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The group-theoretical nonadiabatic Heisenberg model proposed recently by the author for better
understanding of the material properties of superconductors is applied to the band structure of
chromium. Starting from the symmetry of the Bloch functions of a distinct narrow, roughly half-
filled energy band of Cr, it is shown that, within this new model, the electrons may lower their
Coulomb correlation energy by forming a state that possesses a spin structure with the space group
D4& of perfect antiferromagnetic Cr. We give a general condition for the stability of itinerant anti-
ferromagnetism. The commensurate-incommensurate transition is ascribed, as usual, to the pecu-
liar geometric features of the Fermi surface of Cr and to band degeneracies at the Fermi level that
split at this transition. We have determined the magnetic groups of the transversely and longitudi-
nally modulated spin structure and give the corepresentations to which the commensurate, the
transverse, and the longitudinal spin-density-wave states belong. It turns out that, in contrast to the
longitudinal, the transverse spin-density wave is not quite incommensurate because its periodicity is
an even multiple of the lattice constant. We speculate that this behavior might be responsible for
the spin-Hip transition at T,f=123 K. The special form of the resulting corepresentations shows
that the two incommensurate states are accompanied by lattice distortions and that all three mag-
netic states are ¹lectron Bloch states with nonvanishing wave vector. While the commensurate
and the transverse spin-density waves, because of their symmetry, are exactly antiferromagnetic, we
cannot exclude the longitudinally modulated structure's being slightly ferromagnetic.

I. INTRODUCTION

The essential approximation of the atomic or Heisen-
berg model is that the electrons responsible for magne-
tism are situated on the atoms. This rough approxima-
tion leads to a fundamental understanding of magnetism,
although, as is well known, in most metals electrons be-
longing to partly filled energy bands are responsible for
magnetism. In such bands the electrons may hop from
one atom to another in performing their band motion,
which is determined by both their translational energy
and their Coulomb interaction.

The translational energy causes a finite time of stay ~
of the electrons on the atoms, which is connected with
the bandwidth 6 according to ~=A/6 and which in the
transition metals is of order 10 ' s. The question of
why, despite this extremely small ~, the electrons may
have atomiclike character is treated in great detail by
Hubbard. He argues that it is intra-atomic correlation
effects in narrow bands that leads to the atomic behavior.
In brief, the motion of all the electrons that occupy a lo-
calized orbital one after another is correlated in such a
way that we can speak of localized electron states.

The inAuence of the Coulomb interaction on the elec-
tronic motion is difTicult to estimate. A special part of
the Coulomb interaction operator, which, in Sec. II, will
be denoted by H„generates transitions between adjacent
localized states. These transitions reduce the possibility
of an atomic model since they further decrease the short
time of stay ~ and destroy any correlated motion of the
electrons. More quantitative statements on the inhuence

of H, are difFicult to make since this operator represents
that part of the Coulomb interaction whose matrix ele-
ments depend crucially on the exact form of the basis
functions and hence are most hardly calculated.

It is found experimentally that, e.g. , the d electrons of
the transition metals exhibit behavior of both the band
and the atomic model. ' Thus, the interaction H, evident-
ly does not destroy the atomiclike character of these elec-
trons. The reason for this ineffectiveness of H, might be
that this operator represents only a small perturbation.
This argument seems to be born out by the special form
of the matrix elements of H, which vanish if "su%ciently
localized" Wannier functions are used as basis functions.
Such Wanner functions, however, do not exist. In partic-
ular, the Wannier functions of the narrowest partly filled
bands of the metals extend far beyond the Wigner-Seitz
cell. If, nevertheless, the basis functions are assumed to
be approximately that localized that H, vanishes, then
the exchange term H,„of the Coulomb operator van-
ishes, too, and all exchange effects are discarded from the
beginning.

The nonadiabatic Heisenberg model as proposed re-
cently by the author treats the operator H, in a new
way. As explained in Sec. II (and, in detail, in Ref. 2) H,
is not assumed to be so small that it is ineffective in partly
filled bands but a nonadiabatic mechanism is postulated
which makes H, ineffective in narrow bands. We show
(in Sec. II) that the assumptions of this model are a gen-
eralization of the assumptions made in the original
Heisenberg theory of magnetism. The essence of the new
group-theoretical model is that the question as to which
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TABLE I. Matrix representatives of four special irreducible corepresentations (which only differ by unessential factors d& =+1
and d2 =21) of the group G as given in Eq. (A5). The perfect antiferromagnetic state lG") of Cr and the related time-inverted state
are basis vectors of one of these corepresentations. These matrices cannot be unitarily transformed because only the basis functions
of the given matrices satisfy the Pauli principle within the nonadiabatic systein. The last column shows that lG ) is an ¹lectron
Bloch state with wave vector kM, the vector of the point M in the antiferromagnetic Brillouin zone (as given, e.g., in Fig. 3 of Ref.
11).
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exchange effects are possible in a given metal, depends on
the special symmetry of the Wannier functions of the nar-
rowest, roughly half-filled energy bands of this metal.

The nonadiabatic Heisenberg model has first been ap-
plied to superconductivity. Here the fact was used that
spin-dependent Wannier functions with a special symme-
try can be constructed from the Bloch functions of a dis-
tinct narrow, roughly half-filled band (called the o band)
of the superconductors. The symmetry and spin depen-
dence of these functions suggest that, contrary to com-
mon belief, a new exchange effect, namely spin-phonon
interaction, is responsible for superconductivity. This
statement does not contradict but extends the BCS and
Eliashberg theory of superconductivity and may help to
understand the high transition temperature of the new
superconductors within the BCS theory.

In this paper, the nonadiabatic Heisenberg model is ap-

plied to the itinerant antiferromagnetism in Cr. Here, it
is applicable because the band structure of Cr exhibits a
characteristic feature: The Bloch functions of one of the
narrowest, roughly half-filled bands of this transition
metal can be transformed into an orthonormal set of op-
timally localizable Wannier functions which are
symmetry-adapted to the space group D4& of the perfect
antiferromagnetic structure. This "antiferromagnetic
band" (AF band, see Fig. 1 of Ref. 5) is obviously con-
nected with the stability of the spin-density-wave state in
Cr because the other nonferromagnetic bcc transition
metals (except for Mo), V, Nb, W, and Ta, do not possess
such an AF band (or have an AF band which is far from
being half filled).

Starting from the symmetry of the AF-band Wannier
functions we show in Sec. III A that, within the nonadia-
batic Heisenberg model, the AF-band electrons may

TABLE II. Matrix representatives belonging to two special irreducible corepresentations (with
d =+I ) of the magnetic groups G„'+ [Kloj 6„' and G,'+ [Kloj G,' as given by Eqs. (4.6) and (4.13), re-
spectively. As in Table I the given matrices cannot be unitarily transformed. Top: The transverse
spin-density-wave state

l

G„"') and the related time-inverted state are basis vectors of one of these two
corepresentations. The first column shows that the operation [C~„lr„j cannot be taken out of 6„' be-
cause, otherwise, the corepresentations become reducible and, hence, lG„"') gets unstable (see Sec. IV).
The third column shows that the nonadiabatic Hamiltonian M„"' [see Eq. (4.2)] has real eigenvalues and,
according to the last column,

l
6„"') is an ¹lectron Bloch state with the wave vector Q of one of the

points on the surface of the Brillouin zone as given by Eq. (4.9). R denotes a primitive translation of
G„'. Bottom: The longitudinal spin-density-wave state l G,"') and the related time-inverted state are
basis vectors of one of these two corepresentations. These corepresentations are irreducible although
no symmetry operation of G, is associated with a nonprimitive translation and, therefore, the state
lG,"') is, in contrast to lG„"'), totally incommensurate with the lattice constant. The third column
shows again that the nonadiabatic Hamiltonian 0,"i has real eigenvalues and, according to the last
column, lG,"') has the crystal momentum Q which is given by one of the vectors in Eq. (4.16). R
denotes a primitive translation of 6,'.
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The nonprimitive translation v. associated with KI and I is omitted when the origin of the coordinate
system in Fig. 2 lies at point Io.
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lower their Coulomb energy by forming a state which
possesses a spin structure with the space group D4I, . In
this context we need no new assumptions going beyond
those already made in Ref. 2 and listed in Sec. II of this
paper. This result suggests that the special symmetry of
the AF band is responsible for the stability of the spin-
density-wave state in Cr and it corroborates the assump-
tions of the nonadiabatic Heisenberg model and hence
the foregoing statement on superconductivity.

