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The exact, low-density many-boson expansion for the ground-state energy is rearranged in a
quantum-thermodynamic perturbation series. Extrapolation to physical densities is implemented
order by order via Padé-type approximants. Several ways of splitting the pair Lennard-Jones (LJ)
or Aziz potentials are considered, including the Barker-Henderson (BH) and Weeks-Chandler-
Andersen (WCA) schemes familiar from classical fluid studies. Results obtained using the LJ in-
teraction with WCA splitting, when compared with benchmark simulation data, agree excellently in
energy and density, but only moderately so in sound velocity. For the Aziz potential, however—
perhaps because of a softer core and/or its ability to support a two-particle bound state—, neither
potential splitting (BH or WCA) gave results of the LJ quality, but a method intermediate between
BH and WCA proves to be superior. Our results are also compared with other recent alternative

calculations, both variational and perturbative.

I. INTRODUCTION

An important first step in understanding any liquid is
to be able to calculate from first principles its ground-
state energy and equilibrium density. To obtain the
ground-state energy per particle, one need only solve the
corresponding Schrédinger equation, which, unfortunate-
ly, is exactly soluble only for very few model Hamiltonian
many-body systems. For a more or less realistic model,
one must resort to some approximation scheme capable
of providing an accurate value for the energy and density.

Several approaches have been applied to the problem
of liquid *He. Most of these may be grouped into two
general categories, variational' or perturbative in nature.
A scheme which falls into neither the variational nor the
perturbative category is the Green-function Monte Carlo
(GFMC) method.? This method gives “exact” computer
experimental results for a fixed number of particles since
the experimenter has full control of the interparticle
interaction—an advantage rarely had in actual laborato-
ry experiments. Thus, theoretical calculations are ideally
compared to GFMC results, when available.

In most cases the Hamiltonian takes the form
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where V' (r;;) is some appropriate interparticle potential.
In the perturbative approach, the interaction term in the
Hamiltonian (1) is multiplied by a strength parameter A,
0=<A=1, with A=1 giving the full Hamiltonian. One of
the several perturbation methods is based on the so-called
“parquet” diagrams,’ a self-consistent sum of particle-
particle and particle-hole diagrams. As such, the well-
known “ring” as well as “ladder” diagrams are included.
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These “full” parquet diagrams provide a formidable nu-
merical challenge so various simplifying assumptions are
made. The dressed propagators are replaced by free
propagators, the two-particle vertices are considered a
function of three-momentum transfer rather than nine,
and a further approximation for the free propagator is
made. Since gross underbinding results, corrections must
be made to the propagators to achieve an acceptable en-
ergy per particle. Using these corrections, a reasonable
value for the energy emerges.

Another method is the exponential-S or coupled-
cluster method (CCM) originally developed by Coester
and Kiimmel et al.,* and recently reviewed by Bishop
and Kiimmel.> Initially designed for nuclear physics, and
later reapplied to problems in condensed-matter physics
and quantum chemistry, this scheme attempts to avoid
diagrams and approximations as far as possible. Initial
applications of this method to liquid *He and *He were
disappointing, resulting also in gross underbinding.® This
was explained by the fact that, while in a low-density sys-
tem two- or at most three-body excitations may be all
that predominate, in a liquid the interparticle spacing is
small so that the chance that groups of more than three"
particles are excited increases. Extensions of this elegant
method are presently being pursued in an attempt to
remedy this underbinding.

Employing the techniques of quantum field theory
through an infinite partial summation of Feynman dia-
grams, one may obtain’ for the ground-state energy an
asymptotically exact nonpower series in the density.
Only the first few terms of this series have been calculat-
ed due to the increasing complexity of the integrals in-
volved in evaluating the successive “virial-like”
coefficients. While this is satisfactory for a low-density
system where the terms are rapidly convergent, such is
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not the case for the liquid phase at higher densities. For-
tunately, there exist extrapolation techniques which allow
one to handle such slowly convergent (and even diver-
gent) series. We will examine how one may apply such
techniques, particularly the method of Padé approxi-
mants, to obtain excellent results for the energy per parti-
cle, equilibrium density, and sound speed in the liquid
“He ground state. The perturbative method now to be
described has, we believe, two advantages over previous
methods: (1) it exploits the maximum available rigorous
many-body information for a given pair potential, and (2)
in predicting the properties of the liquid state, it explicit-
ly avoids® crossing phase boundaries, specifically the one
separating the single-phase gas from the two-phase gas-
liquid regions.

II. REARRANGEMENT
OF THE LOW-DENSITY SERIES

In applying the techniques of quantum field theory to
the many-boson system of “He atoms several problems
unique to the Bose system are encountered. Since bosons
do not obey an exclusion principle, all the particles in a
noninteracting system are in a single-particle state, name-
ly the one with zero linear momentum. Switching on an
interparticle interaction will excite some particles out of
this zero-momentum condensate, thus reducing the occu-
pancy of the lowest state. This depletion effect is negligi-
ble for a very low-density system. The average interparti-
cle spacing is large and the probability that two particles
will interact via a short-ranged potential and be excited
out of the condensate remains small. At intermediate
(i.e., physical) densities this is of course not so. A second
difficulty peculiar to the boson case is that third- and
higher-order perturbative corrections to the unperturbed
energy diverge’ even for a well-behaved, nonsingular po-
tential. This divergence can be handled by applying
infinite partial summation (renormalization) techniques
to the series, which leave a finite but nonanalytic expan-
sion in the density.

For example, to find the leading correction in the ex-
pression for the energy per particle, one need only evalu-
ate +pv(0), where v(0)= fd3r V (r) is just the volume in-
tegral of the pair potential, V(7). But, if V' (r) is singular
then v(0) is infinite and the result is clearly useless. Us-
ing diagrammatic perturbation theory to sum terms to
infinite order, however, one can choose certain selected
classes of diagrams to be retained. The most divergent
set of diagrams (i.e., the so-called “ladder” diagrams) are
summed with the use of a Bethe-Salpeter-like integral
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equation. The divergent leading term pv(0) is now re-
placed by the so-called Lenz term, 27#°pa /m, where a is
the (in general finite) S-wave scattering length associated
with the pair potential (which may or may not be finite).
Continuing with these techniques and summing to infinite
order in each step the set of next most divergent dia-
grams, the resultant finite but nonanalytic expansion for
the energy per particle is’

£=

2
= = 2L 114 ¢\ (pa?) 2+ Cylpain(pa’)

