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We report here the first systematic low-temperature expansion of the step free energy for the
simple-cubic nearest-neighbor Ising model and we obtain the facet shapes for the associated equilib-
rium crystal-shape problem. An expansion scheme is developed which makes explicit use of the
conjugacy between the step free energy and the facet shape. The calculation is structured as a per-
turbation expansion about the exact solution for the interfacial free energy of the two-dimensional
square Ising model. We find that the facet shape is approximated to better than 1% by the equilib-
rium crystal shape of the two-dimensional Ising model for temperatures less than about 72% of the
roughening temperature. In that temperature range overhangs and bubbles contribute less than
0.1% to the step free energy. At higher temperatures the facet shape is nearly circular with aniso-

tropies of less than 0.4% and a ratio of facet diameter to crystal diameter of less than 0.4. Extrapo-
lations into the isotropic region give critical roughening amplitudes consistent with recent Monte
Carlo data.

I. INTRODUCTION

The physics of the solid-fIuid interface has been an ac-
tive field of condensed-matter research in recent years.
In particular, the roughening transition and equilibrium
crystal shapes have received much attention and have
been reviewed by several authors. ' One of the most
basic quantities characterizing such an interface is the an-
isotropic step free energy y(8), the excess free energy as-
sociated with the creation of a unit length of a single step,
oriented at average angle 8 with respect to the surface
crystal axes, on an otherwise macroscopically Aat sur-
face. Exact solutions for y(8) exist for restricted solid-
on-solid (RSOS) models isomorphic to the six-vertex
model. While these models show the expected univer-
sal XY-dual behavior at the roughening transition, they
suffer from being unrealistic. The RSOS condition has
the shortcoming of suppressing many excitations isoener-
getic with those included. Such excitations, although ir-
relevant in a renormalization-group sense, ' will nonethe-
less alter the detailed, nonuniversal temperature evolu-
tion of y(8). An analytical calculation of y(8) for a more
realistic model has so far not been performed.

In this paper we present the first systematic low-
temperature ( T) expansion of the step free energy for the
simple-cubic (SC) nearest-neighbor Ising model. Our em-
phasis here will be on the connection between the step
free energy and the shape of the corresponding facet of
the associated equilibrium-crystal-shape (ECS) problem.
As pointed out in Refs. 3 and 11, the step free energy and
facet shape are related via a Legendre transform; provid-
ed that the ECS has no slope discontinuity at the facet
edge. Making explicit use of this fact, we develop two ex-
pansions, one directly for the step free energy y(8)
(canonical) and one for the facet shape y (x) (grand
canonical). The expansion for y(8) about its T=0 cusps

. is divergent where the expansion of y (x) is perfectly well
behaved, and in that sense the two expansions comple-
ment each other.

We focus on the SC Ising model not only because of its
simplicity and its fundamental importance to statistical
mechanics but also because it allows us to make contact
with the work of others. In addition to recent Monte
Carlo data' for y(8=0), low-temperature expansions by
Weeks et a/. ' ' for the (100) facet of SC Ising and the
associated SOS model allow the determination of the cor-
responding surface tensions I ( 100) (Ref. 15) and
roughening temperatures Tz (Ref. 16). The expansions
of Weeks et al. involve the combinatorics of finite clus-
ters of adsorbed and/or desorbed atoms on an otherwise
fIat interface. In this work, we are faced with the more
difticult problem of counting the configurations available
to these excitations in the presence of a step running
across the interface. Because of their interactions with
the step and the many degrees of freedom of the step it-
self, the complete combinatorics becomes exceedingly in-
volved. Fortunately, however, a large subset of
configurations is in one-to-one correspondence with those
of the two-dimensional (2D) Ising equilibrium-crystal-
shape problem, for which an exact solution is
known. ' ' We exploit this fact by structuring the ex-
pansions accordingly. While this simplifies our problem
considerably, the remaining combinatorics is still non-
trivial.

We generate fifth- and eleventh-order series for y(8)
and y (x), respectively. We estimate convergence of these
series for the symmetry directions to be better than 1%
for T &0.78'. Normalizing the step free energy to the
surface free energy of the facet, we calculate the ratio of
the facet diameter to the (100) diameter of the crystal.
Below 0.72T+ we find that the facet shape is given to
better than 1% by the 20 Ising ECS. Corrections due to
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II. STEP FREE ENERGIES AND FACET
SHAPES FROM INTERFACIAL FREE ENERGIES

AND EQUILIBRIUM CRYSTAL SHAPES

Consider a system of total volume V in equilibrium at a
first-order phase boundary. To keep the discussion sim-
ple, we shall tacitly assume the two phases to be sym-
metric, as they are in the Ising model. Let &@ denote
the Hamiltonian of this system, when the two phases are
forced to coexist separated by a macroscopically planar
interface of surface normal m and area A (Ref. 21).
When the system consists of only one phase, we denote
the corresponding Hamiltonian by %o. The interfacial
free energy per unit area I (m) (surface tension) is defined
as the difference between the free energy of the system
with and without the interface,

1 PQ~ P~oI'(m) = —k& T lim (lnTre —lnTre 0), (la)

or equivalently

1 pQ~
I (m)= lim ( —k TeI Tnre —Vfb), (lb)

where k~ is Boltzmann's constant, p=(k~ T) ', and

f& = —ke T lim [(1/V)lnTr exp( —P&o)]

overhangs and bubbles contribute less than 0.1% in this
temperature region. Above 0.72T+ the facet shape is
essentially circular. From numerical extrapolations into
the critical region we obtain estimates for the roughening
temperature and for the critical amplitudes.

