onset of instability.

Mullins and Sekerka model considered is valid in this re-
gion. The coordinates of this limit point, in the absence
of latent heat (l =0), are easily found to be

' I/2
2

P1 +1
1/2 3/2

n +1 (q —2k)
1/2

2

(2.6a)

(2.6b)

(2.6c)

where

q =
—,
' [4k —1+( 1+8k)'i ] (2.6d)

In this new scaling, the critical wave number near the
limit point is 0 (1). If latent heat is included V* is found
by solving

lk(n+1) (k —1)V +k(n+1)[2(k —1)(n+1)—kl ]V —8kl(n+1)V +4(n+1)(l —4k)V +32=0, (2.7)

with C* given by

(4+ l V' )[8+kl V* (n + 1)(k —1)]
(n +1)V*[8—k(n + l)V* (2+iV*)]

As mentioned in Merchant and Davis the location of
the transition point varies depending on the choice of l,
n, and k and is especially sensitive to changes in l when n
is near unity. In certain parameter ranges the transition
point can be made to lie on, or a little above or below the
limit point; this feature is important when considering a
bifurcation analysis near this limit point.

If we define a small parameter e as the difference be-
tween C and C*, namely,

(2.9a)

then near the limit point the appropriate scalings hold

V= V*+eV,
a =a*+ca,

(2.9b)

(2.9c)

(2.9d)

0'+ a4Q +a30 V+ apV —a ) (2.10)

where the a;(n, k) are constants that are given in Appen-
dix B. The approximate characteristic equation is a ro-
tated ellipse in the (a, V) plane. This was observed nu-

where all barred quantities are of unit order as e—+0.
These scaled variables lead to an approximate charac-
teristic equation, valid near the limit point, of the form
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merically in Brown' for c near c* .
In the next section we relate these new control parame-

ters C, V, and l with the most commonly used nondimen-
sional parameters. To clarify our different approach we
present some familiar small k results.

frozen temperature model n =1, l =0.
The neutral stability curve always lies between the two

stability asymptotes, namely, absolute stability (2.5a) and
constitutional undercooling (2.5b). These asymptotes in-
tersect at

V=k-'", C =k'" . (3.4)

III. COMPARISONS WITH PREVIOUS WORK

A. Conversions

IG,M=
G )fc

m (k —l)c„V(kL +ks)
kD(k, G, +k, G, )

(3.1a)

where G* is an average temperature gradient and G& is
the temperature gradient in the solid at the interface.
There is a surface energy parameter

yTMk VI =
Lm (k —1)c D

(3.1b)

When lengths and time are scaled on the solute
diffusion scales, D/V, D/V, respectively, the resulting
nondimensional parameters are the morphological num-
ber

For small k the coordinates of the limit point (2.6), with
n =1, reduce to

V*-k -'" C'-4k'" (3.5)

indicating that the limit point approaches the intersec-
tion of the two stability asymptotes, while both simul-
taneously move off to infinity. In the frozen temperature
approximation M =VC so for small k, the limit point is
located at M =4, and the transition point at M =

—,'. This
is shown in Fig. 5 using k =0.001. Thus M =1 is always
in a region of subcritical bifurcation, in agreement with
Sivashinsky.

Another interesting observation is in the small-k limit
the approximate characteristic Eq. (2.10) reduces to

o+(2+ )a +(k+ )V —(2k' + . )aV

and a Stefan number 2
n+1

1 /2

( k
—1/2+ (3.6)

LV
H k G

(3.1c)

G==1 (3.2a)

In this scaling M, I, and the segregation coefficient k are
taken to be the control parameters. Another commonly
used notation (cf. Coriell et al. ) is then related by

In order to retain the elliptical nature of (3.6), V and a
must be rescaled with a /V=k'~ ((I, implying that for
small k the neutral curve gets thin and sharp near both
the onset of instability and at absolute stability, thus
enhancing wavelength selection. Also there is a smaller
disparity between the critical wavelengths corresponding
to V, and V, .

(3.2b)

(2+LH )MI=
La

(3.2c)
4

10

These are also similar to those used by Caroli et al. ' and
Alexander et al.

The morphological number, surface energy parameter
and Stefan number are related to V, C, and l by

2
10

0
10

914

VC(l+n)
2+iV

r=v/C,
1. =Vl .