+C5(pa)+0((pa*)*"n(pa?))] . ()

This is evidently not a power series in p, nor even in the
obvious smallness expansion parameter (pa’)!/2. The
coefficients C; and C, are the pure numbers

C,=128/(15V/7)=4.814418 ,

— (3)
C,=84mr/3—Vv3)=19.65392,

whereas C; is associated with real three-body cluster dia-
grams and therefore potential-shape dependent. The
coefficient C; has never been calculated. Evaluating
higher-order corrections to the expansion is difficult due
to the increasing number and complexity of the integrals.
In fact, the effort required to evaluate each subsequent
term in the series is usually greater than the total effort of
calculating all previous contributions. The series (2) can
then be considered as a sequence of smaller and smaller
corrections to the ideal Bose gas at zero absolute temper-
ature. The first of these corrections, the Lenz term,
represents the energy increase due to an “‘excluded
volume” effect. Subsequent terms are harder to interpret
physically, but are otherwise exact corrections.

Table I gives the S-wave scattering lengths’® a for the
Lennard-Jones (LJ) and Aziz He-He potential, as well as
the corresponding scattering lengths a, of the associated
Weeks-Chandler-Andersen (WCA) reference potential
(see below), both in A units. The large, negative a value
for the LJ potential results from an attractive well which
nearly binds an S state. Negative a values in (2), of
course, are meaningless. For the Aziz potential a is large
and positive (revealing a shallow two-body bound state).
A graph of the energy per particle as given by (2) with
this value of a is shown in Fig. 1 (thin curve): the energy
is positive and 9 orders of magnitude too high with
respect to either the empirical equilibrium energy-density
value (dot) or the GFMC results (squares). The low-
density expansion? is clearly useless as it stands.

TABLE 1. Comparison of the scattering lengths a and critical value A of the strength parameter for
the LY and Aziz potentials required to bind zero-energy S-wave level. Both of these potentials are split
using the WCA scheme, with a, corresponding to the repulsive part.

L) Aziz
a —176.325290 A +125.081004 A
Ae ~1.014296 ~0982227
ao 2.138238 A (WCA) 2203290 A (WCA)

a/ay

—82.45942157 (WCA)

56.77010471 (WCA)
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FIG. 1. Energy per particle as a function of (pag)'’?, with p

the particle density and a, defined in Eq. (5) for the BH splitting
of the Aziz pair potential as discussed in text. The thin curve
labeled LDE refers to the low-density expansion exactly as
given in Eq. (2), but without the unknown C; term. The thick
curve is the hard-sphere (HS) equation of state €,/N part of (6),
with eg(x) replaced by (23). Squares denote the GFMC data
and the dot refers to the experimental value for the zero-
pressure equilibrium point. The box near the experimental
value refers to the range of densities and energies encompassed
in Figs. 11 and 12, which together summarize our final calcula-
tional results. Note that positive and negative energy scales
differ drastically. )

From both classical and quantum computer simula-
tions,” the pair distribution function for the Lennard-
Jones interaction, for example, is qualitatively similar to
that of a fluid of purely repulsive cores. This suggests
that the expansion (2) be rearranged by defining a cou-
pling parameter 0 <A <1 such that

V()= Vieg(r)+ AV, (r) 4)

where the “reference” potential V (r) contains most of
the repulsion, and V,,(r) most of the attraction. Thus,
instead of splitting the Hamiltonian into kinetic and po-
tential energy terms, as implied by the original perturba-
tion scheme leading to (2), some of the interaction is in-
cluded in the reference system. Various partitioning
methods can be tried and will be detailed later. The total
scattering length can now be written formally as a power
series in the new expansion parameter A, namely

1+ 3 aAf

i=1

a=ay+ta,At+a,A’+ - =q, , (5

with a, the scattering length of V (r) alone. Substitut-
ing this expansion for a into (2) and rearranging leads to a
new expression for the energy per particle, which is a
double series in density and in attractive strength given
by
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E/N= 21rﬁ22x2 i a;e;(x)N
map  j=o
=(E,+AE,+AE,+ ---)/N,
eo(x)=1+Cx +Cox2In(x2)+ - - -, (6)
e;(x)=1+Kx +K,x’In(x*)+ -+ (j=12,...),

a;=a;/ay ,

with x =(pa3)'/%. The K;; (i=1,2; j=1,2,...) can be
expressed in terms of the a;’s and C;’s of (2) by algebraic
manipulation. This was done with the computer algebra
package software system MACSYMA.! Note that while
(2) is based on the ideal Bose gas as the reference system,
the reference system in (6) is the nontrivial fluid of repul-
sive spheres with scattering length a,. Whereas the ener-
gy per particle as given by (2) was 9 orders of magnitude
too large compared with both laboratory and computer
experimental results (Fig. 1), the partial sums of (6) (giv-
ing the energy to orders zeroth through sixth) are found
to be already within only one order of magnitude of the
experimental results, but still too disparate and chaotic in
behavior at physical densities to be considered a mean-
ingful result. We shall refer to the rearranged energy-
per-particle series (6) as a quantum thermodynamic per-
turbation theory (QTPT). The various ways of splitting
the selected pair potentials according to (4) are now de-
scribed.

III. PAIR POTENTIALS AND PARTITIONINGS

Several potentials have been proposed to model the in-
teraction of two He atoms. One is the two-parameter
Lennard-Jones (LJ) 6-12 with the parameters of de Boer
and Michels.!! Phase-shift equivalent to this potential is
the three-parameter hard-core square-well (HCSW) desig-
nated designed by Burkhardt.!? Finally, the Aziz poten-
tial designated HFDHE2 (Ref. 13) contains a few more
parameters but is considered perhaps the most realistic
He-He potential yet devised.

While the HCSW is a rather simplistic model of a two-
particle interaction, it has the redeeming feature of ad-
mitting a closed, analytical expression for the S-wave
scattering length. To find this expression, one simply
solves the zero-energy, / =0 radial two-body Schrodinger
equation,

ug (r)=v(ruy(r), (7

where v (r)=(m /#*)V (r). Applying the usual boundary
conditions for the distinct regions of the HCSW to the
wave function leads to

_ _ tanV'A
a/c= |[1+a |l v ]
=1—a(l1/30L+2/15 %+ -+ ), (8)

where a=(R —c)/c, R is the width of the attractive
square well, — V, its depth, ¢ the repulsive core diameter,
and A=(m/#*)Vy(R —c)®. Unfortunately, with the
more realistic LY and Aziz potentials there is no longer
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an analytic expression for a, nor an exact expansion in
powers of A, but numerical methods'* can be used to
determine both @ and its expansion coefficients. In addi-
tion to being potential-shape dependent, the coefficients
in (10) will also depend on how one chooses to split the
potential into “reference” plus “attractive” parts, as we
shall now see.