According to a group-theoretical theorem the eigen-
states of any Hamiltonian H are basis vectors of an irre-
ducible representation of the space group of H. Assum-
ing that this theorem is also applicable to magnetic states,
i.e., to magnetic groups and their corepresentations, we
determine in Sec. III C the corepresentation of the mag-
netic group of Cr to which the perfect antiferromagnetic
state belongs and give it in Table I. A result is that this
state is an X-electron Bloch state with wave vector k~,
the vector of the point M in the Brillouin zone of antifer-
romagnetic Cr. This result is in agreement with the con-
cept of a static spin-density wave with nonvanishing wave
vector as it was proposed by Overhauser. The wave vec-
tor kM, however, is not a vector of the antiferromagnetic
reciprocal lattice and therefore it is not identical with the
vector Q observed in neutron-difFraction experiments.

The commensurate-incommensurate transition is not
caused by the interaction H„ i.e., by correlation energy.
It is ascribed, in the usual way, to the peculiar geometric
features of the Fermi surface of Cr (Ref. 7) and, as shown
in Sec. V F, to the special symmetry of the related Bloch
functions. Starting again from the above-mentioned as-
sumption, we determine in Sec. IV the magnetic groups
of the two incommensurate spin structures, i.e., of the
transversely and longitudinally modulated structure, and
the corepresentations to which the related spin-density-
wave states belong (see Table II). It turns out that the
transverse, in contrast to the longitudinal, spin-density
wave is not quite incommensurate with the lattice con-
stant (see Sec. IV A). We speculate (in Sec. V Cs) that this
fact might be responsible for the spin-Hip transition ob-
served at the temperature T,f = 123 K.

In the Appendixes we describe the magnetic group of
perfect antiferromagnetic Cr and give the symmetry
properties of the optimally localizable Wannier functions
of the AF band as far as they are needed in the present
paper.

HHF g & TIHHF IT' &cT,cT,, (2.2)

Hcb= X &T~,T2IHcblT&, »&cT,, cT, c,
T, s

(2.3)

are integrals over Wannier functions forming a complete
basis in the considered band, say, the functions given in
Eq. (82). The fermion operators cT, and cT, create and
annihilate, respectively, electrons with spin s in the local-
ized states ~T, s &.

Using the same arguments as in Sec. II of Ref. 2 we
split Hcb into three parts,

Hcb =H, +H„+H, , (2.&)

with the operator of Coulomb repulsion H, containing all
the matrix elements of Hcb with T, =T', and Tz =Tz, the
exchange operator H„containing the matrix elements
with T, =T2 and T2= T', , and H, comprising the remain-
ing matrix elements, i.e., the matrix elements with

IT„T2IWITi, T,') (2 6)

where I T„TzI
= [T'„T2 I means T, =T', and Tz =T2 or

T& =T2 and T2 =T].
The first assumption of the nonadiabatic Heisenberg

model reads: If the considered band (like the AF band) is
one of the narrowest, roughly half-filled bands of the
given metal, then

(2.7)

where
~
G & and

~

G'
& are the exact ground states of H and

representing the Hartree-Fock and the Coulomb energy,
respectively. Other contributions to H from the electrons
not belonging to the considered band are neglected even
as spin-orbit effects. A further operator subtracting that
part of Hc„which is already included in H„„does not
matter in the following and is suppressed for brevity.

The matrix elements of Hcb,

& T„T2~Hcb ~T„T2&

T& r T2r' r'Tz r T&

2 ir —r'i

(2.4)

II. NONADIABATIC HEISENBERG MGDEL H'=HHF+H, +H,„=H—H, , (2.8)

H —HHF+Hcb (2.1)

the Hamiltonian of the electrons of a given roughly half-
filled energy band, say, of the AF band of Cr denoted in
Fig. 1 of Ref. 5 by the heavy line, with

In this section we present the nonadiabatic Heisenberg
model as introduced in a former paper by giving the as-
sumptions defining this new group-theoretical model.
Further, we show that it is a generalization of the original
Heisenberg model of magnetism.

Let be ZE =
& GiHiG &

—
& G'iH'iG'& (2.9)

when the interaction H, is switched on. Shortly, that
means that in narrow bands a dual, bandlike and atomic,
character of the conduction electrons is energetically
more favorable than a pure bandlike character.

With the aim to find a mechanism making H,

respectively. Relation (2.7), which is substantiated in Sec.
II of Ref. 2, says that the energy of the electrons in-
creases by
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ineffective, the adiabatic localized functions (r, tlT, s)
[cf. Eq. (89)] are replaced by nonadiabatic localized func-
tions

operators S(a) of the three-dimensional rotation group
O(3) (see Sec. III of Ref. 2) and, consequently, the effect
of the time-inversion operator is

(r, t, qlT, m, v), (2.10) P"(IKlOI )&r t ql»m v&=g (I~)&r t qlT, m—, v&,
where the new coordinate q describes that part of the
motion of the nuclei which nonadiabatically follows the
motion of the electron occupying the state lT, m, v).
With free atoms, this nonadiabatic motion of the nuclei
(which is experimentally well established by the isotope
shift of the spectral lines) occurs in such a way that the
total atomic center of mass stays at rest. In a solid state,
consisting of bound atoms, this restriction does not hold,
and hence the localized centers of mass may take
different states of motion labeled by the new quantum
number v.

The quantum number of the "crystal spin" m =+—,
' re-

places the spin quantum number s in the nonadiabatic
system. It is related to the point group operators of the
crystal in the same way as s is related to the symmetry

(2.11)

for

(T„mi,'Tz, m2 lHcb lTi, m', ;T2, m2 ) =0 (2.12)

I T„T,I A t T'„T,I,
where

where P"(IIClOI ) and g (K) are given in Eq. (3.6) (for
r=O) and Eq. (814), respectively.

The second assumption of the nonadiabatic Heisenberg
model states that, if relation (2.7) is true, the nonadiabatic
motion of the nuclei occurs in such a way that the matrix
elements of H, vanish,

(T1 m 1 T2 m2 IHCb lTi m I T2 m 2

2 ( T„m„nrl, t, q)( T2, mz, n rl', t', q')(r, t, q Tl'„m', , n )(r', t', q'lT2, m2, n )
drdr'dqd

r —r' (2.13)

nf nf n n
CT m CT m CTt tC

&m2 T&m
&

(2.14)

where

Equation (2.12) is suggested by the basic idea that only
small changes of the electronic orbitals are required to
prevent (at least partially) the increase of the energy by
b,E [as given in Eq. (2.9)] since the interaction H, de-
pends crucially on the exact form of the Wannier func-
tions (see Sec. II of Ref. 2). This modified electronic
motion is accompanied by a nonadiabatic motion of the
nuclei because, within the adiabatic approximation, Eq.
(2.7) is true. The quantum number v, for which Eq. (2.12)
is true, is denoted, in Eq. (2.13), by n.