(3.3a)

(3.3b)

(3.3c)
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B. Small k

The limit of small segregation coefficient is both physi-
cally relevant and mathematically attractive. It is well
known for k « 1, M, —+1, and, in the old scalings, that
the system loses stability to long-wave disturbances. This
long-wavelength property has been used by Sivashinsky,
Brattkus and Davis, ' and Riley and Davis. " To relate
these results to our new scalings we first consider the

FIG. 5. Neutral stability curve for planar growth in the
(C, V) plane, using the frozen temperature approximation, for
small k, k =0.001. The region inside the curve corresponds to
an unstable planar interface. The dashed lines indicate regions
of subcritical bifurcation (Ref. 7), the solid line supercritical bi-
furcation (Ref. 7). The limit point is located at M =4 and the
transition point at M =—.The region given by M = l is located
in a area of subcritical bifurcation as predicted by Sivashinsky
(Ref. 9).
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IV. WEAKLY NONLINEAR ANALYSIS c(z)=1—e (4.5a)

We are interested in the nonlinear behavior near the
limit point. We derive an amplitude equation describing
the time evolution of the leading-order disturbance am-
plitude, that captures simultaneously transition to cells
near both the lower branch at V= V, and near the upper
branch at V= V, . Two distinct limits will be considered.
When the transition point is away from the limit point,
we obtain either supercritical or subcritical bifurcation
from both branches via an amplitude equation with cubic
nonlinearity. When the transition point approaches the
limit point, the amplitude equation has both cubic and
quintic nonlinearities and is capable of describing more
elaborate modes of transitions to cells.

A. Transition point distant from limit point

At the limit point, where both critical pulling speeds
coalesce as C ~C *, we expect an isola (a closed curve of
solution branches) to form with its center located at
(C ', V*). The structure of this isola is then captured by a
perturbation expansion about its center in a small param-
eter e that is proportional to (C —C*), with a appropri-
ately determined (see Dellwo et al. ' ).

We consider the solidification model with zero latent
heat, though the thermal conductivities in the solid and
liquid are allowed to be distinct. The analysis is slightly
simplified by this choice but latent heat could be includ-
ed.

A small parameter e is defined by

TI —Z (4.5b)

(4.5c)

h=o. (4.5d)

Note that c depends on the bifurcation parameter V. At
each order in e there is an eigenvalue problem of the form

Xc, =r,
Sc;(0)=d, i =1,2, . . . , (4.6)

where c; is the vector (c;,Tl, Ts, h;), c;(0) denotes evalu-
l

ation at z =0, and X and % are operators from linear
theory. These are given by

Xc, =

V' c, +V*c,

V T

V Ts
(4.7a)

c; (0)+V*(1—k)c;(0)—kV* h,

Ti (0) nTs (0—)
'z 'Z

%c;= h, —(1—C*V*)h;+C*C;(0)—Tl (0) . (4.7b)
XX l

h; 1 ——+ TL (0)—Ts (0)1

n l l

C = C*+se (a =
—,
' ), (4.1)

where s =+1 depending on whether C is above or below
the limit point. A scaled bifurcation parameter is intro-
duced

The inhomogeneous terms r; and d, appear at each order
with r

&

—=d& =—0 so that c& satisfies the homogeneous linear
problem. The solution for c& is

V=V'+@V,+e V2+ .

along with a slow evolution time scale

(4.2)
Ci = —x,z)fc

e ' A (r)e" +c.c. ,
2a

(4.8a)

v.=e t . (4.3)
TL = e ' 'A (r)e" "+c.c. ,1+n (4.8b)

The preceding scalings are suggested from the linear
theory. The governing system is given by (2.2) with I =0,
and the time derivatives replaced by e 8/Br. A solution
is sought in the form

n —1 )jc

Ts = e' 'A(r)e" '+c.c. ,
n (n +1)

h, =A(r)e" "+c.c. ,

(4.8c)

(4.8d)

c —c(z)+ ec i(x, z, 'r)+ e c2(x, z, r)+

Ts l = Ts l (z ) +e Ts l (x,z, i)

(4.4a) where A (r) is a complex amplitude yet to be determined.
At each subsequent order a compatability condition must
be satisfied by the inhomogeneous terms; this condition is