The remainder of this paper is organized as follows: In
Sec. II we give the conceptual framework on which our
expansions are founded. The Legendre-transform conju-
gacy between the step free energy and the facet shape is
derived, and we show that the facet may be thought of as
a 2D ECS. We obtain expressions for the step free energy
and facet shape in terms of a canonical and grand canoni-
cal partition function, respectively. In Sec. III we use the
formalism of the previous section to calculate the step
free energy and the shape of the (100) facet of the SC Is-
ing model. In Sec. IV convergence estimates for the low-
temperature series are developed. The feasibility of ex-
tracting critical parameters from the series is discussed.
The results of such extrapolations are shown to be con-
sistent with Monte Carlo estimates. We conclude in Sec.
V.

f(p)=I (m)(1+p )'~ with p== az

and

m=( —p„,—p~, 1)/(1+p')' ', (2)

the normalized ECS is given by

z(x)= —f( —Ax),

where f (p) and f(g) are related through the Legendre
transform

f(n)=f(p) —n p

g and p are conjugate variables related by

df p
ap

(4)

(5a)

(5b)

The constant A, is the Lagrange multiplier of the constant
volume constraint and related to the pressure difference
between the two phases. A, sets the overall length scale
of the ECS.

At this point it is very useful to note that, in going
from f(p) to f(g) [Eq. (4)], we have passed from a
"canonical" ensemble at fixed macroscopic slope p to a
"grand canonical" ensemble, where all p are allowed and
g (the external-field variable) selects a slope p (the magne-
tization or density variable) according to (5b). f may
thus be written as '

is the bulk free energy per unit volume. These thermo-
dynamic limits exist if microscopic interactions are
sufficiently short ranged. ' ' Once I (m) is known, the
ECS is determined by thermodynamics: In equilibrium
the total interface free energy must be minimized, subject
to the constraint that the subvolume enclosed by the in-
terface remain fixed. An elegant geometrical solution of
this problem is provided by the Wulff construction,
which asserts that the ECS is, to within an overall scale
k, the interior envelope of the family of planes perpendic-
ular to and through the points ml'(m) (the "Wulff plot" ).
If we describe the ECS in Cartesian coordinates as
z =z(x), x=(x,y), the analytical statement of the Wulff
construction takes on a particularly transparent form: If
we let

f(g)= lim . kiiTln+Trexp ——P gf( )+g.f (~„,~~)dS —Vfb . ,
&y Xg m

where A ~= A/(1+p )', 4 is the microscopic surface
separating the two phases, m=(rrz„,re, ~, ) is the local
normal of eV, &~ )

is the Hamiltonian of the system for
which an arbitrary macroscopic interface has been en-
forced (of planar topology but not necessary globally pla-
nar), and g~ )

sums over all such systems possible. In

SOS models, the microscopic interface is simply connect-
ed and single valued so that

g.f (m„,m )dS= —g.f p(x)dx dy,
xy

where~(x) is the microscopic slope of the interface. ' '
Facets in the ECS arise from cusps of the Wulff plot
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—P[W s
—i.ax(x f ndZ]—kii T ln+Tre *'s ~ ~ —A I'(z) —pfb

0
(12)

—k~ T ]n +Tre
III

where L„=L/(I+s )'~, X is the line representing the microscopic step (see Fig. 2 and below), n is the (2D) normal of
X, and ge sums over systems with all possible macroscopic step orientations 8. Equation (12) will form the basis of our
grand canonical series expansion for yf (xf).

To elucidate the physical content of Eq. (12), it is useful to derive it directly from the grand canonical formulation of
the ECS. If we define g& = —

A,xI, then Eqs. (4) and (6) give x/ implicitly as the solution to

1 p[8 +q.f (w„,am )1$]
lim lim —W.,r(z) —Vj, =0, (13)~Ay

f (bm, bm }dS=ay] f dXn

=agyL„+ay„xf dX~, (14)

where b,m—=m —z. While the sum in (13) extends over
systems with all possible interface con6gurations, only
those with vicinal surfaces contribute in the limit g~g&.
We can, therefore, restrict the ensemble to the subspace
of systems which have a single step running across the
facet of interest, i.e., we take g [ ]

~ps and

&[-]~&-, s. A strip of the interface of such a system of
width I. is shown in Fig. 2, projected onto the xy plane.
A~ =0 everywhere on the interface except on the "cliffs"
of height a (represented by lines in the figure). We may,
therefore, write for the field term of Eq. (13)

(gf gf )= (xf yf )
I (m/)

(15)

Finally, we remark that, for some intervals of 0, the
facet plane may be discontinuously truncated by Wulff
planes from a part of the Wulff plot distant from the
facet's cusp. For such 0, vicinal planes are thermo-
dynamically unstable and y(8) does not exist. Where
y(8) does exist, the corresponding facet shape is (for
short-ranged forces) smooth for all 0& T & Tli, because
the step is essentially a 1D object and can have phase
transitions [i.e., cusps in y(8)] at T=0 only. We now
turn to the problem of calculating explicitly low-
temperature expansions for the step' free energy and facet
shape of the SC Ising model.

where we have taken advantage of the fact that these in-
tegrals vanish when taken around closed islands. Substi-
tuting this into (13) and noting that the g term is in-
dependent of step configuration establishes (12) without
any direct reference to y(8).