The operator of Coulomb interaction in the nonadia-
batic system now can be written as

Hcb g &Tl mi T2 m2 IHcb ITi, mi, T,', m; &

T, m

H cb Hc +Hex Hcb Hz (2.17)

I

nonadiabatic system, the naked electrons hence do not
have exactly Fermi character. Here, the Fermi excita-
tions are represented by electrons occupying the states
lT, m, n ), i.e., by electrons carrying with them some
nonadiabatic motion of the nuclei.

The effect of H, can be interpreted as follows. If we

put H, =O, the ground state of the electron system is
represented by the ground state

l
6') of H' [see Eq. (2.8)].

When H, is switched on, the electrons couple to the
motion of the nuclei in such a way that the increase of en-

ergy by bE [see Eq. (2.9)] is prevented. Since H, is a
small operator, we may assume that during the activation
of H, the symmetry of the ground state stays unchanged.
The third (and last) assumption of the nonadiabatic
Heisenberg model hence states that Hcb has, with respect
to the space-group operators, the same commutation
properties as

IT„T2)—IT„T2I . (2.15)
The energy

The new fermion operators cT and cT create and an-

nihilate, respectively, an electron in the nonadiabatic
state lT, m, n ). They obey (for fixed n) the commutation
rules of fermion operators since Hcb must be invariant
with respect to the permutation of two localized states.
Consequently, the nonadiabatic localized functions are,
for fixed n, orthogonal according to

g (T', m', nlr, t, q) (r, t, qlT, m, n )drdq=5rr5

E n —( ngl Hnj nG)

of the ground state of the nonadiabatic operator

H"—HHF+Hcb

is given by

(2.18)

(2.19)

(2.20)

(2.16)

where the integration runs over both r and q. In the

[with H' being defined in Eq. (2.8)] if we neglect the ener-

gy of the motion of the nuclei and the energy rise caused
by the slight change of the electronic orbitals during the
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activation of H, [i.e., the true ground-state energy is
slightly higher than the energy given in Eq. (2.20)]. Thus,
by the transition from the adiabatic to the nonadiabatic
system the electrons gain the energy hE as given in Eq.
(2.9).

We shaB show in the next section that at the transition
from the adiabatic to the nonadiabatic system the Hamil-
tonian becomes spin dependent. The energy gain at this
transition, AE, may be called "nonadiabatic exchange en-
ergy" because it has the same physical origin as the famil-
iar exchange energy calculated by an exchange integral.
This last statement shall be substantiated in the follow-
ing.

Consider first the hydrogen molecule which may be re-
garded as a rudimentary antiferromagnet. The second as-
sumption (2.12) of the nonadiabatic Heisenberg model,
written for the hydrogen molecule, states that there are
no transitions between the two hydrogen atoms. Hence,
we get the basic assumption of the familiar Heitler-
London treatment of the hydrogen molecule since at each
atom we have exactly one electron.

VA'thin. the Heitler-London model, a state in which the
two electrons are at the same hydrogen atom is ruled out
by stating that such a state would have a markedly higher
energy. This statement corresponds to the first assump-
tion (2.7) of the nonadiabatic Heisenberg model. The
only new idea of the nonadiabatic model is that a state
with one electron at each atom requires a nonadiabatic
motion of the two nuclei. Since this question is meaning-
less within the Heitler-London theory we may state that
the basic assumptions of both the Heitler-London and the
nonadiabatic Heisenberg model are equal in the case of
the hydrogen molecule.

In his original theory of magnetism, Heisenberg has
transferred the Heitler-London model to the metals by
assuming that there is exactly one electron at each atom
of a metal. The basic assumption (2.12) of the nonadia-
batic model differs slightly from this strong demand
since, in systems which have (in contrast to the hydrogen
molecule) translation symmetry, Eq. (2.12) does not lead
to a state with one electron at each atom. Because of
their translational energy, the electrons may occupy
configurations with different numbers of electrons at the
atoms. Therefore, we call the nonadiabatic model a gen-
eralization of the original Heisenberg model. Spin-
dependent effects in both models have the same physical
origin since models with equivalent assumptions are
equivalent.

III. THK PKRFKCT ANTIFKRROMAGNKTIC
STATE OF CHROMIUM

A. Itinerant antiferromagnetism

In this section the nonadiabatic Heisenberg model as
presented in the preceding section is applied to chromi-
um. That means, the Wannier functions ( r

l
T & in Eq.

(2.4) now are identified with the functions ( rlT & given in
Eq. (82). These functions form a complete basis within
the AF band denoted in Fig. I of Ref. 5 by the heavy line
and have the symmetry given in Eqs. (83)—(88). From

these symmetry properties of the basis functions and the
assumptions of the nonadiabatic Heisenberg model we
shall conclude that the nonadiabatic ground state of the
AF-band electrons possesses a spin structure with the
space group D4I, of perfect antiferromagnetic Cr.

Equations (83)—(85) show that the adiabatic operator
Hcb [see Eq. (2.17)] commutes with the symmetry opera-
tors P(a) [as given in Eqs. (A10) and (All)] of the mag-
netic group 6 of perfect antiferromagnetic Cr,

[Hcb, P(a)]=0 for aEG (3.1)

Therefore, according to the third assumption of the nona-
diabatic Heisenberg model, also the nonadiabatic
Coulomb interaction Hcb commutes with the symmetry
operators P"(a) belonging to G in the nonadiabatic sys-
tem,

[ Hcb, P"(a)]=0 for a E G (3.2)

and

{altI ED4h

P"({Kl~])&r,t, ql Tm, n&=g (E)&r, t, qlT+r, m, n &—,

(3.4)

where the nonadiabatic symmetry operators

P"( {altI ) =P( {altI )Q(a)S(a)
and

P "( {El%I) =P ( {Kl1I )S(IC)

(3.5)

(3.6)

now act on r, t, and q: P( {altI ) acts on r as given in Eq.
(A10), Q (a) acts on q according to

Q(a)f (q)=f (a 'q), (3.7)

and S(a) acts on t as given in Eq. (Bl1). The time-
inversion operator P ( {KlrI ) acts on r and q according to

P( {Iclv I )f (r, q) =f*(r—r, q) (3.8)

and S(K) acts on t as given in Eq. (813). The c numbers
g (a) and g (K) are equal to g, (a) [see Eq. (815)] and
g, (K) [see Eq. (814)], respectively, for m =s, and am is
defined in Eq. (816) for m =s. The numbers d(a)=+1
form a one-dimensional representation of D4&.

The quantum number n labels the nonadiabatic local-
ized functions for which Eq. (2.12) is valid. In principle,
n may depend on m and T,

n= n(m, T) . — (3.9)

Equation (3.2) shows that n may take two difFerent values
Ill and alp,

I'he nonadiabatic localized functions hence have the
same symmetry properties as the Wannier functions
given in Eq. (89), i.e.,

P"({altI}&r,t, qlT, m, n &

=d(a)g (a)(r, t, qlaT+t, am, n & (3.3)
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n& for T=R and m =
—,
'

n, for T=R+~ and m = —
—,
'

so that

S(&)lG"&elG" & (3.16)

n2 for T=R+v and m =—,
'

n, 2 for T=R and m = —
—,',

(3.10)

[H', P ( {K~OI )]%0,
since the operator

P({K~OI )H' P({rCI 0]}

has matrix elements violating the condition

{Ti,T2j = {TI,Tzl .