+e TsL (x,z, r)+ . (4.4b) ~p, r;)+ I Id, p (0)+d [p (0)—p (0)]

h =h+eh, (x, r)+e h2(x, r)+ (4.4c)
—d3 p3 (0) Idx =0, (4.9)

where the barred quantities denote the basic state given
by

where P is the solution of the homogeneous adjoint prob-
lem
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V Qi
—V*(5i

p2p

p2p =0, (4.10)

(0)—P (0)— ——C*V* [P (0)—P (0)] kV—*
P 1———

P (0)
ZXXX ZXX n Z z n z

$3(0)—nfl(0)

p3 (0)—k V*/, (0)+C *[$2 (0)—(b3 (0)]

(4.1 1)

The inner product (, ) is given by

a oo 2m/a a * 0 2m/a* a * 2m/a(u, v& = f f (u, ui+u2U2)dx dz+ f f u3U3dx dz+ f u4U4dx =0,
2& 0 0 27T —oo 0 2& 0

(4.12)

where the overbar now denotes complex conjugate. At
third order in e a restriction is placed on the complex am-
plitude A (r), namely,

(4.13)

(4.19)

The steps of the preceding analysis are repeated using
these new scalings, and at fifth order in e a restriction on
A (r) is obtained. The new amplitude equation becomes

where the a], o', 2 & 0 are constants determined from linear
theory (2.10) and a, is the Landau coefficient, which is a
function of both n and k. The form of a

&
is

(n + l)~ 1+n

where I'", ,F2 & 0 are given in Appendix C.

B. Transition point is coalescent with limit point

(4.14)

0.118

a, oo

1.07

Equation (4.13) describes the bifurcation behavior near
the limit point when the transition point is distant. Thus
ai =O(1). However at does vary with n and k and can
be made to coincide with the limit point. This occurs
when a] =0 or

-0.18-

F, (k)+F2(k)
F, (k) —F2(k)

(4.15) 0.36— (b)

When n is near no the amplitude equation (4.13) is no
longer uniformly valid and the analysis must be general-
ized with rescaled variables. If the small parameter e is
now defined by

P 0.18—

C =C*+se (a= —,'),
then the rescaled bifurcation parameter is given by

V=V" +e V +e V +

(4.16)

(4.17)

o.o i

0.0 1.0
l

2.0

and n must be near n0,

n =n0+E n2+2 (4.18)

The sign of n2 determines whether the transition point
lies above or below the limit point. A new slow time
scale is also introduced

FIG. 6. (a) Graph of the second Landau coefficient a2 ap-
pearing in Eq. (4.20) vs the segregation coefficient k. The two
points marked correspond to the zeros of a2. (b) Graph of the
coefficient P2 appearing in Eq. (4.20) vs the segregation
coefficient k.
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Region

TABLE I. Please set table caption here.

Coefficients
b, n

of thermal conductivities n and the segregation coefFicient
k. These solutions are discussed in the next section.

V. RESULTS
III
IV
V
VI
VII
VIII

dA
dt =(a,s —a2vi) A

—(pin2+ppV2) A
~
A

~

—a2 A
~
A

~
(4.20)

8F, (k)
,(k)=

( I+no)
(4.21)

but az and Pz satisfy extremely long and complicated ex-
pressions which were obtained by using a symbolic ma-
nipulation program. Due to their complexity, they are
not given in this paper but are given in graphical form in
Fig. 6. Their signs are given in Table I. This new ampli-
tude equation is valid when the transition point is within
order e of the limit point.

C. Recasting

where az(k) is a second Landau coefficient, and Pi(k),
Pz(k) &0 are two new constants. The constant P, (k) is
found to be

In Fig. 7 we classify the types of transition from planar
to two-dimensional cellular morphology depending on n
and k. The lighter interior curve, Hanked by two heavier
curves, corresponds to the zero of the Landau coeKcient
ai of the amplitude equation (4.23), and is given by Eq.
(4.15). Below this curve ai &0, while above, ai (0.
There is a singularity in (4.15) when F&(k)=F2(k), this
corresponds to k =k = —,', . Thus, for small k the transi-
tion point never coincides with the limit point of the neu-
tral stability curve; this is in agreement with the small k
results of Sec. III. In a band width proportional to b.C
about this curve, the transition point is near the limit
point and the amplitude equation (4.23) is no longer val-
id; here (4.25) comes into play.