Equations (9) and (12) give the size of the facet at given
Experimentally, however, we would like to know the

coordinates of the facet relative to the physical size of the
crystal. As a theoretically convenient and experimentally
well-de6ned measure of the crystal size, we take the
center-of-crystal to center-of-facet distance, which is sim-

ply I (m&)/A, [cf. Eq. (3)]. The relative facet coordinates
( gf i]f) are, therefore, given by

III. LO%'-TEMPERATURE SERIES
FAR THK SIMPLE-CUBIC ISING MODEL

I
I

I I

I I

I I

I I
I

I I
&=—J g cr;cr (16)

The Hamiltonian of the nearest-neighbor (NN) SC Is-
ing model is

FIG. 2. A strip of vicinal surface projected onto the xy plane.
The shading represents lattice planes of spacing a at different
levels. The strip contains a "bare" step L (bold line} and excita-
tions on the terraces to either side of the step (closed curves). n
is the 2D microscopic normal to the step in the xy plane. The
field contribution to the grand canonical Hamiltonian

g f z(ben„,hm~}dh'=ay „dJn vanishes around
all curves

closed curves and therefore couples only to the "bare" step.

where the "spins" o.j =+1 are located at the vertices of a
simple-cubic lattice of lattice constant a and the sum is
over nearest-neighbor pairs. To keep our equations un-

cluttered in the remainder of this paper, we shall set the
overall scale factor A,a /J=1 and measure lengths in
units of a, temperature in units of J/kii, and energy in

units of J. (We shall also drop the subscripts on x/ and

y/ from here on.} In the lattice-gas interpretation of (16),
0. . = + 1 means site j is occupied (by an "atom");

1
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o. . = —1 means site j is vacant. This model has a bulk
phase transition at P, =0.221655 (Ref. 30). For T (T,
there may be a first-order interface between a predom-
inantly o. . =+1 phase and a predominantly o. = —1

phase. The ECS is a cube at T=O. For 0& T & Tz all
interface orientations are expected to be stable. ' -At
T =0 the (100) facet consists of a plane of bonds between
spins of opposite sign. As T increases, fluctuations are
excited as spins Rip in the bulk (gas atoms and vacancies)
and on the interface (adsorbed and desorbed atoms). This
is most easily visualized not in terms of broken bonds but
in terms of their dual-lattice plaquettes. Each plaquette
corresponds to a unit of interfacial area and costs energy
2 (i.e., 2J).

In order to study a step on a (100) interface, we need to
make appropriate changes in the Hamiltonian (16). Con-
sider the Ising system as filling a box of volume V and
height L, in which (100) lattice planes of area A are
stacked at z =+—,', +—,', +—,', . . . . To eliminate wall ener-
gies and to enforce a (100) interface, connect the box
periodically in the x and y directions and antiperiodically
in the z direction. The (100) interface can be stabilized at
z =0 by applying an infinitesimal external symmetry
breaking field, as described, for example, by Weeks
et al. ' The ground state of this interface is a plane of
plaquettes at z =0. Let the coordinates of the dual-
lattice sites in this plane be given by two integers (n„,n ).
We now modify the lattice by piercing it with two screw
dislocations of Burgers vector —z at (0,0) and +z at
(N, M). This forces a step into the interface running from
(0,0) to (N, M) at average angle O=arccos(N/L) with the
length L =(N +M )' . Between the dislocations, this
step divides the interface into an upper and a lower ter-
race. We chose to enforce the step in this manner (rather
than by boundary conditions) for combinatorical reasons.
We envision the ground state of the interface with this
step to be planar everywhere except for the "tear" con-
sisting of the ~N~+ ~M~:=-K extra plaquettes consituting
the shortest possible step from (0,0) to (N, M). This state
has degeneracy do(N, M)=(~~~), because the step may
stride ~N times in the x direction and ~M~ times in the y
direction in any order [Fig. 3(a)]. As T increases, atoms
adsorb and desorb on the facet and the step will begin to
lengthen and to develop overhangs [Fig. 3(b)]. The total
free energy of this system will have contributions scaling
like V from the bulk, like A from the (100) interface, like
I. from the step, and like I., from the screw dislocations,
plus end effects of order unity from the regions where the
step terminates. Since we wish to extract the step free en-

ergy, we must also subtract the screw-dislocation contri-
bution in addition to the bulk and surface terms already
subtracted in Eqs. (8b) and (12). It turns out that the
screw dislocations do not contribute to the orders con-
sidered in our calculation. Thus, we absorb them, for no-
tational convenience, in the bulk free-energy term, i.e.,
fb~f„+2(L,/V)f„„,where they can henceforth be
ignored.

In the canonical ensemble, the macroscopic orientation
of the step is fixed by fixing % and M. As a consequence,
plaquettes can only be excited in pairs so that & has ei-
genvalues E„=4nwhere n is one half the number of pla-

(a)

(0,0)

~II
I

(0 o)
FIG. 3. Typical step configurations of the simple-cubic Ising

(100) interface: (a) T=O, {b) T &0. The "bare" step is, by our
convention, a non-self-intersecting line lying in the plane as in-
dicated by the bold line.

quettes. The lowest excited state corresponds to adding
two plaquettes to the step. The canonical low-T expan-
sion variable is, therefore, v =—e "~, and the expansion of
the canonical partition functions becomes

—p~
Tre * =doe ~'"+ ' 1+ g g„(N,M; A; V)u"

n=1

(17)

where d0g„ is the degeneracy of the nth excited state.
In the grand canonical ensemble, step orientations are

summed over by summing over M at fixed 1V. The
ground state is then nondegenerate and corresponds to a
straight step of N plaquettes from (0,0) to (N, M =0). Be-
cause M is free, plaquettes can be excited one at a time
with the lowest excited state corresponding to the two
steps of N+1 plaquettes from (0,0) to (N, M =+1). The
expansion variable is now w—:e ~=V'u. At order w"
the step can terminate at the n + 1 positions
[N, M(n, m)], where M(n, m)=n —2m with
m HI0, 1,2, . . . , nI. For a step terminating at M, the
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field contribution to the Hamiltonian is
xx.f&dX~ = —xM and the grand partition function be'-

comes
r

QTr exp P & s xx J dX ra
0

e
—2P( A +N} 1+ ~ —(~) n~ gn X l8

n=1
(18)

with

n

g„(x) y M g(„M}/P(N,M; A; V)
M =n(mod2)