The zero-energy S-wave reduced radial wave function
uy(r) must still satisfy (7), with the boundary conditions

uy(0)=0 and lim uy(r)=r—a . 9)

Then (7) and (9) can be cast'* into the integral form
uo(r)=r— [ dr'rv(r'u(r')
—r [ Tdrv(rugr) . (10)

In the limit of » — oo, this together with (9) gives the con-
venient integral representation

a=fo°°dr ro(ruy(r) . (11)

Therefore, having an expansion for v(r) and uy(r) in

powers of A leads directly to an expansion for a in terms
of A. Thus, writing
© Ak

ug(r)= 3 ——ug(r) (12)
K=o k!

and combining this with (4) and (7) yields

v(ruglr)= 2 A

[vref(r)uOn(r)+nvatt(r uOn—l(r)] .

n o
(13)
Taylor expanding a about A=0 gives
=) A‘ dn
, (14)
=2 [aw
and comparing (11), (13), and (14) then yields
d"a R
= | drrv(rug,(r)
ar" | fo 7)o
+n fR dr rv,, (Pug, —(r) . (15)
Thus, all that remains is to find the wug,(r),
n =0,1,2,... . This may be accomplished either by us-

ing the differential (7) or the integral (10) equations for
uy(r). For r values inside the repulsive core the following
approach is useful. From (7) and (13) we have

r<R
rzR , (16)

. Vres( P, (),
“0n 1= o (Pl 1 (1),
where R is the distance one chooses at which to split the
potential. Again, demanding continuity of the wave
function at » =R, one finds that inside the repulsive core
the uq,(r) are proportional to each other if u,,(0)=0,
which in turn is required for all n since the total radial
wave function (12) must vanish at » =0. Numerical in-
tegration was used to obtain uyy(r) with the additional
condition [uyy(r)], =g =1. Then, in accordance with the
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second equation of (9) we have
uglr)=r—ay (r=R). (17)

To find u,,(r) outside the repulsive core, begin with (10)
and (12) and collect like powers of A to obtain

Ugn(P)=—n(r—ag) [ “drv,,(rug, _,(r')
—nfRdr (F' =)0, (F gy — (') . (18)

Finally, with uyy(r)=r —a, for r > R, one can generate
all the ug,(r) and therefore, using (15), as many
coefficients to the expansion (14) as desired. The impor-
tance played by the choice of R in these calculations is
clearly evident.

A variety of ways of dividing a potential function V (r)
have been proposed in the literature and are illustrated in
Fig. 2 for the LJ potential. In the right half of the figure,
the thick curves represent the reference potential V ¢(7)
of Eq. (4), and the thin curves the remaining attraction

V.:(r). One of the earliest partitionings, proposed by
McQuarrle and Katz15 (MK), simply divides the potential
into its negative (» ~®) and positive (r~ 12y parts. Barker
and Henderson!® (BH) suggested a splitting at the zero of
the potential energy function, say r =o, while Andersen,
Chandler, and Weeks!” did so at the zero of the force
(—oV /dr), say r =r,. The WCA method splits the po-
tential at its minimum and the portion of V(r) for r <r,
is shifted up by a constant positive amount € so that the
r > r, portion of ¥ (r) may be continued smoothly down
to » =0 along the constant value —e. An even earlier
method (known as the “separation method” in nuclear
physics) was proposed by Moszkowski and Scott'® (MS).
It splits the potential at a distance d where the leading
coefficient in the expansion (5) vanishes, thus cancelling
the effect of the strong repulsion with part of the attrac-
tion. Still another scheme recently proposed by Kang,
Ree, and Ree!” suggests treating the splitting distance R
as a variable parameter. This is displayed in Fig. 3 for
the Aziz potential, and will be designated as Aziz INT.
Note that V_.(r) has been shifted upward by the constant
amount |V (R)|, as in the WCA scheme.

The MS splitting was originally judged promising

MK(1966)
Ref. 15

WCA(1971)
Ref. 17
"o

unshifted
g Ref. 18

VS
MS(1966)
shifted
d

FIG. 2. Different methods of partitioning a typical pair po-
tential like the Lennard-Jones potential, as discussed in the text.

BH(1967)
Ret. 16 MS(1966)
al o

o \:{/ o

o
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FIG. 3. The partitioning scheme intermediate (INT) between
the BH and WCA schemes, for the Aziz potential (dashed LJ WCA
curve). Thick curve refers to V., (r), and thin to ¥V, (r), defined -100 4 b

in Eq. (4). The value for R is between ¢ and r,, the zeros of the
potential and force of the Aziz interaction, respectively.

since, unlike all the other methods, it incorporates some
of the attraction into the reference potential. However, it
proved to be a discouraging surprise. If the leading term
a, in the series (5) for a is zero, the rearranged expansion
(6) is trivially zero since then x E(paé)l/ 2=0. Shifting
the potential (a la WCA), gives a nonzero positive a,.
With this “shifted-MS” scheme, however, our equation-
of-state QTPT calculations eventually gave overbinding
in liquid “He by a factor of 3 or so, at more than twice the
equilibrium density, as compared with empirical equilib-
rium values. The reason for this is perhaps traceable to
the shape of the reference potential (see Fig. 2, thick solid
curve, lower right-hand corner): the artificial attractive
“pocket” surrounding the main repulsion probably in-
duces binding of tight clusters of particles, thus yielding
unrealistically large both overall binding per particle and
equilibrium density.

On the other hand, the BH potential splitting may be
excluding from the reference potential a significant repul-
sive component of the force (an important factor in deter-

FIG. 4. Schematic behavior of the scattering length a (in
units of a,) as a function of A/A,, where A, is the critical value
of A in Eq. (4) needed to produce a zero-energy bound state.
The dots give the actual values for both the LJ and Aziz poten-
tials, partitioned via the WCA scheme.

mining the liquid structure). The particles thus appear
smaller than they actually are and this overestimates the
equilibrium density. The WCA formulation corrects for
this by including all of the repulsive force within the
reference potential. Determination of the classical radial
pair distribution function g (r) near triple-point densities
and temperatures has shown?® that for the LJ interaction
the WCA splitting best reproduces the g (7) calculated via
molecular-dynamics computer simulations. We are
unaware of any corresponding definitive results for the
Aziz interaction. These observations, valid for a classical
liquid, were vindicated by our quantum calculations with
the LJ, but not with the Aziz, potential.