For the solidification model considered region I is the
normal one since n is typically less that 3.0. Here the
transition point is below the limit point of the neutral sta-
bility curve. In region I, a] )0, and the bifurcation
structure is shown as a sequence of three snapshots in
Fig. 8(a). The first corresponds to a negative value of b, P,
so we are looking to the left of the limit point and the
planar interface is locally stable for all pulling speeds. In
the next frame b, C =0, here V=V, =V, and the bifur-
cation structure is just a point. When b, C &0, V, and
V, split and the planar interface becomes unstable on the
lower branch at a critical pulling speed of

It is easier to grasp the physics contained in the ampli-
tude equations if we return to the original physical vari-
ables. If A =e A is the unscaled amplitude of the distur-
bance and

16.0-

12.0-
C =C"+b,C,
V=—V'+hV,

(4.22a)

(4.22b)

so that b, C is the measured distance to the left of the lim-
it point and AV the corresponding critical pulling speed
above the limit point, then (4.13) reduces to

4.0.-

= [aid C —az(b. V) ]2 —a, 2
~
A

~
(4.23)

0.0
0.0 k

I

0.5
I

1.0
I

1.5
I

2.0

When n is near no, i.e.,

n =no+An,

the amplitude equation (4.20) reduces to

dA =[a,b, C —a,(b,V) ]A

(4.24)

The two amplitude equations derived give all possible
local transitions from planar to two-dimensional cellular
states near the limit point of the neutral curve. For the
solidification model considered, the transitions form a
two-parameter family of solutions depending on the ratio

FIG. 7. Regions for which the coefficients of the amplitude
Eqs. (4.23) and {4.25) change sign depending on the ratio of
thermal conductivities n and the segregation coefficient k. The
light curve indicates the position where the Landau coefficient
a, appearing in Eq. (4.23) vanishes, and is given by Eq. (4.15); it
asymptotes to infinity at k =k = —,'6. The band of width 0{b C )

around the light curve denotes the region in which the fifth-
order amplitude equation (4.35) is valid. The sign changes
occurring in the second Landau coefficient a2 [as shown in Fig.
6(a)] are given by the two leftmost straight lines, while the verti-
cal line on the right gives the location where p [Eq. (5.1)]
changes sign. These sign changes are also summarized in Table
I.
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(a)

(b)

FIG. 8. Bifurcation diagram corresponding to amplitude
equation (4.23). The dashed lines represent unstable solutions.
(a) region I of Fig. 7; (b) region II of Fig. 7.

V= V*—(a&b, C/a2)'

and small amplitude cells begin to develop; the bifurca-
tion is supercritical. These cells increase in amplitude up
to a maximum amplitude then begin to fade away with
increasing V until

V =V'+ (a,hC /a~) ' ~~,

where the planar interface regains stability; again the bi-
furcation is supercritical. Such behavior has been seen

numerically by Kelly and Ungar' on the full tirne-
dependent system with latent heat and curvature in the
temperature profile. Unlike our work their spatial
domain (x direction) is restricted in width to that of a few
cell wavelengths by the inclusion of symmetry conditions
on either side of the domain. Recently, Trivedi et al.
performed experiments on a nearly pure sample of carbon
tetrabromide and noticed that the bifurcation near V,
was supercritical and suggested that the bifurcation near
V, was as well. They also noticed a secondary bifurca-
tion to dendritic solutions at larger amplitudes. Unfor-
tunately they could not measure the amounts or types of
impurities present making it difficult to determine c for
comparison with our results. Due to the purity of the
sample one might suppose that they were operating rela-
tively near the limit point of the neutral stability curve.

Region II is characterized by quite large conductivity
ratios. However, it does exhibit some interesting bifurca-
tion structure. Here a

&
& 0 and the bifurcation structures

are shown in Fig. 8(b). The sequence of snapshots is tak-
en at equivalent values of b.C as in Fig. 8(a). To the left
of the limit point there exists a disconnected solution
branch. Although at this C the planar interface is linear-
ly stable for all pulling speeds, large enough disturbances
will cause the interface to jump to some finite-amplitude
cellular state (outside the range of validity of the present
theory). For smaller values of AC this isolated solution
branch moves off to infinity. As hC is increased, this
branch moves down towards the axis until AC =0 when

it meets the axis at a single point V= V, =V, . For posi-
tive values of b, C the two critical pulling speeds are split,
and the planar interface becomes unstable via a jump
transition at a pulling speed somewhat below

V=V*—(a,~C/a, )'" .