X [2 cosh(PxM ) —5~ 0], (19)

where the prime indicates that the sum is over even (odd)
M if n is even (odd), and we have taken advantage of the
symmetry, g„(N,M) =g„(N,—M). Low Texpan-sions for
I (z) and fb take the form

(20)

and

fb= TXfb".—
J =3

(21)

and

1—T lim —g (yj —AI
~
—Vfb )v~

L J=
(22)

OO QO

y(x)=2 —T lim —gy. w~ —g(AI, . + Vfb )w '

X ~N . , J,.
2

(23)

where c—:~cosO~, s = ~sinO~. g~" &yjv J and g~",yj v~ are
the series expansions of ln(1++„(g„v") and
ln(1++„"}g„w"),respectively. Note that, if the limit of
Eq. (23) is to exist, then y,~~ cannot contain any A- or V
dependent terms. Equation (22) shows that, at T=0,
y(8) has cusps at 8=0 and symmetry equivalent angles.
It follows from the symmetry of the lattice that, at finite
temperature, By(8)/BO=0 at 8= m. /4 and 8=0. Since all
step orientations are stable, Eq. (9) then implies that, con-
veniently, y(0) =y (0) and y(vr/4) =v'2y(x =y).

To calculate the degeneracies g„,it is most useful to
develop a diagrammatic notation. To this end, we distin-
guish three classes of excitations [see Fig. 3(b)]. These
are (1) single-layer adsorptions and desorptions on the
upper and lower terraces but not overhanging the step,
(2) multilayer excitations and overhangs, and (3) bulk ex-
citations (bubbles), i.e., excitations not topologically con-
nected to the main sheet of plaquettes. Class 2 may be
further subdivided into configurations not containing

Low Texpansio-ns of y(8) and y(x) are obtained by sub-
stituting (17) and (18) [and also (20) and (21)] into (Sb)
and (12), respectively, to obtain

y(8)=2(c+s) —T[(c+s)ln(c+s) —c inc —s lns]

FIG. 4. This figure illustrates that the step cannot be chosen
as a single non-self-intersecting line without ambiguity. For the
configuration shown, that ambiguity arises in the same way for
the 2D and 3D Ising models. If we let white be "up" and shad-
ed be "down, " this configuration could be considered to be ei-
ther a step with a downward indentation and a white discon-
nected excitation or a step with an upward indentation and a
shaded disconnected excitation. At each order considered in
this paper, the number of ambiguous 2D configurations equaled
the number of ambiguous 3D configurations (Ref. 34).

overhangs, so-called solid-on-solid (SOS) configurations
and non-SOS configurations. If we include only class 1

and class 2 SOS configurations, we obtain the expansion
for the corresponding SOS model. ' For combinatorial
convenience, it is our convention here to take the step it-
self (the "bare" step) to be a single, non-self-intersecting
line lying in the plane. Since this line cannot generally be
chosen without ambiguity in the presence of additional
excitations (see Fig. 4), summing over all possible distinct
lines (of some given length) in accordance with this con-
vention leads to an overcounting which must be compen-
sated. The method described below turns out to handle
this problem automatically, at least to the orders calcu-
lated. We shall comment further on this point at the end
of this section. For class 1 configurations, we adopt the
diagrammatic notation shown in Fig. 5. Class 2 and 3 ex-
citations will be denoted by self-explanatory pictures
(Fig. 6).

Each diagram contains the "bare" step plus a number
(possibly zero) of disconnected parts denoting additional
excitations. These disconnected parts contain contribu-
tions to facet and bulk free energies in addition to the
step free energy. The contribution to the step free energy
results from the fact that the presence of the step reduces
the number of configurations available to the disconnect-
ed excitations. Since a given state of & corresponds to a
fixed number of plaquettes, we can describe this interac-
tion as being due to two mechanisms: First, disconnected
diagrams abutting the step are not allowed because this



11 050 MARK HOLZER AND MICHAEL WORTIS 40

would annihilate plaquettes and, secondly, disconnected
diagrams straddling the step are not allowed as this
would create plaquettes. We may, therefore, write for the
class 1 diagram 4-2)

4-2)=Sx2)—(S-2)), , (24)

where (O'-Xl)& denotes the number of 2) configurations
disallowed in the presence of the step S. For singly
disconnected diagrams we have

¹ DIAGRAM

11 (

WEIGHT

INI(IN 1+1) IMI(IMI+1)

IMI+1 INI+1

IN M I

K

INI(INI+1) ——(K+IMI+N +2)+INMI

+2 +K— —2 + (NI-+M}
IMI+1

(&'-Z') =(&'-&')„+(+-X') (25)
2INI(N +lNI+1)

where (4-2) )„denotes the number of abutting and
(4-2))z the number of straddling configurations. Multi-
ply disconnected diagrams are more complicated but the
same general principles apply.

If we were to allow only desorptions on the upper ter-
race level and adsorptions on the lower, interface
configurations would be isomorphic to those of the 2D Is-
ing model with an interface between "up" and "down"
phases in lieu of the step. For this model the interfacial
free energy I 20(8) and the ECS y2D(x) are known exact-
ly. ' ' Although the symmetry of & between adsorp-
tions and desorptions destroys this isomorphism, we can
still take advantage of the exact 2D solution to simplify
the full 3D combinatorics. Note that class 1 diagrams
can equally well be used in the expansion of I zD(0) and
y2D(x), if we ignore the fact that they are to represent
both adsorptions and desorptions. In 2D, the nature of
the "interaction" between disconnected parts and the
step remains unchanged from 3D (dual-lattice bonds re-
placing dual-lattice plaquettes), so Eqs. (24) and (2S) hold
also for the 2D interpretation of the diagrams. For singly
disconnected diagrams ( 4-2)' )3Ds