The Aziz potential is quite different from the LJ, since
it supports a weakly bound (~1073 K) state and has a
“softer” repulsive core. Figure 4 is a schematic picture

TABLE II. Expansion coefficients (in A units) for the scattering length a, as defined in Eq. (10), for the Aziz potential, various par-
titionings as defined in Eqgs. (9) and (31). The starred value of R =2.67 (in A units) turned out to be the optimum one for the Aziz po-

tential.
BH INT WCA

R 2.638 2.67* 2.72 2.77 2.82 2.87 2.97

ag 2.146 318 2.156236 2.170207 2.181 891 2.191167 2.197912 2.203290
a; —2.749 828 —2.732589 —2.707 885 —2.686946 —2.670215 —2.658036 —2.648 363
a, —2.416 361 —2.395563 —2.365 760 —2.340317 —2.319908 —2.305036 —2.293241
a; —2.422435 —2.400065 —2.367 886 —2.340336 —2.318199 —2.302 059 —2.289 265
a, —2.462 469 —2.439 182 —2.405 501 —2.376 645 —2.353449 —2.336535 —2.323131
as —2.508 168 —2.483 888 —2.448915 —2.418954 —2.394 874 —2.377 316 —2.363 405
ag —2.555333 —2.530173 —2.493931 —2.462 893 —2.437954 —2.419775 —2.405373
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for both LJ and Aziz potentials of the scattering length?!
(in units of the leading term a, associated with the WCA
reference potential) as functions of A/A,. Here A, is the
critical value of A required to produce a zero-energy
two-body bound state, and is ~1.01 for LY and =~0.98
for Aziz, see Table I. For the HCSW case (8), A, is clear-
ly just 72 /4, the first pole of tanV'A for positive V. For
the Aziz potential neither BH nor WCA splittings turned
out to be adequate and we were forced to employ the “in-
termediate” (INT) partitioning of Kang, Ree, and Ree.!’
Table II lists the first six terms in the second member of
(5), in A units, found numerically for the Aziz potential
using the results of this section with the BH, WCA, and
int potential sphttmgs using the R values, in A units, in-
dicated. Note that since the Aziz potential has a bound
state, the series (5) diverges; however, [5/5](A) Padé sum-
mation [see below, Eq. (19)] employing the first ten
coefficients a@; of any of the seven columns of Table II
gives the total a value quoted in Table I to at least seven
digits.

The problem of the slow convergence (or even diver-
gence) at physical densities of the low-density series (6)
remains, and in the next section we examine how Padé
extrapolants (both standard and generalized) can be ad-
vantageously applied to remedy this.

IV. DENSITY SERIES EXTRAPOLATION

A method is needed for extrapolating to physically
relevant densities the various low-density series e;(x) of
(6). One such technique is the well-known method of
Padé approx1mants 22 The Padé approximant [L /M ](x)
to a given Taylor series f(x)=fo+f1x+ fox*+ - is
defined as the ratio of two polynomials in x, the numera-
tor being of order L and the denominator of order M,
namely

+px+px*+ - +p xt _ Pr(x)
C0n(x)

(19)

[L/M](x)=

Gota1x+gpx+ - +gpxM

such that [L /M](x)—f (x)=0 (xL *M*1), Clearly, bino-
mial expansion of the denommator of (19) about x =0
leaves a power series identical through order x£ ™ to the
original power series. The advantage of a rational ap-
proximant is its ability to mimic nontrivial zeros and poles
of the unknown function f(x). Padé approximants have
been shown to accurately reproduce a given function
even out to values of x where the original Taylor series to
the function no longer converges. They have even been
found useful in representing functions with diverging
Taylor series. Here, Padé approximants are applied to
the power series in the coupling parameter A, and gen-
eralized for the nonpower series in the density variable x.

Generalized Padé approximants can be constructed for
the nonpower density series,
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ej(x)=1+K;x +K2jx21n(x2)+K3jx2+ cee

(j=0,1,2,...), (20)
where x =(pa})!/?, and where the K, ; coefficients are un-
known. In this case, instead of having a pure polynomial
in both the numerator and the denominator of the ap-
proximant as in (19), one of these will contain a In(x?2)
term. Since only the K;; and K,; coefficients are known,

the series in (20) is initially truncated with only the three
terms,

e;(x)=1+K;x +K,x’In(x>)+ - -~ . 21

All possible generalized Padé approximants to this series
must be constructed, which is accomplished by applying
an extrapolation scheme called “tailing.”?* This yields
four unique generalized Padé approximants plus the orig-
inal series. The approximants to e;(x) (21) will be denot-
ed by €;(x). They are listed in Table III and designated
as 0, i, ii, iii, iv. These constitute the so-called ‘“‘small”
family of extrapolants.

In a few select cases, these density extrapolants fail to
provide a suitable representation which is compatible
with known overall properties of the exact (but unknown)
ej(x), viz., positivity, monotonicity, singularity structure,
etc. However, certain global constraints, to be described
shortly, allow fixing the next coefficient (K ;) of the series
(20), thus providing us with a large family of approxi-
mants. Applying the same “tailing” techniques to the re-
sulting four-term series (20) yields 12 forms of which only
11 are distinct. These are listed in Table IV. They will
be referred to as the “large” family of extrapolants, and
designated as I, II, . . . , XII, with I=V. Ideally, whether
dealing with the “small” (0,i,...,iv) or “large”
(LIL, . . ., XII) family of extrapolants, all but one of these
forms should be eliminated before the final energy calcu-
lations can be performed. Other methods exist for con-
structing Padé-like approximants to a nonpower series,?*
and may be useful in eliminating extra extrapolants in
cases where more than one survive the initial screening.

The very first step in the density extrapolation problem
is to find a suitable extrapolant for the reference fluid.?>2¢
Since ey(x) in (6) represents the unperturbed energy it
may be thought of as the energy of a system of pure hard
spheres of diameter a, with no attraction. Several impor-

TABLE III. “Small” family of extrapolants, to a three-term
series of the form (21). Each approximant is of the form
M + N (x)/D(x), which by definition reduces to (21) on expan-
sion about x =0. The terms N(x) and D(x) will depend on
whether M =0 or M =1 (Compare, e.g., forms i and iv).