At this order in amplitude equation we are unable to
close the solution branch, and as V is increased the inter-
face may go through other transitions until finally when
V is above

V*+ (a,aC /a, )'"
the planar interface regains stability via another jump
transition. In region II the transition point is above the
limit point and this is rejected by the subcritical nature
of both bifurcations.

When the transition point coalesces with the limit
point of the neutral curve, the bifurcation structure is de-
scribed by Figs. 9—11. Table I gives the signs of the
coefficients appearing in the amplitude equation (4.25)
corresponding to each region. The bifurcation diagrams
were drawn using the normal-form characterizations of
Golubitsky and Langford. '

Figure 9(a) gives the bifurcation structure present in
region III. From Table I hn is positive, indicating that
the transition point is located on the lower branch of the
neutral stability curve. When operating to the left of the
neutral curve there exists a disconnected branch of solu-
tions which moves down from infinity as hC approaches
zero. When b, C =0, the two critical pulling speeds are
equal and the planar interface is unstable at the single
point V= V, =V, . For a small positive value of AC, V,
and V, split to form a connected supercritical branch on
the axis and the disconnected solution branch approaches
this. For a larger value of hC, but still to the left of the

(a)

(b)

FIG. 9. Bifurcation diagram corresponding to amplitude
equation (4.25). The dashed lines represent unstable solutions.
(a) region III of Fig. 7; (b) region IV of Fig. 7.
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2p= —1.
2(a2a2 )' (5.1)

In this region p )0 (see Table I). When operating to the
left of the limit point, i.e., at a negative value of hC, a
subcritical isola moves in from infinity. Unlike the previ-
ous cases the analysis now describes the stable solution to
which large enough disturbances jump. As b, C is in-

transition point, the disconnected solution attaches to
and then opens up the connected solution. Thus, even'
though the bifurcation to cells is now supercritical, the
branch soon bends back; if the disturbances in an experi-
ment were large enough, the planar interface might jump
to some finite-amplitude state before the pulling speed
reaches V„suggesting that the bifurcation were subcriti-
cal even though Wollkind and Segel (correctly) predict
that it is supercritical. As b, C moves through the transi-
tion point, the bifurcation structure at V=V, changes
from supercritical to subcritical as is shown in the final
frame of Fig. 9(a).

Figure 9(b) shows the bifurcation structure of region
IV. Here hn &0, and the transition point lies on the
upper branch of the neutral stability curve. The first
frame shows a disconnected set of solutions existing for a
negative value of hC. At the limit point, hC =0, this
solution moves in and meets the axis at a point
V=V, =V, . For a positive value of b, C, but below the
transition point, V, and V, split to form two subcritical
solution branches similar to Fig. 9. For a value of hC
above the transition point the bifurcation structure at
V= V, changes its type from subcritical to supercritical.

A different type of bifurcation structure exists in region
V, and is shown in Fig. 10(a). Here An )0, so the transi-
tion point is located on the lower branch of the neutral
stability curve and the second Landau coefficient az is
positive. The bifurcation structure now depends on
another parameter p,

4e2a2
2+2 2 ~2

(5.2)

and increases in size with increasing b, C. Thus, even
though linear theory predicts stability there exists a

creased, this disconnected solution moves towards the
axis. At b, C =0 the planar interface becomes unstable at
a point V=V, =V, . For positive values of b, C, but
below the transition point, the connected supercritical
state grows larger until, simultaneously, both solution
branches meet and there is a change of the type of the bi-
furcating solution at V=V„ from supercritical to sub-
critical as b.C crosses the transition point.

In region VI, An &0, and the transition point is locat-
ed on the upper branch of the neutral stability curve.
This is the subcritical case of the previous example. In
Fig. 10(b), for a negative value of hC a disconnected sub-
critical isola exists. The next frame shows how, at
b, C =0, this isola moves into the axis showing locally, at
V=V, =V„ two transcritical solutions. For positive
values of b, C the critical pulling speeds split and two sub-
critical solution branches are formed. Once 6C is
beyond the transition point, the bifurcation structure at
V= V, changes to supercritical.