(3.11)

The third assumption of the nonadiabatic Heisenberg
model states that therefore also the nonadiabatic
Coulomb operator Hcb does not commute with the time-
inversion operator,

[H,",, P"({SC~OI)]ao .

Assume that the nonadiabatc localized function

(r, tql T„m, , n, &

(3.12)

belongs to the set of functions satisfying Eq. (2.12), i.e.,
that T, and m, have the form given in the first or second
row of Eq. (3.10). Relation (3.12) is true if and only if the
function

P "( {EC~OJ )(r, t, q~T, , m, , n, &

=g (IC)(r, t, qlT„—m, , n, &

[see Eq. (2.11)] does not also belong to this set of func-
tions. Therefore, relation (3.12) gives

(3.13)

n)%ng (3.14)

since, according to Eq. (3.10), the nonadiabatic function

(r, t, q~T&, —m &, n2 &

belongs to the functions satisfying Eq. (2.12).
Relation (3.14) shows that

because, according to Eqs. (3.3) and (3.4), the operators
P "(a) do not transform the functions labeled by n, into
the functions labeled by n2 (and vice versa). We now
show that n, , and n2 are different.

The important Eqs. (86) and (88) show immediately
that the operator Hob [see Eq. (2.17)] does not commute
with the time-inversion operator,

[with S(X) being given in Eq. (812)].
This last relation shows that the nonadiabatic ground

state ~G" & of H" possesses a spin structure which, ac-
cording to Eq. (3.2), has the antiferromagnetic group G
This is the result of this section.

Relation (3.15) is characteristic for the nonadiabatic
system because the adiabatic operator Hb commutes
with S(IC),

[Hcb, S(K)]=0, (3.17)

B. Spin-phonon interaction

The operator Hcb as given in Eq. (2.14) has nonvanish-
ing matrix elements with

m], m2 m$, mp

contradicting the conservation of angular momentum
within the nonadiabatic system. As explained in detail in
Sec. IV of Ref. 2, this violation forces the electron spins
to couple to the phonons. In the present paper, this
spin-phonon interaction is ignored since we give only
symmetry arguments which are independent of whether
or not the considered states are purely electronic. For
corn lete understanding of the (constraining) forces
whic keep the spins antiparallel in

~

G"
& the spin-

phonon interaction has to be included.

C. Spin-density-wave state

In this section we show that evidently the nonadiabatic
ground state ~G" & of perfect antiferromagnetic Cr and
the time-inverted state

since Hcb does not depend on the spin coordinates. The
magnetic order in ~G" &,is caused by the nonadiabatic
mechanism which, according to Eq. (2.12), makes the in-
teraction H, ineffective. The stabilization energy of the
magnetic ordered state, i.e., the energy difference between
the paramagnetic and the perfect antiferromagnetic state,
is the nonadiabatic exchange energy EE given in Eq.
(2.9).

The adiabatic and nonadiabatic Hamiltonians H and
H" represent the energy of the electrons belonging to the
partly-filled AF band of Cr. Thus, relation (3.15) is not
connected with the existence of any localized moments at
the Cr atoms. The spin structure in ~G" & can therefore
be interpreted in terms of itinerant antiferromagnetism.

(r, t, qlT, m, n &e(r, qlT, n &«lm &,
iG "& =P"({ZiO))iG"& (3.18)

[Hc„,S (K)]%0, (3.15}

i.e., the nonadiabatic localized functions satisfying Eq.
(2.12) cannot be written as products of two functions de-
pending on r and q and on t, respectively, since, at a fixed
lattice point T, the quantum number n depends on m.
Therefore, the nonadiabatic Coulomb operator Hcb does
not commute with that part S(K) of the time-inversion
operator acting only on the spin coordinates,

G r GM+ {K~OIG (3.19)

[as given in Eq. (A5)]. Under this assumption we derive
the four possible corepresentations (which only diff'er by
unessential factors) given in Table I to which ~G" & and

~
G "& can belong.

are basis vectors of an irreducible corepresentation of the
group
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From Eq. (3.2) we obtain

P"(a)~ 6")=c(a) G") for a&6 (3.20)

with the c numbers c(a) forming a one-dimensional
corepresentation of 6, and Eq. (3.12) gives [H,F"]=0 (3.33}

states of F" or F" satisfy the Pauli principle within the
nonadiabatic system.

The projection operators F"and F"commute with any
observable, in particular with H,

/6 "&&16"& (3.21)

[see Eq. (3.18)]. The state ~6 ") is the ground state of the
operator

[H,F "]=0, (3.34)

H "=P"( IZ ~0I }H"P"( IIC~OI )-' (3.22)

which, according to Eq. (3.12), difFers from H". Both
operators have the same ground-state energy E",

since they project on the spaces A" and 3 ", respectively,
of the wave functions satisfying the Pauli principle in the
nonadiabatic system. From Eqs. (3.23) and (3.24) we
hence may derive the important equations

and

Hn~gn) —
Ensign)

H "IG ")=E"IG"),

(3.23)

(3.24) II~g n) ~n~g n)

(3.35)

(3.36)

because E" is real [since H" commutes, according to Eq.
(3.2), with the antiunitary operator P "( [IC

~
r I )].

The operator H" may be written as

H ll FPlHF 1l (3.25)

where the projection operator

1F"=—g cT~c
T, Ill

(3.26)

projects on the space 3" being spanned by wave func-
tions of the form

and

I y,
"

& =cT' cT,', cT'„„lo &

2d + V(r)+-
2m dr2 2 „, ~r„—r

pWv

(3.27)

(3.28)

is the familiar electronic Hamiltonian [with V(r) being
the potential of the nuclei and the core electrons]. N is
the number of electrons of the AF band.

The time-inverted operator H" as given in Eq. (3.22)
also can be written in the form

H "=F"H F" (3.29)

where

F "=P"(IIClOI )F"P"(II~ loI )-',
since H commutes with the time-inversion operator,

[H,P"(IE 0I )]=0 .

(3.30)

(3.31)

[P",P "( I&l0] )]&0 . (3.32)

Thus, F" and F" project on di6'erent spaces 2" and A "
which are physically equivalent. That means, the elec-
tron system may occupy either ~6") or ~6 "), but not a
linear combination of these states because only the eigen-

Equations (3.31) and (3.12) immediately show that the
projection operator F" (as well as F ") does not commute
with the time-inversion operator,

showing that ~6") and ~G") are eigenstates of H with
the same eigenvalue E".

We now have written all the equations needed to deter-
mine the symmetry properties of ~6") and ~G"). First
Eq. (3.21) shows that these states are basis functions of a
two-dimensional corepresentation, say R, of the group
6 as given in Eq. (3.19). This corepresentation we as-
sume to be irreducible because both states [which are
connected by Eq. (3.18)] are degenerate eigenstates of the
same operator H which commutes, according to Eq.
(3.31), with the time-inversion operator. Finally, Eq.
(3.20) shows that

~

G" ) alone belongs to a one
dimensional corepresentation of G . The assumption
that R is irreducible is essential in what follows and,
therefore, shall be substantiated for the present case.