Form M N(x) D(x)
0 0 1+K,x +K,x%Inx? 1
i 1 Kx 1—K,x%Inx2/K,
ii 0 1 1—K;x —K,x%nx?
iii 0 1+K,x%nx? 1-K;x
iv 0 1+K,x 1—K,x%nx?
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TABLE IV. “Large” family of approximants, to the four-term series of the form (20), of the same
form M +N(x)/D(x) as in Table III. Note that form V is identical to form I.

Order M N(x) D(x)

I 1 K x+K,xnx? 1—K;x /K,

11 1 K x+K;x? 1—K,x Inx2/K,

III 1 Kx 1—K,x Inx2/K,—K;x /K,
v 0 1+(K,—K3/K)x 1—K;x /K, —K,x*Inx?
v=I 0 1+H(K,— K3 /K )x +K,x*In? 1—K3x /K,

A4 0 1 1—Kx —K,xInx?—(K; —K?)x?
VII 0 1+K;x+K,x%Inx? 1—K;x? '
VIII 0 1+ K,x?Inx?+(K;—K?)x? 1—Kx

IX 0 1+Kx+K3x 1—K,x?Inx?

X 0 1+K,x 1—K,x2nx?—K;x?

XI 0 14+ K,x?Inx? 1—Kx —(K;—K3)x?
XII 0 1+(K;—K?)x? 1—K;x —K,x?Inx?

tant qualitative characteristics of the behavior that the
appropriate extrapolant €y(x) must possess may be del-
ineated. First, the maximum packing density for identi-
cal spheres of diameter c is well known to be po=V2/c?,
corresponding to so-called primitive-hexagonal packing
(of which face-centered-cubic and hexagonal-close pack-
ing are two examples). The maximum physical value of
x=(pc>? is thus xu=(pc*)!/?=(v2)1/2~1.1892.
Consequently, one expects a pole in €y(x) near, if not pre-
cisely at, this value of x. The uncertainty principle re-
quires that as density is increased and perfect spatial lo-
calization of each sphere is approached, the energy
should diverge as the 2 power of the available volume.
Therefore the pole in x must be of second order. To ob-
tain this second-order pole one may analyze the density
series for ey(x) in (6) raised to the power —1, construct
its Padé approximant, and search for a possible zero of
this extrapolant. Thus, instead of ey(x) as given in (6),
we start from

eg 2(x)=1—1C;x —1Cox’In(x?)+ - - - . (22)

A second requirement is that the extrapolant to ey "2(x),
say €, 172(x), must not increase faster than linearly in x,
so as to guarantee that the hard-sphere energy
E /N =Q2n#*/mc?)x%€,(x) increase monotonically in x,
as it should. Graphing the five possible extrapolants to
(22), called O, i, ii, iii, and iv and listed in Table III, one
sees that only one of the five extrapolants (form i) satisfies
the condition of not increasing faster than linearly in x as
well as having a zero near x,=(V2)!"2~1.1892. (See
Fig. 1, Ref. 26). Additionally, as Fig. 5 shows, this form
(i) lies reasonably close to the GFMC (Ref. 27) data
points (dots) for boson hard spheres and has the same
curvature.

In an attempt to reproduce the boson hard-sphere
GFMC data more closely, the Padé extrapolants to the
four-term series are analyzed, where the next successive
term in (22), —1(C;—C?/4)x?, with C; unknown, is in-
cluded. The resulting 11 distinct forms (Table IV) were
then examined?® but only two were found to be accept-
able, based on the criterion that the GFMC data points
be mapped onto as straight a line as possible, with the

slope of the line determining the value of the unknown Cj
coefficient. These two forms are marked “II” and “III”
in Fig. 5. Also displayed (crosses) are results of previous-
ly mentioned parquet-diagram calculations® for the boson
hard-sphere system. Form III turned out to have a much
smaller root-mean-square deviation from the GFMC data
points, and explicitly leads to

1
6 =
olx) . Kox
1—(K,/K)xIn(x2)—(K; /K )x
(23)
with  K;=-—3C,, K,=—3C;, and K;=—3(C,

—C3%/4). The value C;=25.1110.287 was determined?®
by a smallest least-mean-squares fit of the aforementioned
straight line to the GFMC data, and the resulting pole
placement predicted is x, =0.72451+0.0045. From Fig. 5
it is hard to imagine how the GFMC data could extrapo-
late to a pole anywhere near the primitive-hexagonal
packing value x,~1.1892. It is tempting to speculate

1.04
cl
Ev <
To| <GFMC ~
w +Parquet (AE;"")
0.4
0 A A A x L =
\ 1

FIG. 5. Possible choices for the zero-order hard-spheres ex-
trapolant to Eq. (22). Here i refers to the best unconstrained ex-
trapolant from the ‘“‘small” family, while II and III are the
members of the “large” family with C; chosen to reproduce the
slope of GFMC data for pure hard spheres, as detailed in Ref.
27. Crosses refer to calculations of Ref. 3.
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TABLE V. Value of €;(x,) for L} WCA. [P is the pole in the physical interval; *, the best Stell-
Penrose (SP) behavior]. The values in column 1 should be compared with the estimate from Eq. (25) of
2.9954 for the Burkhardt HCSW potential which is phase-shift equivalent to the LJ potential.

Order

Form J 1 2 3 4 5 6
0 —16.88 33.95 19.95 —5.88 —36.1 —62.3
i 3.153* 0.96* —0.26* —6.49 P P
ii 0.083 P P 0.13* 0.026* 0.01*
iii P 15.84 3.59 0.35 —2.09 —4.6
iv 0.352 P P P —0.37 —0.16
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that the pole reproduced by (23) might correspond to a
lower-density, ‘“random” close-packing configuration.
The energy per particle (in degrees kelvin) associated
with the form (23) is shown as the thick solid curve
marked HS (for hard spheres) in Fig. 1. Also displayed
there are the hard-sphere GFMC data points of Ref. 27
(solid squares).