Region VII is characterized by a positive hn and a neg-
ative value of p, and the bifurcation structure present is
shown in Fig. 11(a). There is no subcritical disconnected
solution. When b, C =0 the planar interface becomes un-
stable only at the point V= V, =V„which splits on in-
creasing b, C to form supercritical bifurcation at each
branch. When b, C is increased beyond the transition
point the bifurcating solution at V=V, changes to sub-
critical but the analysis still describes the full loop.

In the final region, region VIII, the bifurcation struc-
ture is as shown in Fig. 11(b). For a very negative value
of b, C there are no disconnected solution sets. As b, C is
increased, but still below the limit point, an isola grows
from a point when

L

(a) (a)

(b) (b)

FICx. 10. Bifurcation diagram corresponding to amplitude
equation (4.25). The dashed lines represent unstable solutions.
{a) region V of Fig. 7; (b) region VI of Fig. 7.

FICx. 11. Bifurcation diagram corresponding to amplitude
equation (4.25). The dashed lines represent unstable solutions.
(a) region VII of Fig. 7; (b) region VIII of Fig. 7.
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finite-amplitude steady state. By further increasing b, C
the isola moves into the axis until b, C =0, where it meets
the axis forming two locally transcritical solution
branches. For positive values of b, C the critical pulling
speeds split to form a subcritical mushroom. " When
b, C moves above the transition point, the bifurcating
solution at V=V, changes type to supercritical. This is
shown in the final frame of Fig. 11(b).

VI. DISCUSSION

By introducing length and time scales independent of V
and c, we are able to obtain linear-stability curves for
directional solidification that resemble the dimensional
ones as shown for fixed 6 in Fig. 2. Here the limit point
of the curve has coordinates (C', V*). The transition
point separates supercritical from subcritical bifurcation
behavior.

We examine the system with negligible latent heat and
describe two-dimensional bifurcations from the planar in-
terface when C is near C *. We choose C near C *, since
we are then able to describe the bifurcations from the two
branches simultaneously. Two cases are examined.

(i) When the transition point is distant from the limit
point, we find the amplitude equation (4.23), which has
cubic nonlinearities and a Landau constant a, . If the
transition point is on the lower branch, then a, )0 and
the bifurcations from both branches are supercritical as
shown in Fig. 8(a). If the transition point is on the upper
branch, as it is foi larger conductivity ratios n,
n = ks /kL, then both bifurcations are subcritical as
shown in Fig. 8(b). Both of these are discussed in Sec. V.

(ii) When the transition point is coalescent with the
limit point, then a, =O(e ) and we find the generalized
amplitude equation (4.25), which has both cubic and
quintic nonlinearities and a second Landau coefficient az.
Both a& and a2 depend on n and k only since latent heat
is neglected. Figure 7 shows the parametric regions in
which the Landau constants take on various possible
signs and Figs. 8 —11 give the bifurcation patterns that
emerge. These are discussed in Sec. V.

The light curve in Fig. 7 indicates, in parameter space,
where the transition point is coalescent with the limit
point, this occurs only when the conductivity ratio is rel-
atively large. For example if k =0.5, then n must be
about 3; for other values of k, n must be larger yet. We
have considered the coalescent case for two reasons.

First, as is clear, it allows for a much richer variety of be-
haviors to occur. Second, despite the technical necessity
of bringing the transition point into the asymptotic re-
gion of the analysis, the resulting behavior should be sug-
gestive of the bifurcation structure near the transition
point even if it is not close to the limit point; For exam-
ple the band width around the zero of a, in Fig. 7 is pro-
portional to hC, and if b, C is no longer small, regions III
through VIII may correspond to physically meaningful
parameter ranges.

The results of the present analysis should be useful in
rationalizing existing bifurcation theories and the results
of numerical simulations. Rapid turn arounds, as seen
for example in Fig. 9(a), may be hard to resolve numeri-
cally since these schemes often have some form of
gridscale error. Our results can be used as qualitative
test cases for various types of simulations.