If the states ~6") and ~6") belong to a reducible
corepresentation R of G then they can be unitarily
transformed into states Gi) and ~62) belonging to a
one-dimensional corepresentation of G . Since H is a
linear operator,

~ G, ) and
~ 62 ) are also eigenstates of H

with the eigenvalues Ei and E2 (though neither ~6, ) nor
~ G2 ) satisfies the Pauli principle since they are not eigen-
states of F" or I' "). The coinciding values E, and E2
may split when a small perturbation U is activated even if
this U commutes with the time-inversion operator. The
states 6, ) and ~gz), but not the states ~G") and ~6"),
are, within first-order perturbation theory, eigenstates of
the new operator H+ U. Thus, if R "were reducible, the
states ~G") and ~G") would become unstable if any
small perturbation is activated and, therefore, R is as-
sumed to be irreducible.

There are only the four corepresentations R given in
Table I which satisfy all the above-mentioned conditions.
These corepresentations can be determined following the
theory of corepresentations as given in Sec. 7.3. of the
book of Bradley and Cracknell' and using Table II of
Ref. 11.

The most interesting result is that all the R are de-
rived from the eight one-dimensional representations of
D4I, belonging to the point M in the Brillouin zone of an-
tiferromagnetic Cr [see Fig. 1 and Table II of Ref. 11].
Hence we have
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P "(
I EIR I ) I

G"
&
=e

now has the form
3.37

This equation shows that ~G" & represents an X-electron
Bloch state with the wave vector

M (3.38)

of the point M. In the usual notation, Q can be written as

Q
—

( I 1 0) (3.39)

with c being the lattice constant. This result is in excel-
lent accordance with the concept of a static spin-density
wave of nonvanishing wave vector in Cr first proposed by
Overhauser.

According to Eqs. (3.5) and (3.6) the space-group
operators P"(a) act on the three coordinates r, q, and t of
the nonadiabatic localized functions. Therefore, the mag-
netic structure represented by ~

G"
& is not a pure spin-

density wave but the induced moments are of both spin
and orbital origin and are accompanied by lattice distor-
tions.

It should be noted that the vector Q cannot be directly
observed by neutron-difFraction experiments since M is
not a point of the reciprocal antiferromagnetic lattice.
Therefore, Q is not related to the magnetic reflections ob-
served in the perfect antiferromagnetic state.

IV. MAGNETIC GROUPS AND SYMMETRY
OF THE INCOMMENSURATE SPIN STRUCTURES

The energy E" of the nonadiabatic ground state ~G" &

is given by the ground-state energy of the operator

H —H~F+H cb

as given in Eq. (2.8) [see Eq. (2.20)]. The Coulomb term,
Hcb, commutes with the symmetry operators of the per-
fect antiferromagnetic structure [see Eq. (3.1)] since the
Wannier functions of the AF band are symmetry adapted
to the group D4h. The Coulomb energy hence favors a
perfectly antiferromagnetic ground state and the transi-
tion to the incommensurate state is effected by the
Hartree-Fock term Hzz. This transition is ascribed, in
the usual way, to the peculiar geometric features of the
Fermi surface of Cr (Ref. 7) and, as shown in Sec. V F, to
the special symmetry of the Bloch functions at the Fermi
level.

Within the nonadiabatic Heisenberg model the
commensurate-incommensurate transition is accorn-
panied by a small change of the nonadiabatic localized
states in such a way that the projection operator F"given
in Eq. (3.26) is replaced by a new operator E"' which no
longer commutes with the operators P "(a) related to the
magnetic group of the commensurate state. The new
operator F"-' only satisfies the equation

H"' =F"'HF"'
J J J (4.2)

are assumed to be basis vectors of a two-dimensional irre-
ducible corepresentation R' of the group G'+ IKIOIG'
since

~
G "'

& and
~
G "'

& are eigenstates of H just as
~
G "

and lG "& are.
(iii) Operators P "(a ) which, like the time-inversion

operator P"(IK~OI ), do not belong to G~ but commute
with H,

[H,P"(a)]=0 for aEGJ, (4.4)

may have the following effect in order that the state
~

G"'& is an eigenstate of H: either, also the state
P"(a)~G"'& is the time-inverted state,

(4.5)

(with
~
c

~

= 1), or the lattice is distorted in such a way that
Eq. (4.4) is not satisfied in the incommensurate state.

(iv) G' must contain symmetry operations associated
with the time inversion in order that H"' has real eigen-
values.

(v) The incommensurate state is close to the commens-
urate as is suggested by the fact that the commensurate
structure in Cr can be stabilized by, e.g. , alloying with
less than 1 at. % Mn. '

We now must seek for magnetic groups G"' having
corepresentations which satisfy all these conditions. This
lengthy examination can be done by means of Table 5.1

of Ref. 10 giving the irreducible representations of all the
space groups. Here we only give the results.

A. Transversely modulated spin structure

Figure 2 shows a spin-density wave modulated in x
direction. In this paper, this means a transverse modula-
tion since the spins always lie in z direction. The magnet-
ic group G' of this structure, i.e., the group G' having
corepresentations which obey all the foregoing condi-
tions, is the group

with H being given in Eq. (3.28). The magnetic groups
G~ (with j =x or z) of the two incommensurate spin
structures and the symmetry of the two incommensurate
spin-density-wave states ~G~"'& can be determined starting
from the following conditions.

(i) According to Eq. (4.1), the incommensurate ground
state ~GJ"'& (j =x or z) belongs to a one-dimensional
corepresentation of the related group 6'.

(ii) As in Sec. III C the state
~

G~"' & and its time-inverted
state

(4.3)

[FJ"',P"(a)]=0 for a HG' (4.1)
(4.6)

where GJ is the magnetic group of the incommensurate
spin structure and j =x or z labels the structure with
transverse and longitudinal modulation, respectively.
According to Eq. (3.25) the nonadiabatic Hamiltonian

with the orthorombic primitive Bravais lattice I,. The
space group C2„(in the Schonflies notation, see Table 3.7
of Ref. 10) contains, in addition to the translations, the
four operations
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Is~0}, [C,.~r„}, I~, ~O}, and I~, ~r. } (4.7) p =2n R„, (4.10)

[see Eq. (1) of Ref. 11] with the rotation C2 and the
reAection Oy being associated with the nonprimitive
translation ~ as indicated in Fig. 2. It should be noted
that 6' does not contain the inversion I alone but I is as-
sociated with the time inversion K.

The two corepresentations of the group

G„'+ [rCio}G„'

satisfying all the foregoing conditions are given in the
upper part of Table II. The transversely modulated
spin-density-wave state ~G„"') and the time-inverted state
are basis vectors of one of these two corepresentations
R„'.

According to the upper part of Table II we get

P"(I~~R})~G"')=e '&'R~G"') (4.8)

by application of a translation R of the group 6' on
~GX') (with G' having the basic translations R, R, and

R, as given in Figs. 1 and 2). The wave vector Q of
~

G„"')
cannot be determined completely by group theory but is
given by one of the vectors of the points U, X, S, or R in
the Brillouin zone of I „

Q&[&U lx ls 1~} . (4.9)

Equation (4.9) does not state that g is not fixed but with
our methods we cannot determine Q more exactly. In or-
der to avoid confusion, we call this vector Q and the vec-
tor Q which can be observed by neutron-diffraction ex-
periments, ' the vector of the spin-density wave and the
vector of the modulation of the spin-density wave, respec-
tively. The vector Q denotes the crystal momentum of
the spin-density wave and Q is related, in the usual way,
to the geometric features of the Fermi surface.