=2(S-2) '
)2Ds, as

both adsorptions and desorptions can straddle the step.
However, 4 and (4-2)')~ have the same value, whether
interpreted as 2D or 3D configurations, because adsorp-
tions (desorptions) are allowed to abut the step on the
upper (lower) terrace. This allows us to shift the necessi-
ty for doing the explicit combinatorics of many 2D
configurations up by several orders from where they first
occur by writing

4INMI
K

Ag3.
'

CLASS 1

DIAGRAM

I I I t1

Ag4.
'

CLASS 1

DIAGRAM
I ~l

3 It

:: r2Ds

( I~l
Il Il

zDs

' r2DS

CLASS 2

DIAGRAM

WEIGHT

WEIGHT

—(K+2)x(I)

—(K+I)

—2K—(II)

(II)+K

WEIGHT

generic
diagram definition

$0
1—x [number of configurations

of a step of IMI+INI+n plaquettes
whose ends are fixed at (0,0)

Sn and (N, M)); do =
IMI

IMI+INI

number of configurations avail-
lable to ad/desorptions of the
shape indicated

FIG. 5. Definitions for class 1 diagrams.

S-& + Q„„dxinutnber of disconnected
0

I~ I

configurations possible in the
presence of the step indicated)

FIG. 6. A list of the diagrams which had to be evaluated ex-

plicitly to obtain the correction terms to the 2D Ising model at
the orders indicated. Each of the class 2 and 3 diagrams shown

has another version in which gas and solid sites are symmetri-

cally interchanged. All these configurations are, of course, in-

cluded in the weights given. Only V- and A-independent terms

are given; as in the text, K:—~M~+ ~N~. The subscript A indi-

cates that the number of forbidden abutting configurations is to
be counted. The subscript 2DS means that the number of for-

bidden straddling configurations of the diagram, interpreted as a
2D diagram, is to be calculated. b (diagram) denotes the

difference between the 3D and 2D interpretations of the dia-

gram. The notation + IN+-+MI means that the previous term

with Xand M interchanged is to be added.
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DIAGRAM
pt~t t~t

Ag5.
CLASS 1

pit It I~I ~2DS

10
r2DS

WEIGHT

—(K+4)x(III)

—(K+3)x(I)

21

22

DIAGRAM

CLASS 2

WEIGHT

—(IV)

2(K+2)x(I)

t~t $

2DS

N +M—2(K+2)x(I) + 2 8 K
—}2K—4

12

13

14 h,

tt tt

}5 ~~ lt tl

'r2DS

—y2DS

—2(K+2)x(I)—(IV)

(IV) +(K+2)x(I)

2K—10x(1)+2x(V)

+(K+6)x(II)

—3K

3K—4—12K+2INIVli

24

25

27

It'll
I I

I [

.ie
I

T

2x(II)

INMI
K

INMI
K

17

t

19

::22DS

"p2DS

22DS

—8(K+1)—2x(II)

—2K—2x(II)

¹
28

CLASS 3
DIAGRAM

--0-l7
WEIGHT

—2K

2O t~ tt

Wt 22DS

—2K—2x(II)

FIG. 6. (Continued).

1y(8)=I ~D(8) —T lim —g [(y, —
y~D ) —&(lj—f~D )

—Vf~]u'2D
J

(26)

and

oo Qy.—:I 2D(8) —Tg lim
J=

u~=l (8)—Tg b.uj
J'=1

(27)

y(x)=y2D(x) —T lim —g (y —
y2D )w~ —g [A(1";—f2D )+Vfb ]w '

2

(28)

oo Qy .

:=yzD(8) —Tg lim
J= L

w J=y zD(8) Tg bj w~ . —
J =1

(29)

In these equations y2D and yzD are the 2D versions of y;
1 1

and y;, respectively, i.e., they are the terms in Eqs. (22)
and (23) arising from the 2D interpretation of class 1 dia-
grams. f2D is the 2D bulk free energy for the 2D Ising
model. The effect of this rearrangement is that many

I

terms cancel in the outermost brackets of (26) and (28), so
that the number of diagrammatic terms corresponding to
Ay; and Ay; that remain to be evaluated is signi6cantly
reduced (at least at Iow orders). This is a tremendous
simplification, as the order-by-order calculation of 4 and
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TABLE I. Summary of the low-T expansion of the step free energy y(0).

3D Ising

y(0)=I 2D(6) Tg b e
n =3

c:—/cos8[, s —= fsin8[
SOS

—(e +s)
c2 s2—4(c +s)—2 —+-
S C

CS

c+s
c4 s' ~ 2

2 —3+—
3 + (7cs —1)

S C C+S
c2 s2—27(c +s) —8 —+-
s c

—11~—
2

—(c +s)
2 2—6(c +s)—2 —+-

s c
CS

C +S
c4 s4 2

2 —+—+ (7cs —1)
s c c+s

r

c2 s2—30(e +s)—12 —+-
s c

15 Q2
2

vs ~2
2

(4-2) ) „diagrams is exceedingly tedious. Also, all terms
involving 3 and V vanish, as is necessary if the thermo-
dynarnic limit L~~ is to exist. Because these terms
cancel, the Ay; and Ay; can be expressed entirely in
terms of the A- and V-independent parts of g; and g2D .

i

If a;, Ag;, a;, and Ag; denote the 3- and V-independent
parts of gzD, (g; —

g2D ), gzD, and (g,. —gzD ), respective-

ly, we can, therefore, simply write
'I

g b, y u'=ln 1+g(a, +bg;)u' —ln 1+ ga, u'

calculating additional diagrams. The expansions of the
necessary nonvanishing a; and hg; are simply obtained
by appropriate substitution into Eq. (19) (put g =a to
evaluate a and g =bg to evaluate 4g ).