Four additional global criteria (or “boundary condi-
tions”) may be invoked to allow for a systematic elimina-
tion of all but one form in each successive perturbative
order beyond the zeroth. (1) We demand that the density
extrapolant €;(x) (i =1,2,...) be free from poles in the
“physical interval” 0=x =x,. (2) Since E; and E, in (6)
must be negative25 for all densities, and since a;,a, in (6)
are always negative, acceptable approximants €,(x) and
€,(x) to the series e (x) and e,(x), respectively, must be
positive for all x in the physical interval. (3) Furthermore,
since the first-order energy contribution E, being an ex-
pectation value, is just an integral over a probability den-
sity that can only increase as the particles crowd together
more and more, the first-order extrapolant €,(x) must be
monotonically increasing in the density. (4) Classical
thermodynamic perturbation theory to first order has
rigorously been proved? to be exact at close packing in
one and two dimensions. Moreover, Stell and Penrose
conjectured?® it to hold in three dimensions as well. As-
suming it holds also in the quantum case, the energy at
close packing is then simply given by

E=E,+AE, . (24)

Therefore, in addition to having a second-order pole in x,
E must depend linearly on the attractive well strength
A, as x —X,. In view of (6) this means that
E,=E;=:--=0, as x—Xx,, implying that ey(x,)
=¢;3(x,)= -+ =0. We shall refer to these relations as
the Stell-Penrose (SP) conditions.

Indeed, we found that the extrapolants eventually
chosen for third and higher order at close packing had
very nearly the ideal value of zero. Second order was less
well behaved, so the condition €,(x,)=0 was imposed by
determining the unknown constant K;, of (20) in each
approximant (Table IV), and selecting the one which best
satisfied the other criteria.

For most orders, however, the smaller family (0—iv)
(Table III) already provided one suitable extrapolant,
with the rest eliminated. Table V gives an example where
all orders required only “small family” approximants,
where the asterisks identify the form chosen in each per-

turbative order. In second order, even though the “best”
extrapolant (i) did not satisfy the SP conditions
€(x,)=0, the large family of extrapolants yielded a form
(IIT) that closely resembled the form i. We tested this
choice by employing a method similar to that used for
the zero-order extrapolant. Namely, an exponent is in-
troduced which is varied to ensure compliance with the
SP conditions. This yielded a third extrapolant which
was nearly identical to the forms i and III over most of
the range of x values in the physical interval. A notable
exception to these general trends occurred in fourth or-
der for the Aziz potential with any partitioning scheme.
This order necessitated incorporating the fourth
coefficient K3, into the density series (21).

As regards first order, a rough estimate®® of the attrac-
tive potential energy contribution for the hard-core
square-well potential shape of depth — ¥V, range R, and
hard-core diameter c, is just

AE,/N=—1V,(47R%p,—1), (25)

where the term in parentheses is the number of hard-
sphere centers between two concentric spheres of radii R
and c (i.e., inside the attractive well of the HCSW poten-
tial). By equating the above to the j =1 term in (6) one
can obtain an estimate for the value of the first-order ex-
trapolant at close packing, depending on the parameters
of the HCSW. As a reassuring check on the approxi-
mants chosen, the first order extrapolant at x =x, for ei-
ther the LJ or the Aziz potentials with any given splitting
produced a result at x =x, very nearly equal to that pre-
dicted by the estimate?® for the Burkhardt He-He HCSW
potential. Approximant forms thus chosen for LJ-BH,
Aziz-INT, and Aziz-INT are displayed in Figs. 6, 7, and
8, respectively, and will be discussed later.

* V. RESULTS AND DISCUSSION

Once good density extrapolants €;(x) are constructed

to each e;(x) in the QTPT energy expression (6), the re-
sulting series for the ground-state energy per particle

1+ 3 o, 25 (26)
= T €p(x)

2
E/N= 277%2
ap

x %ey(x)

may be analyzed as a A series. Note that e,(x) and e;(x)
have been replaced by their extrapolant forms €,(x) and
€;(x). One can then investigate the density behavior of
the series in brackets to a given finite order in A, say
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€; (X)

FIG. 6. Chosen extrapolants to the e;(x) of Eq. (6) for the LJ
potential, BH partitioning. Of the two forms shown for fourth
order, ii is retained as it conforms better to the Stell-Penrose
(SP) conditions discussed in the text.

L +M, by studying the behavior of the different
[L /M]()A) approximants for A=A .- The latter value
is (m /%) V(R —c)? for the HCSW, and unity for the LJ
and Aziz interactions.

Energy calculations were initially performed for the
HCSW with the potential parameters deduced by Bur-
khardt!? so that we could utilize the analytic expression
(8) for the scattering length. Burkhardt determined the
potential parameters by demanding that the HCSW give
phase shifts equivalent (at least in the first few partial
waves) to those of the LJ potential. Unfortunately, as is
well known, two-body phase-shift-equivalent potentials
may give rise to substantially different many-body prop-
erties. In addition to this, the LJ interaction is now con-
sidered only a moderately accurate description of the
two-body interaction for He atoms. Energy results ob-
tained for the Burkhardt HCSW potential have been re-
ported elsewhere.?® Not surprisingly, they were poor
when compared with experiment or GFMC, but it was
clear that the QTPT method was converging very rapidly
as of fifth order in A. This suggested taking the potential
parameters of the HCSW and modifying them systemati-
cally subject only to an observed requirement’® on the

0)

AZIZ-WCA
2 am

T To—
0.5 X

FIG. 7. Same as Fig. 6 but for the Aziz potential, WCA par-
titioning.
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form i

order i=1 AZIZ INT

8‘(X)

FIG. 8. Same as Fig. 6 but for the Aziz potential, INT parti-
tioning scheme.

magnitude of the S-wave scattermg length, namely that
la| >20 A for *“He. This bound is in effect an empirical
constraint on the parameters ¢, R, ¥, of the HCSW po-
tential. These parameters were varied, making the poten-
tial shallower (smaller V) and the attraction longer
ranged [larger (R —c)], but keeping a=(R —c)/c con-
stant. We found that the discrepancy with experiment
(i.e., the error) in either the equilibrium energy per parti-
cle or density could separately be reduced essentially to
zero. Alternately, the error in both quantities could be
minimized to approximately 3% Specifically, at an equi-
librium density of 0.0218 A~ 3 an energy of —7.78 K was
obtained. Or, an energy of —7.14 K results at an equilib-
rium density of 0.0230 A3 Finally, an energy of —7.35
K was achieved at 0.0225 A_3 . These should be com-
ared to the experimental values®! of —7.14 K at 0.0218
~3 for liquid “He. The only point of this exercise was to
determme if a reasonable model pair potential, with pa-
rameters not incompatible with the two-body empirical
constraint |a| >20 A, could lead to QTPT results which
(a) converged reasonably fast, and (b) were not too
different from experiment. The result was affirmative.