Our Figs. 8 and 11 have superficial resemblances to
those of Haug. ' However, the physical situations and
consequences are quite difFerent. Haug considered two-
dimensional bifurcation in a channel of width W (in the x
direction) where sidewalls allow only a few cell wave-
lengths. Thus, 8' is of the order D/V. He then selects
special values of 8, 8'p say, that allow two modes to be-
come unstable simultaneously (codimension 2 bifurca-
tion) or only one mode unstable (codimension 1 bifurca-
tion). All the normal forms present is his model are then
classified by using imperfect bifurcation theory. His
analysis does not focus on the limit point of the neutral
stability curve. The present analysis considers the infinite
range on x since there are no sidewalls, and in a neigh-
borhood of C * examines simultaneously the bifurcations
from the lower and upper branches of the neutral stabili-
ty curve.
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APPENDIX A

In the notation of Alexander et al. the corrected form
of the Landau coeScient a& is

Re(a, ) = —k (k —1)(g„+—,'$2o) —kA „k(k —1)

2 j 2 ~zo ~2p+ ~10(2~ 020 4~ Mlo)+~ ~20 ™20+k

~2p ~20
+(M,o+k —1) A „—(1—k)g„+ (1—k) (k —1) 3' (k —1)A

16k

4koai& io

n+1
A ]o (k 1 )(Mio+k 1 )

X + +
2 2Mip —1 2Ico

(A 1)
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where

—k(k —1)
2(M,p+k 1)

(A2)
$2p= [2' +M, p(1 —M2p)] + —,'(k —1)(1—M2p)

M =-,'+(-,'+~')'",10

M =
—,'+( —,'+4' )'20

(k —1)(n +1)
10 4I

(n —1)(k —1)G
4

M&0 A }0+20 2
—(k —1)g 1 —G —4'20 k

(A3)

(A4)

(A5)

(A6)

X ~ (k —1) k —(M2p+ k —1)

X 1 —G —4~2A
k

k(k —l)M, p

4(Mip+k —1) 8

co(1 n) — coI
4(n +1) 2(G I ')(n—+1)

(A7)

(A8)

(A9)

APPENDIX B

The coefficients appearing in the approximate dispersion relation (2 10) are
2 e22a* H(2a* —kV" )a&=

)fc2a* H+kV*
(H +A., )(2a * H —kk )V' )

0'.2—
H'(2a*'H+kV* )

a = —a "[4V*—2C'*V* (1+n)+2a* V'(1+n)+H (1+n)(2C*—V*)+H (1—2k)(1+n)]

X I H'[2+ (1+n )(a * —C *V*+C *H] I

a4= [nH Sa" (1—+n) —16a* +2H [2+5(1+n)a* —(1+n)C*V*]

+H [2(A, , —V*)+2kV"(1+n) nV" ]+—Sa" C*V*(1+n)I

X [2H [2+(1+n)(a* —C*V"—C*H)]I

where

H =V*—2A.),
A, ,

=
—,'[V'+(V* +4a* )' ],

and C *, V*, and a * are given in Eq. (2.6).

(Bl)

(B2)

(B3)

(B4)

(B5)

(B6)

APPENDIX C

The functions F, (k) and F2(k) appearing in the Landau coefficient a
&

in Eq. (4.14) are

2(2R, —V)
F, = [ —4h22+ Ck V +Ckk, 0' (k V —2)]

[2(2X,—V) —k ]

F2 =( —4C+c22[A2(k V —2)+2k] —2C 0'h 22[3k'' —kA, , f (k V —2) —4]

(2k, —0')
+ j C'klieg' (kV —3)—[12+CV (2+3k)(kV —2)]I )

2 [2(2k, — ) —k ]

where

q =
—,'[4k —1+(1+8k)'~ ],

1/2

3/2

q
—2k

(C 1)

(C2)

(C3)

(C4)
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i, =-,'[ v+( v'+4)'"],
2 =—'[V+(V +16)' ],
T, =(6—C'k V )[~,—V(1 —k)]+2Ck V

(C7)

(C8)

h-= [
—k V(1+A, , Vk) —[A.~

—V(1 —k)](1—kA. , V) I,
1

czar=
—kV (T, (1+kAI V) —2C'V[(1 —kRI V)[Az —V(1 —k)]+ Vk(1+k'&V)I)I2TI[A~ —V(1 —k)]I

(C9)
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