An interesting result is that the two operations associ-
ated with the nonprimitive translation v cannot be re-
moved from 6' because, otherwise, the corepresentations
R' becomes reducible [which would contradict the as-
sumption (ii) as given earlier]. Therefore, the transversely
modulated spin-density wave is not totally incommensu-
rate but the periodicity p is an even multiple of the lat-
tice constant,

where n is an integer and R is the basic translation indi-
cated in Fig. 1. The phases of the magnetic moments
separated by

~„=nR„ (4.1 1)

are connected to each other by symmetry. This may be
interpreted in terms of long-ranged indirect exchange in-
teractions acting between localized electron states which
are separated from each other by about 12 lattice con-
stants (since the experimental values of p„ lie between 20
and 27 lattice constants). Equation (4.10) shall be dis-
cussed in Sec. VD.

The general condition for p is

mp„= --, R„,
m

(4.12)

where m is an even and m' is an odd integer, since in all
these cases 6 contains a nonprimitive translation which
is the m' fold of r„[ sagiven in Eq. (4.11)]. Thus, if
m ' ~ 3, exchange interactions are required acting between
atoms which are separated by 36 and more lattice can-
stants. Therefore, in this case, a spin-density wave be-
comes extremely unstable with respect to small perturba-
tions of the translation symmetry. Perhaps a state with
m'=3 may be stable in very pure and perfect crystals.
We believe that higher values of m' are unrealistic.

There are several symmetry operations satisfying Eq.
(4.4), namely the inversion, the operation IX~~„},and all
the translations which belong to the commensurate struc-
ture but do not belong to 6'. Therefore, according to the
above-mentioned third condition, the state ~G"') is ac-
companied by a slight distortion of the lattice. Figure 3
shows a simple distortion with the group D zz
=Cz„+ II~r }Ci„i.e., an appropriate distortion. (This
group may be written as Dzz =Cz, + [I~O}C2, when the
origin of the coordinate system in Fig. 3 lies at point Io. )

The crystal structure is invariant with respect to the in-
version at Io (see Fig. 3). This is in accordance with the
above-mentioned third condition (iii) because an inver-
sion at Io produces the time-inverted spin structure (see
Fig. 2).

o R

0 + at f ~ ~ ~ t ~

I0
Rx

~ l ~ l

rg) rg
I

FIG. 1. Black and white Bravais lattice of perfect antiferro-
magnetic Cr. Everywhere in this paper R and I denote the
translations of the antiferromagnetic and the paramagnetic lat-
tice, respectively.

FIG. 2. Transversely modulated spin-density wave with the
magnetic group 6' as given in Eq. (4.6). R„ is an even multiple
of the lattice constant since the nonprimitive translation v„
must belong to G, . A possible lattice distortion belonging to
this spin structure is given in Fig. 3.
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since this would violate the fifth condition (v).
Also ~6,"') can only be stable if the lattice is slightly

distorted. The distortions now are displacernents of the
atoms in z direction with the space groups D 4&

=Czar, + to„~OJC4& and C4„=C4+ to ~OJC4 in the
cases (4.13) and (4.15), respectively.

Zp
X

x

V. SUMMARY AND DISCUSSION

A. Stability of a perfect antiferromagnetic state

FIG. 3. Possible lattice distortion belonging to the spin struc-
ture of Fig. 2. Io denotes the center of inversion. By group
theory we can neither determine the dimension of the displace-
ments of the atoms nor give the exact form of these distortions.
We only know that they have the space group C2, + lI~r„},C2,
and that the displacements do not vanish since, otherwise, the
spin-density-wave state becomes unstable (see Sec. IV).

B. Longitudinally modulated spin structure

The magnetic group of the longitudinally modulated
spin structure can be derived from the preceding five
conditions and is given by

6,'=C4i, + (Err ~0) C'4~ (4.13)

with the spin structure being modulated in z direction.
The space group C4& has the tetragonal primitive Bravais
lattice, I, with the Brillouin zone given, e.g. , in Fig. 3 of
Ref. 11. It contains, in addition to the translations, eight
symmetry operations which can be generated from the
two operations

tC+, ~OJ and jI~Of . (4.14)

When the periodicity p, is exactly an odd multiple of the
lattice constant, say p, =21-R„then the symmetry of the
group 6,', as given in Eq. (4.13), is too high. In this case,
the inversion jI~Oj must be removed and 6,' is given by

G,'=C'+ (Ko'„~0)C4 . (4.15)

Q&[OkM kz k~1 (4.16)

since the little groups of these points are identical with
the space group C~i, . Most likely, Q=0 may be excluded

The two corepresentations R,' of the group 6,'+ jX~OJ 6,'
satisfying the above-mentioned five conditions are given
in the lower part of Table II.

A,n important result is that 6, contains no nonprimi-
tive translations. The longitudinally modulated spin-
density wave is hence totally incommensurate with the
lattice constant because the periodicity p, may accept
any value. This result shall be discussed in Sec. V. G.

The wave vector Q of the spin-density-wave state
~ 6,"')

is not fixed by group theory because 6,' does not contain
nonprimitive translations. Q is given by one of the vec-
tors of the points I, M, Z, or A in the Brillouin zone of
I

Within the nonadiabatic Heisenberg model the "anti-
ferromagnetic" band denoted in Fig. 1 of Ref. 5 by the
heavy line is responsible for the stability of the antiferro-
magnetic state. The condensation energy AE, i.e., the en-
ergy di6'erence between the paramagnetic and the perfect
antiferromagnetic state, is given by Eq. (2.9). This
"nonadiabatic exchange energy" has the same physical
origin as the familiar exchange energy (see Sec. II) and
hence is, most likely, responsible for magnetism in fur-
ther metals.

The condition for itinerant antiferromagnetism reads
as follows. In a given metal with the paramagnetic group6, an antiferrornagnetic state with the magnetic group
G can be stable if the Bloch functions of one of the nar-
rowest, roughly half-filled bands can be unitarily
transformed into optirnally localizable Wannier functions
which are, according to Eqs. (83)—(B5), symmetry adapt-
ed to 6 and which cannot be chosen symmetry adapted
to 6 . Equations (B3)—(B5) state that, by application of a
symmetry operator of 6, a Wannier function (which is
symmetry adapted to 6 ) gets transformed into a linear
combination of Wannier functions all of them belonging
to the same atom. The theory of optimally localizable
Wannier functions which are symmetry adapted to any
given space or magnetic group is given, in detail, in three
former papers' and, in summary form, in Sec. II of Ref.
5.

The condition for antiferrornagnetism is analogous to
the condition for superconductivity as given in Ref. 2. It
states that, in a given metal with the paramagnetic group6, a superconducting state can be stable if the Bloch
functions of one of the narrowest, roughly half-filled
bands can be unitarily transformed into optimally localiz-
able spin-dependent Wannier functions which are syrn-
metry adapted to G . Probably, also ferromagnetism
produced by local magnetic moments is connected with
the existence of Wannier functions being symmetry
adapted to the related magnetic groups. Before extend-
ing the theory of the present paper to such and other
forms of magnetism, the narrowest, roughly half-filled en-
ergy bands of other magnetic metals should be searched
for the existence of symmetry-adapted Wannier func-
tions.