To improve upon the model HCSW potential, the LY
interaction was used next. Energy-per-particle calcula-
tions were performed using both BH and WCA splittings
of the potential. For this pair interaction the small fami-
ly of extrapolants gave a suitable form in each order. In
other words, at least one form was pole free in the physi-
cal interval 0 <x <x,=0.7245 spanned by (23). These
are displayed for the LJ-BH case for orders 0—6 in Fig. 6
where the labels i, ii, and iii refer to the specific members
of the small family of approximants, Table III, to the
series e;(x) in (6). The curve labeled *“0” is just (22). The
BH partitioning gave good agreement®* with the GFMC
(Ref. 33) data points in both energy and density, with an
energy of —6.808 K at p=0.0235 A3, for the [6/0](A)
Padé approximant corresponding to stralght sixth-order
QTPT, to be compared to the GFMC values of
—6.84810.018 K at a density of 0.022 A™3. As expect-
ed,?® the WCA partitioning yielded even better agreement
with the GFMC data points. The WCA splitting also
gave a smaller density, as compared with BH splitting.
As discussed previously, BH omits a significant portion
of the repulsive force, therefore making the particles ap-
pear smaller and resulting in a larger equilibrium density
than with the WCA splitting. The WCA scheme for the
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[4/0]() [3/3]
[3/1] [¥5]

[2/3] [2/4]

[5/0] [14]

[3/2] [a/1]

| [6/0] [5/1]
[4/2]

FIG. 9. Ground-state energy per particle as a function of
x =(pa})!’? for the LJ potential, BH partitioning. Curves la-
beled [L /M](A) refer to the L /M Padé approximants to the
L + M partial sum of the A series, Eq. (26). The open circles
mark the minimum of the curve. The dashed part of the curve
is the metastable portion of the equation of state resulting from
a Maxwell-like construction. Squares refer to the GFMC data.
Solid thick curve is experimental, with the dot referring to the
equilibrium density.

LJ liquid ave’? —6.85 K at an equilibrium density of
0.0227 A™°. Results for the LJ potential (BH and WCA)
are summarized in Table I of Ref. 32. Figure 9 displays
the ©behavior of several A-Padé approximants
[L/M]}(A=1) to several L +M <6 partial sums of (26)
for the LJ-BH case, with the open circles marking the lo-
cation of the predicted equilibrium minima. Squares
designate GFMC data points and the thick curve
represents the experimental equation of state.’!

Computer simulations>* with the Aziz interaction have
reproduced experimental liquid “He results very closely.
Several differences are apparent between the LY and Aziz
potentials which will be significant in our calculations.
First, there is the relative hardness of their repulsive
cores.® At r =0 the value of the LJ potential is infinite,
while the Aziz potential has a value which although very

PR3

0.020 0.025
- + T T

o

AZIZ INT

E/N (K)

[5/0]

[3/3],[5/1], [15]

FIG. 10. Equation of state for the Aziz potential, int parti-
tioning with R =2.67 A, as a function of particle density p in
units A 73, Curves labeled [L /M](A) refer to the L /M Padé
approximants to the L +M partial sum of series, Eq. (26).
Squares refer to the GFMC data points.
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-6.3 1 4He
-6.4 1 LJ
6.4 © QTPT
-6.5 HNC/S @
-6.6
-6.7
g Parquet ( AV ;ULL)
z -6.8 {2/4] [6/0], [3/3]
w armc I [[s/o} IB[HZML (vs]
ar2
-6.9 [5] [5/1], [4/2]
[5/1]
7.0 WCA
[3/3]
-74
-7.2
-7.3
: . : r 7=
0.021 0.022 0.023 0.024 P(A )

FIG. 11. Summary of equilibrium energy-density results for
the LJ potential. HNC/S refers to the calculations of Ref. 36,
parquet to those of Ref. 3, GFMC data are from Ref. 33. The
[6/0](A) Padé (circled dots) correspond to straight sixth-order
QTPT; other dots refer to other sixth-order Padé results to the
A series (26).

large (~5.88X10% K) is nevertheless finite. Also, the
Aziz potential exhibits a very weakly bound state (~ 1073
K) which the LJ does not (see Fig. 4).

To examine the implications of the relative core hard-
ness, recall the form (23) of the extrapolant €,(x) used.
This form was determined with hard-sphere GFMC data
as a guide. While this may be adequate for the LJ liquid,
the softness of the Aziz potential core must be compen-
sated for in applying this approach. From the earlier dis-
cussion in Sec. III, the BH partitioning was faulted for
excluding too much of the repulsive force from the refer-
ence potential. In the case of the Aziz potential, this is
exactly what is needed in its hard-sphere reference sys-
tem. (Of course, BH may still exclude too much of the
repulsion.) Therefore, the method of Kang et al.’® was
also applied where the partitioning distance R is variable.
The extremes of the interval of interest are chosen to be
R =0, the zero of the potential (which is just the BH par-
titioning) and R =r, the minimum of the potential (just
the WCA partitioning). The Kang et al. partitioning is
intermediate (INT) between these two extremes. Specif-
ically, we have

o (BH)

ro (WCA) @7

(INT) .
For the Aziz potential 0 =2.638 A and ro=2.97 A. The

o<R <ry
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1nterva1 (0,ro) is divided into five parts, beginning at 2.67 -6.3 [“2,/62 4
A and increasing by 0.05 A to include the values [6/0],04/2],[3/3] He
R =2.72, 2.77, 2.82, and 2.87 A. The scattering length —6.4{ Nlvslis AZIZ
coefficients were determined using the methods of Sec. I1I © QTPT
for each of these R values and are reported in Table II. -6.5-

In addition, while the LJ-BH ¢;(x) extrapolants Fig. 6
exhibited approximate SP behavior [i.e., €;(x,)~0 for -6.6 1
i =3,...]in all (third and higher) orders with the small Jastrow + opt-triplets
family of forms, the Aziz extrapolants in fourth order for -6.71
all potential partitionings were poorly behaved. Thus for g
the Aziz pair potential the large family of extrapolants Z -6.8 ]
was needed. Only one of the remaining fourth-order ex- o
trapolants was smoothly decreasing, and thus retained. 6.9
For the Aziz WCA case we also used the large family of '