To the orders calculated here, the method of expansion
described above solves the problems associated with the
ambiguity of defining the step as a single, non-self-
intersecting line (Fig. 4). We find that, with consistent
use of that definition, diagrams conspire such that the
number of overcounted configurations is the same for the
2D model as it is for the 3D model, so that they cancel in
the calculation of the Ag; (Ref. 34).

g Ay iuj=ln 1+ g(a;+bg, )iu' —ln 1+ pa, iu'
j=l i=1 i=1

(30)

(31)

IV. RESULTS AND DISCUSSIQN

The results of our expansions are summarized in
Tables I and II. The series for I 2D(8) and y (x)zD are
given in Tables III and IV (see also Appendix A). Let
y(8, 1V) and y (x,N) denote the series for y(8) and y(x)
summed to order N, inclusively. Figure 7 shows the be-

It is crucial here that a;, hg;, a;, and Ag; contain not only
the terms of order L ', but also those of order L, , since
the latter get multiplied by order I. ' terms at higher or-
der in the expansion of the logarithms. The nonvanishing
a's and hg's needed in (30) for the calculation of the b,y;
to order 5, inclusively, have the diagrammatic expansions

ai =(I),
a2 = (III)—( II),
b.g3 =(1),
bg~=(2)+(3)+(4)+(5)+(6)+(7)+(8),

(32)

FIG. 7. Polar plots of the low-temperature series of y(0) at
the temperatures indicated. The different line styles indicate the
order to which the series was summed: the dotted line is the
first, the dash-double dotted line is the second, the dash-dotted
line is the third, the dashed line is the fourth, and the solid line
is the fifth order. At T=0.4 the divergent region about 8=0
and m/2 is still very narrow and barely resolved in the figure.

29

~g5 = g (D),

where the numbers in parentheses label diagrams listed
(with their numerical equivalents) in Fig. 6. The correc-
tions Ay; can now be evaluated to eleventh order without
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TABLE II. Summary of the lorv-T expansion of the equilibrium facet shape y (x).

b„(x)

y (x)=y»(x) —Tg b„(x)e
n=6

y= cosh(Px )

3D Ising
b„(x)

SOS

6
7
8
9

10
11

—1
—2X—4X'
—8X'+ 2X—16/ —16/ +3
—32X' —72X' +68X

—1
—2
—4
—6
—29
—36

—1
—2X
—4y —2
—8X' —2X
—16' —24' + 8
—32' —88' +74'

—1
—2
—6
—10
—32
—46

expansion as a function of 8. y(8, Ã) diverges about its
T =0 cusps at 8=0 and converges best at 8=@/4 (and
their symmetry equivalent angles). Interestingly, the an-
gular radius of convergence decreases with increasing T
and presumably vanishes at Tz, reflecting the singular
nature of the step free energy, which is expected to go to
zero in Kosterlitz- Thouless fashion like

CI+Ts ——Ty(8)~Be " as T~T„ (33)

where B and C are constants. On the other hand, y (x,Ã
converges best at x =0 (8=0), with a radius of conver-
gence in x which also appears to vanish as T—+ Tz . Fig-
ure 8 shows y(x, 1 1) as a function of x and the Legendre
transform of y(8, 5), both normalized to the crystal dia-
meter [cf. Eq. (15)j. At low temperatures the grand
canonical series nicely fills in the part of the facet shape
not obtainable from the canonical series. Figure 9 shows
a plot of y(8, % versus T in the symmetry directions
8=m /4 and 8=0. These series appear to converge to the
asymptotic form (33) (see also Fig. 10) by developing
minima which move with increasing order toward the T
axis from below. This behavior of the series is consistent
with that of the BCRSOS model ' which, for 0=m /4, is
given to order v in Appendix B.

To investigate the asymptotic properties of our series,
standard Pade and ratio methods cannot be used direct-
ly because the singularity of Eq. (33) is an essential singu-
larity. Since there is no obvious way of circumventing
this problem, we use alternate methods, motivated main-
ly from a study of the exact solution of the BCRSOS
model. ' The low Tseries f-or y(m/4) of the BCRSOS
model (see Appendix B) is an alternating series: Order u

is negative, orders v to v
' are positive, orders U

" to U

are negative, and so on. The number of consecutive
terms of like sign presumably increases with increasing
order. For T ~ 0.85 T&, the convergence of this series is
dominated by the first sequence of positive terms, i.e., the
terms of order u" with n H [k, . . . , l J, where k =2 and
l = 10 here. Let a„denote the coefticient of v ". It turns
out that the ratio r„:=a„/„a&,decreases with n for
n E j @+I, . . . , ]/=P. Hence, if T is sufficiently low
such that Ur & 1, it follows that Ur„&1 for
n ~m(n, m CP) and, therefore, the series g'„+,a„u"
is bounded by the geometric series xa u g~:o 'xi
=—xa u S(l, m), where x=ur . Thus, if m ((I, a
reasonable estimate for g„+,a„u" is
a u xS(ac,m)=a u x/(1 —x).

We shall assume that the generic form of the complete
series for the step free energy of the SC Ising model is
similar to that of the corresponding series of the

TABLE III. Coe%cients of the low-T expansion of the 2D-Ising interfacial free energy I »(0).