B. Theoretical aspects of the new model

Within the nonadiabatic Heisenberg model the rnag-
netic ground state of Cr is still an eigenstate of the usual
adiabatic electronic Hamiltonian Bas given in Eq. (3.28).
The new projection operator F" [see Eq. (3.26)] selects
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from the eigenstates of H those states which satisfy the
Pauli principle within the nonadiabatic system. Thus, the
only nonadiabatic phenomenon used in this model is a
small shift of the Fermi character at the transition from
the adiabatic to the nonadiabatic system: While, within
the adiabatic approximation, the Fermi excitations usual-
ly are represented by purely electronic states, these exci-
tations are represented, within the nonadiabatic Heisen-
berg model, by localized states of well-defined symmetry
which are occupied by electrons carrying with them some
nonadiabatic motion of the nuclei.

The characteristic of the new model is that the symme-
try of these nonadiabatic localized states is determined by
the symmetry of the Wannier functions belonging to the
narrowest, half-filled energy bands of the considered met-
al. Therefore, predictions as to which exchange effects
are possible in this metal can be given. Further, a new
exchange effect, namely spin-phonon interaction, be-
comes apparent. While, in this paper, spin-phonon in-
teraction is only mentioned incidentally in Sec. III B, in
Ref. 2 it is proposed to be responsible for superconduc-
tivity.

An unmagnetic ground state of any Hamiltonian H be-
longs to a one-dimensional representation of the space
group 6 of H. This principle appears to be violated for
magnetic ordered states since a magnetic structure is
transformed, by time inversion, into the opposite struc-
ture although the adiabatic Hamiltonian commutes with
the time-inversion operator. Within the nonadiabatic
Heisenberg model, on the other hand, also a magnetic
state belongs to a one-dimensional corepresentation of the
group 6 of the nonadiabatic Hamiltonian H" since the
projection operator F", and hence also H", does not com-
mute with the time-inversion operator.

The introduction of the projection operator F" clearly
shows that also linear combinations of the magnetic state
and the time-inverted state are eigenstates of the adiabat-
ic Hamiltonian H (although these states do not satisfy the
Pauli principle). This fact suggests (see Sec. III C) that
also another group-theoretical theorem is applicable
to magnetic states, namely, that the eigenstates of any
Hamiltonian H are basis functions of an irreducible
(co)representation of the group of H. On the basis of this
assumption, group-theoretical standard procedures can
be used for determining the symmetry of magnetic states.

C. Symmetry of the perfect antiferromagnetic state

The symmetry of the nonadiabatic ground state ~G")
of Cr is characterized by the fact that, on the one hand,
~G") is the ground state of the operator H" [as given in
Eq. (3.25)] with the magnetic group G and, on the other
hand, ~G") is an eigenstate of the operator H [see Eq.
(3.28)] which commutes, in contrast to H", with the
time-inversion operator. Therefore,

~

G" ) belongs to a
one-dimensional corepresentation of G and both

~

G" )
and the time-inverted state ~G ") belong to a two-
dimensional irreducible corepresentation of 6
+ Ire/OIG .

The four possible corepresentations R [which only
differ by unessential factors d(a)=+I] to which ~G")

and the time-inverted state ~G ") can belong are given in
Table I. A remarkable result is that JG") is an N
electron Bloch state with wave vector Q=k~ [cf. Eq.
(3.37)] where kM is the vector of the point M in the Bril-
louin zone of perfect antiferromagnetic Cr (as depicted,
e.g. , in Fig. 3 of Ref. 11). Therefore, ~G") can be inter-
preted in terms of a static spin-density wave being a su-
perposition of two helical waves with wave vectors kM
and —k~, respectively, since both vectors are equivalent
within the antiferrornagnetic Brillouin zone. The vector
Q cannot be directly observed by neutron-diffraction ex-
periments since M is not a point of the reciprocal antifer-
romagnetic lattice.

D. Symmetry of the transversely
modulated spin-density wave

The symmetry properties of the transverse spin-density
wave have been determined by starting from the five con-
ditions given at the beginning of Sec. IV and are sumrna-
rized in Sec. IV A.

One result is that the transverse spin-density-wave
state ~G„"') is not quite incommensurate but its periodici-
ty p„ is an even multiple of the lattice constant. (In very
perfect and pure crystals we cannot exclude that p„may
also be an even multiple of a third of the lattice constant. )

This result appears to contradict the accurate experi-
ments on the temperature dependence of the periodicity
showing that p„varies continuously with temperature
from about 21 to 28 lattice constants. ' An interpreta-
tion of these experiments which is consistent with our re-
sult is that the observed magnetic structure is a poly-
domain rather than a single-p state. On cooling of the
sample, for instance, the periodicity of the spin system
does not Hip as a whole from, say, 24 to 22 lattice con-
stants but small domains with a periodicity of 22 lattice
constants arise which continuously grow on cooling.

The atoms which are separated by v, that is, by about
12 lattice constants, are coupled to each other by long-
ranged indirect antiferromagnetic exchange interaction
so that this state is very unstable with respect to small
perturbations of the translation symmetry. This may be
the reason why the magnetic structure becomes abruptly
commensurate by alloying with about 1 at. % other tran-
sition metals.

The wave vector Q of ~G„"') (i.e., the crystal momen-

tum of ~G„"')) cannot be determined uniquely by group
theory; its possible values are given by Eq. (4.9). Accord-
ing to the fifth condition (v) given in Sec. IV it might be
that

Q=k~,
because, in this case, Q is close to the wave vector of the
perfect antiferromagnetic state [cf. Eq. (3.38)]. This ques-
tion, however, cannot yet be answered finally.

K. Symmetry of the longitudinally
modulated spin-density wave

The symmetry properties of the longitudinal spin-
density-wave state

~ G,"') are summarized in Sec. IV B. In
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contrast to lG„"'), the state lG,"') is totally incommensu-
rate with the lattice constant. In Sec. V G we speculate
that this behavior might be responsible for the spin-Aip
transition.

In the group C4& the localized states with spin-down
and spin-up direction are not connected by symmetry as
this is the case in the group C2, . Therefore, the magnetic
moments of these states may be accidentally equal or,
more probably, slightly different. Thus, we cannot ex-
clude that the longitudinally modulated spin structure is
slightly ferrimagnetic whereas the transversely modulat-
ed structure is exactly antiferromagnetic.

The wave vector Q of lG,"') cannot be determined
uniquely, too; its possible values are given by Eq. (4.16).
We believe that

(5.2)

because, in this case, Q is close to, but slightly different
from, the wave vector of the perfect antiferromagnetic
state.

F. Stability of the incommensurate spin-density-wave states

To a first approximation, the band structure of antifer-
romagnetic Cr is obtained by folding the energy bands of
paramagnetic Cr into the antiferromagnetic Brillouin
zone as given, e.g., in Fig. 4, Fig. 63, and Fig. 2 of Ref.
16, Ref. 17, and Ref. 11, respectively. A peculiar feature
of this band structure is the band intersections along the
lines I M and I A (in the notation given in Fig. 2 of Ref.
ll) slightly above the Fermi energy. If an energy gap is
formed at these points, the depression of the occupied
states below these gaps leads to a lowering of the total
electronic energy (see, e.g. , the detailed consideration in
Sec. IV of Ref. 17).