. X HNC/S®

extrapolants to analyze second, third, and sixth order as
well. (Interestingly enough, only one of the second-order =7.07 UL (2/4]
forms exhibited behavior very similar to that of the small ¢ Parquet (AV3T"")
family optimum extrapolant, staying relatively constant =7.11 GFi"C/I [6/0]
over the density region of interest.) This is displayed in EXPT—a/3] BH
Fig. 7 for orders 1-6. -7.21 iNT {571} [6/01[4/2]

Similarly, the chosen extrapolants for the best inter- [v5] {:ﬁll
mediate splitting of the potential (referred to as Aziz -7.3 1 (5]

INT) are shown in Fig. 8 for the splitting value R =2.67
A this is very close to the BH value of R =0 =2.638 A

for the Aziz potential. Figure 10 shows the resulting FIG. 12. Same as Fig. 11 but for the Aziz potential. The
equation of state (26) for Aziz INT as given by fourth-, large dot marked EXPT is the laboratory experimental energy-
fifth-, and sixth-order straight QTPT ([4/0], [5/0], [6/0], density equilibrium point. The data marked ‘“Jastrow+opt-
respectively). All sixth-order A-Padé approximants are triplets” refers to the calculations of Ref. 37. Neither the BH
shown as well, with the exception of [4/2] and [2/4] nor the WCA potential splittings gave as good an agreement
which were singular very near the equilibrium density = with GFMC as in the LJ case and so the int splitting discussed
and thus discarded. The closeness of all sixth-order ap-  in text was also tried.

0.021 0.022 0.023 0.024 P(/o\_3)

TABLE VI. Predicted QTPT equilibrium energy per particle E /N (in degrees K) and density p, [where x, =(p.a3)!”? and dimen-
sionless] with all sixth-order Padé approximants [L /M](A) to the A series (26). (a) gives the results for the LJ potential, split via BH
and WCA schemes discussed in the text. (b) gives the results for the Aziz potential, split into reference plus attraction according to
the three schemes discussed in text, namely BH, WCA, and INT. The bottom rows give the GFMC results against which we com-
pare our calculations. For Aziz INT, approximants [4/2] and [2/4] develop a pole in the density interval corresponding to
0.4 <x <0.5, and are thus discarded.

a
BH : Ly WCA

L M X, E/N (K) x5 E/N (K)
6 0 0.468 —6.808 0.471 —6.855
5 1 0.469 —6.892 , 0.472 —6.932
4 2 0.469 —6.892 0.471 —6.868
3 3 0.468 —6.812 0.468 —7.070
2 4 0.469 —6.852 0.472 —6.833
1 5 0.468 —6.851 0.472 —6.916

GFMC 0.448 —6.848+0.018 0.463 —6.848+0.018

b
Aziz
BH WCA INT (R =2.67 A)

L M x, E/N (K) X, E/N (K) X, E/N (K)
6 0 0.475 —7.217 0.468 —6.345 0.474 —7.124
5 1 0.475 —7.248 0.468 —6.351 0.474 —7.128
4 2 0.475 —7.217 0.467 —6.344 pole 0.4<x <0.5
3 3 0.475 —7.239 0.468 —6.344 0.474 —7.162
2 4 0.475 —7.003 0.469 —6.291 pole 0.4<x <0.5
1 5 0.475 —7.302 0.468 —6.348 0.474 —7.241

GFMC 0.465 —7.12+0.024 0.484 —7.12+0.024 0.469 —7.12+0.024
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TABLE VII. Sound velocities ¢ (in m/s) calculated from sixth-order QTPT compared with GFMC
results for both LJ and Aziz interactions, according to the three potential partitioning schemes BH,

WCA, and int. Here, 0 =2.556 A.

pa? 0.365 0.401 0.438 0.490
Ly BH 217.34 298.21 397.75
WCA 206.08 284.59 380.35
GFMC 245.8+21.0 290.54+8.74 333.1+23.7
Aziz  BH 209.270 290.71 390.36
WCA 275.87 374.24 501.65
INT 220.95 306.74 410.22 599.03
GFMC 227.01+40.3 307.43+£52.4 394.64+83.5 568.24+152.3

proximants shows that the A series is well converged out
to this order. The results for the WCA, BH, and INT
splitting are summarized in Table VI and Figs. 11 and 12.
We note that the energy and density scales of both these
figures coincide with the small rectangle marked in Fig.
1. Also shown in Figs. 11 and 12 for comparison are the
results of other alternate calculations, namely the “par-
quet” method of Ref. 3, the “HNC/S” method of Ref. 36,
and the “Jastrow plus optimized-triplets” method of Ref.
37.

A very stringent test of the ground-state equation of
state is the predicted velocity of sound c, defined through

2 OP

9p
where m is the particle mass, and the pressure P is given
by

mc S (28)

A(E/N)

op '
Since the expression for E /N is given as an explicit func-
tion of x, related to p through x =(pa8 )12 (28) and (29)
lead to

P=p* (29)

3 0(E/N)
x
dx

¢ =22.77994 laa

X 0x

172
] (m/s) (30)

for “He. Using MACSYMA, we evaluated this expression
at several densities and the resulting values of ¢ are com-
pared against the GFMC results in Table VII. We see
that agreement with GFMC is within the statistical er-
rors of the latter for the Aziz INT case, for all four densi-
ty points considered. This quality of agreement is not so
good for Aziz BH or WCA, nor even for LJ BH and

WCA, a fact perhaps in support of the int splitting of the
pair potential.

VI. CONCLUSIONS

Starting with the well-known exact, low-density equa-
tion of state for a many-boson system, we are able to ex-
trapolate this series via a quantum-thermodynamic per-
turbation theory to liquid densities. Through the appli-
cation of Padé approximants and with a minimum of
computer size and time, excellent results are obtained for
both the equilibrium energy and density for the
Lennard-Jones and Aziz potentials, when compared to
the corresponding GFMC computer experiments.

The LJ potential with the WCA partitioning gave re-
sults almost identical to those of the computer experi-
ments, for both the ground-state energy per particle and
equilibrium density, differing by 0.1% in energy and less
than 4% in density.

With the Aziz potential GFMC calculations reproduce
liquid “He laboratory results very closely. Our perturba-
tive method required for this potential a splitting scheme
intermediate between the BH and WCA schemes. When
adjusted to coincide in energy, the intermediate scheme
predicted the equilibrium density to within 2%, and
sound velocities entirely within the statistical error bars,
of the GFMC data.
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