I,o(8)=2—Tgb2D (8)e
n=0

b2D ( 0) c = Icos81, s —= Isinel

(c +s)ln( c +s) —c inc —s lns
(c +s )/(cs)
[—3(e +s )+2{s'+c')]/{2c's')
[9(c"+s")—10(c +s )+3(c'+s )]/(3c's')
[—31(c' +s")+44(c' +s' )

—22(c"+s")+4(c +s )]/(4c s )

[121(c' +s' ) —204(c' +s' )+132(c"+s")—40(c"+s' )+5(c"+s")]/(Sc s9)

[—515(e +s )+1QQ6(c +s ) —7g6(c~ +s )+312(c +s ) 65(c '+s —)+6(c +s )]/(6c s )
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I I I i
)

I I I I geometric series, so that

&~ &b~= —TU (b~+ )x/(1 —x),

provided 0&x &1, where

I i I I
t

I l 1 i

v'2 v'2+
& / b~ —,+X—1

0.0 0.5 1.0

FIG. 8. The facet shape at different temperatures, normal-
ized to the center-of-crystal to center-of-facet distance as ob-
tained from the eleventh-order series for y (x) (dotted curve) and
the Legendre transform of the fifth-order series for y(0) (solid
curve). The nonphysical parts of the Legendre transform are
the result of the divergences of the series for y(0) (see Fig. 7).
Note that the dotted curves are not symmetric under reflection
about x =y. This effect is a consequence of distinguishing the x
and y axes in the grand canonical expansion and disappears at
infinite order. Because of the convergence properties of the
series, the best numerical estimates of the facet shape at finite
order are obtained for 8& [~/4, a/2].

BCRSOS model. In order to estimate the error made in
truncating the series after order X, let us assume further
that the grand canonical series cannot converge
significantly better than the canonical series, so that we
can restrict our analysis to 8=m. /4. For the Ising and
SOS models, the foregoing paragraph then implies that it
is reasonable to expect the series for the error

=y(n /4) y(—m/4, N), fo—r Ã )4, to be bounded by a

is the ratio of the ¹h to the (N —1)st term of y(rr/4, N)

While it is only clear that this must be so at suSciently
low T, we shall assume that 6& gives a reasonable error
estimate for fractional errors 6,5/[y(~/4, 5)+b,~] as high
as —10%. For N =5 we find that the fractional error is
less than (0.1%, 1%, 5%%uo, 10%) for T & (1.72, l.92,
2.04, 2.09); for N =4 these temperatures are (1.61, 1.78,
1.87, 1.90). For the SOS model the corresponding esti-
mates are for N =5, T & ( 1.73, 1.93,2.07, 2. 12) and for
N =4, T & ( 1.51, l.62, 1.66, 1.67 ).

If we take the fractional error in approximating y(0)
by I zD(8) to be 1 —I zD(0)/[y(m/4, 5)+85] we find it to
be less than l%%uo for T & l.79 (less than O. l%%uo for
T & 1.51). Below T = l.79 the order U and U non-SOS
contributions are less than 0.08 and 0.03%%uo, respectively,
so that bubbles and overhangs are unimportant in this
temperature range. Above T = 1.79, the facet-shape
anisotropy, as approximated by [y(rr/4, 5 )—y(0, 11)]/y(0, 11), is less than 4X10 for both the Is-
ing and SOS models. At T =1.79, the normalized facet
radius pf =0.4. It follows that, in the region of tempera-
ture where the facet has experimentally significant anisot-
ropy (i.e., for T & 1.8), the facet shape is essentially given
by the 2D Ising ECS with the convergent corrections cal-
culated in Sec. II.

TABLE IV. CoefFicients of the low-T expansion of the 2D-Ising equilibrium crystal shape y»(0).

y~o(x) =2—Tg b2o (x)e
n=1

b2D (X) y —=cosh(13x)

1

2
3

5

6
7
8
9

10
11

12

2X
2X' —2
-X —2X

4y —4
—"X'+8X' —&4X
32 +6+ 32+4 46+2+ 10
3 3

+96/ —128/ + 14/
32/ +256/ —304/ +16—'"X'+ 640X' —608X' ——",'X'+ 146'
512 +10+ 1536+8 928g6 1 504g4+ g 1 8~2 122

„

y"+3584' —512' —6560' +3448' —146'
1024+12+ g 192+10+3584+8 23 552+6+ 1 1 556+4 364
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In the temperature range 1.85T&2. 1, T is high
enough for the series to di6'er significantly from the 2D
Ising series but low enough for us still to have some
confidence that the series have converged. Assuming
that in this region y(n. /4, 5) and y (0, 11) are already well
approximated by their asymptotic form (33), one may
hope to extract the critical parameters B, C, and TR.

I I t & t t sC
I

a.o

0.0 I I I I
i

I I t I
[

I

0.0 1.0 2.0

FIG. 10. The normalized facet radius p& in the symmetry
directions as a function of temperature. The lower (upper) solid
curve is calculated from the canonical (grand canonical) series
summed to fifth (eleventh) order at 0=0 (L9=m/4). The dotted
curve is an extrapolation into the critical region, as described in
the text. The error bars indicate the uncertainty associated with
that extrapolation. The middle arrow indicates the T& associat-
ed with the dotted curve. The arrow on the left-hand side
(right-hand side) indicates the lower (upper) limit of T&, as es-
timated by Adler (Ref. 16) and corresponds to the lower (upper)
limits of the error bars shown.