As shown in Ref. 11, these band degeneracies are not
removed in the perfect antiferromagnetic state. From
Table II of Ref. 11, however, it follows immediately that
they split if the operations I crdb l rI and I C2, l~I are taken
out of the space group. Thus, they split in the incom-
mensurate states since neither C2, nor C4& contains these
operations. This result suggests that the perfect antifer-
romagnetic state is unstable with respect to the formation
of an incommensurate spin-density-wave state. The sta-
bilization energy of this state, i.e., the energy difference
between the perfect and the incommensurate antiferro-
magnetic state, we therefore assume to originate from a
splitting of the degeneracies at the commensurate-
incommensurate transition.

This assumption is corroborated by self-consistent
band-structure calculations' ' of antiferromagnetic Cr,
all of them showing energy gaps at the said positions
which are generally thought to stabilize the antiferromag-
netic state. It should be noted that these calculations use
the group Oz, the group of CsC1, as the space group of
antiferromagnetic Cr. Therefore, these calculations are
related to the incommensurate state rather than to the
commensurate spin structure since the group OI,

' pro-
duces the same band splittings near the Fermi level as the
space groups C2„and C4h of the incommensurate spin

arrangements (while, according to Fig. 2 of Ref. 11, the
group 0& and the space group D4& of the perfect antifer-
romagnetic state produce different band splittings). The
energy gain arising from the formation of energy gaps at
the Fermi energy hence occurs at the commensurate-
incommensurate transition rather than at the transition
from the paramagnetic to the antiferromagnetic state.

G. Spin-Hip transition
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APPENDIX A: SYMMETRY GROUP OF CHROMIUM

In the magnetic group

=Dpi + I&lrID4h

of commensurate antiferromagnetic chromium the time-
inversion operator K is associated with the nonprimitive
translation r=( —,', —,', —,') denoted in Fig. 1. The space
group D4h has the tetragonal point group D4& containing
the sixteen elements listed, e.g. , in Eq. (1) of Ref. 11.
Eight elements of D4&, namely the elements of the group
C4& [see Eq. (3) of Ref. 11] are, on their own, symmetry
operations of D4& while the remaining elements of D4h
are associated with the nonprimitive translation v..

G is a subgroup of the paramagnetic group

G'= o,'+ I

italo

I o,' (A2)

of Cr with the body-centered-cubic space group 0&. In
this paper we also consider the paramagnetic body-

The symmetry properties of the two incommensurate
spin-density-wave states may lead to a theoretical under-
standing of the spin-fiip transition which is observed at
T,f =123 K. According to the accurate measurements of
Werner and Arrott' the parameter of periodicity p has
the value p =21, 1 at the spin-ffip transition (correspond-
ing to a periodicity of 21,1 lattice constants). Thus, the
transversely modulated spin-density wave forms, slightly
above T,f, a multi-p-domain spin state consisting of
domains with p =20 and 22. On cooling through the
spin-Qip transition, the spin-density-wave state becomes a
single-p state with p varying continuously from 21,1 to
20,7 at zero temperature since the periodicity p of the
longitudinally modulated spin-density-wave state need
not be even.

Assume a single-p-transverse spin-density-wave state to
have a (slightly) lower energy than a single-p-longitudinal
state, say, because the former state has a higher transla-
tion symmetry than the latter. Then the cause for the
spin-Aip transition might be that, at zero temperature, a
single-p state, as the state with the highest order, has the
lowest energy. In this case, the electron system would
undergo the spin-Qip transition because the periodicity,
which is determined by the nesting vector of the Fermi
surface, is not accidentally an even multiple of the lattice
constant at zero temperature.



11 102 E. KRUGER

centered tetragonal group

g T D i7 + IK~O)D17 (A3)

which is also a subgroup of G . The space group D4h (in
the usual SchonAies notation) has the same point group,
namely D4h, as the antiferromagnetic space group D46I,

but no nonprimitive translations. It also has the Bravais
lattice given in Fig. 1, but with black and white not being
distinguished. Thus, 6 may be written as

w, (r —R) for T=R
w2(r —R—r) for T=R+r, (8

we can write Eqs. (2.44) and (2.45) of Ref. 5 in the form

P( Ia~v(a)] )&r~T) =d(a)&r~aT+r(a)) for aED4I,

(83)

[with d (a) =+1, see Eq. (2.48) of Ref. 5] and

or

GT GM+ IEi IGM P ( IK~~) ) & r~T) =
& rlT+r) .

Additionally, Eq. (82) gives

(84)

g =g + IK~O)GM

with E denoting the identity operation.
The space-group operations we denote by

a = Ia~tI

(A5)

(A6)

t=R+~(a) for a &D4& (A7)

where a stands for a point group operation and t is the
translation

P(I&IRI)&rlT& =&rlT+R) (85)

with E denoting the identity operation.
The effect of the time-inversion operator P(IK~OI )

cannot be given by a simple equation like Eq. (84) be-
cause I K~01 does not belong to 6 and it is not possible
to assign to the AF band Wannier functions which are
symmetry adapted to the group G [see Eq. (A5)j. There-
fore, P(IK~OI )&r~T) is a linear combination of Wannier
functions belonging to the AF band,

t=T for a EO& . (A8)

P(IK~OI)&r~T) = gd(T, T')&r~T'),

with

(86)

Everywhere in this paper R and T denote the primitive
translations of the antiferromagnetic and the paramag-
netic lattice, respectively. That means, R is related to
the, say, white lattice points in Fig. 1 and T is related to
both the black and white lattice points. The nonprimitive
translation r(a) is defined by

and at least two nonvanishing coeScients, say,

d(T, Ti)%0 and d(T, Tz)&0,

(87)

(88)

0 for aEC4h
r(a) = '

for Q ED4) C4p
(A9)

where T'iATz.
Each localized state ~T) may be occupied by an elec-

tron with spin-down or spin-up direction. We put

and

P(Ia~tI )f(r)=f (a 'r —a 't) (A 10)

The symmetry operators P(a) act on a function of po-
sition, f (r), according to

&r, tlT, s) =&riT)u, (t), (89)

where s =+—,
' denotes the two spin directions, t =+—,

' is
the spin coordinate, and

u, (t)=5, ,
P((K~1 I)f(r)=f'(r —7 ) . (Al 1) are Pauli's spin functions. An operator S(a) of the

three-dimensional rotation group, O(3), acts on u, (t) ac-
cording to

APPENDIX B: SYMMETRY-ADAPTED
WANNIER FUNCTIONS IN CHROMIUM

The Bloch functions of the AF band of Cr (see Fig. 1 of
Ref. 5) can be unitarily transformed into optimally local-
ized Wannier functions

S(a)u, (t) —=u, (a 't),
where

u, (a 't) = g D, ,(a)u, .(t) for a&0(3)

(810)

(811)

w, (r —R). with the matrices D, , (a) belonging to the two-
dimensional double-valued representation D, &2 of O(3).
The effect of the time-inversion operator we write as

w2(r —R—~)=w*, (r —R—r), (81) S(K)u, (t) =u, (Kt), (812)

as given in Eqs. (2.42) and (2.43) of Ref. 5, which are, ac-
cording to Eqs. (2.44) and (2.45) of Ref. 5, symmetry
adapted to the antiferromagnetic group 6

Writing the Wannier functions as

where

u, (Kt) =g, (K)u, (t)
with

(813)
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g+, /2(K) —+l . (B14) fg, (a)/ =1,
For the operators of the tetragonal point group, D4&, Eq.
(Bl 1) simply reads

are given, e.g., in Table 6.7 of Ref. 10 and

s for aEC4.h

S(a)u, (t)=g, (a)u, (t) for aED~„,
where the c numbers g, (a ), with

(B15) O'S = —s for o. ED4& —C4I, . (B16)
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