0 2 4 6 8
Indeed, plots of

C(T)= —2(Tz —T) tjlny(O, N)/BT

(b) 4 8 (T)=y(8, N)exp[—C( T)/QT~ —T ]

0 2 4 6 8

FIG. 9. (a) The canonical series y(n. /4, 1V) for the step free
energy and (b) the grand canonical series y(O, N) for the facet
shape, summed to the orders N indicated, as a function of tem-
perature. Conveniently, &2y(x =y) =y{w/4) and y(0) =p(0) as
discussed after Eq. (23). The solid curves are the Ising result;
the dash-dotted curves are the SOS result.

versus T for various values of T~, at 8=m/4 and 0, show
a plateau for Tz =T~~&„„„~=2.46 over the temperature
range 1.8& T &2.0. The failure of the plateau to extend
beyond T=2.0 is consistent with the convergence esti-
mates above. The functions 8 ( T) and C ( T) [which
would be constants if the series were exactly equal to (33)]
have qualitatively the same shape: For Tz ) T~, they in-
crease monotonically over the temperature range of in-
terest; for Tz & TI, the plateau deepens into a minimum
which becomes deeper and more narrow with decreasing
Tz. Guided again by the BCRSOS model and the fact
that we observe no significant change in the plateau pa-
rameters from order N=4 to order N=5, we take the
plateau parameters to be the critical parameters. To ex-
tract these parameters numerically, we performed a
least-squares fit of the functional form (33) to
[y( /rr, 4)5y+( 011)] 2/over a temperature interval of
width 0.2 centered at T* with fitting parameters B, C,
Tz, and T . For the Ising model we obtain B =9.7+1.0,
C =2.05+0. 15, and T =2.46+0.02 with T*=1.9. For
the SOS model B = 10.3+1.5, C =2.13+0.15, and
T~ =2.48+0.03 with T*=1.9. The uncer'tainties quoted
are associated with the fit and do not necessarily
represent an estimate of how close these numbers might
be to the true critical values. The roughening tempera-
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tures obtained in this way are consistent with
Tz(lsi ng)=2. 475+0.075 and Tz(SOS)=2. 54+0.07, as
obtained by Adler for the Ising model, all the critical
parameters are consistent with B=9.84+2.0,
C =2. 12+0.13, and Tz =2.44+0.09, as obtained from
Monte Carlo data for y(0). ' Figure 10 shows the T
dependence of the normalized facet diameter of the Ising
model, extrapolated all the way to T~ using our fit to Eq.
(33). The lower (upper) limit of the error bars shown
there correspond to fits obtained over the interval
1.905~ T~1.955 with Tz constrained to be the lower
(upper) limit of Adler's estimates for T~. We emphasize
that we do not recommend the methods of this paper if
one is interested in Tz only (and not, for example, in the
amplitudes B and C also). In such cases, the series
methods of Weeks et a/. ,

' ' with their well-understood
asymptotic analysis, ' are probably more efficient. Our
calculation, on the other hand, is the only one so far to
address the anisotropic step free energy and the shape
and size of facets.

It is interesting to examine the assumption that the
series are already in the asymptotic regime over the tem-
perature range 1.8 ~ T + 2. 1 in the context of the Monte
Carlo simulations of Mon et al. ' While their data, extra-
polated to infinite system size, shows (33) to hold over the
entire temperature range 1.8& T & T~, they fall below
the 2D Ising value by about 10% at T =1.8, where our
expansion implies that the 2D Ising result is a lower
bound. In principle, this discrepancy could be due to
large negative coefficients at higher orders of our expan-
sion; however, in light of the preceding discussion, this is
unlikely. A more likely source of error, as pointed out by
Mon et al. in Ref. 12, is the finite-size-scaling analysis of
the Monte Carlo data, performed with only three data
points at each value of T. The fact that our critical pa-
rameters agree with those of Mon et al. in spite of these
problems is probably attributable to the sensitive depen-
dence of y(0) on the precise numerical values of the criti-
cal parameters.

V. CONCLUSIONS

We have shown how to calculate step free energies and
the corresponding equilibrium facet shapes in low-
temperature expansion. The combinatorics involved is
significantly reduced by structuring these expansions as
perturbation series about the interfacial properties of the
2D Ising model. The two expansions are related by a
Legendre transform and can be thought of as canonical
and grand canonical representations of the same physics.
The grand canonical form of the expansion gives the
facet shape where it is not accessible from the canonical
expansion of the step free energy.

At temperatures where the facet has experimentally
significant anisotropy, the facet shape is essentially given
by the 2D Ising ECS normalized to the facet's surface
free energy, with convergent corrections displayed in
Tables I and II of this paper. Corrections to the 2D Ising
result due to additional (non-2D) SOS, overhanging, and
bubble configurations enter at orders e ' ~, e ' ~, and

e ~, respectively. These corrections are less than 1%
for 0 & T & 1.79=0.72' and less than 0.1%%uo for
0 & T & 1.51=0.61'. In this temperature range,
overhangs and bubbles are unimportant. At higher tem-
peratures the facet shape is nearly circular, with a nor-
malized facet radius of less than 0.4 and anisotropies of
less than O. 1%%. Numerical extrapolations into the
asymptotic critical temperature region of the step free en-
ergy yield roughening amplitudes consistent with recent
Monte Carlo data. ' The effect of non-2D-Ising
configurations is to raise the roughening temperature
from T, (2D Ising) to the true T~ (an increase of -9%%uo)

and to build in the proper Kosterlitz-Thouless roughen-
ing singularity.

The facet-shape information provided by Figs. 8 and
10 is potentially useful in analyzing experimental data
from any real crystals which may be modeled by the
nearest-neighbor SC Ising model, but for which the
effective nearest-neighbor coupling is unknown. For ex-
ample, Tz is often difficult to measure by direct observa-
tion of the vanishing of the facet, either because the facet
edge cannot be located precisely (and/or is very sensi-
tive to dynamical effects) or because the roughening tran-
sition is preempted by bulk melting. In such situations, it
may be feasible to measure the facet diameter in one of
the symmetry directions at a lower temperature T,„.
The corresponding reduced temperature T can be read off
Fig. 10, from which the effective nearest-neighbor cou-
pling is determined as J=k~T,

„

/T. The roughening
temperature is then given by (from Ref. 16)

T~ =(T„/T)(2. 475+0.075) .

In nature most crystals are unfortunately not simple
cubic, and next-nearest-neighbor interactions cannot al-
ways be neglected. As long as interactions remain
nearest neighbor, generalization is straightforward. If
next-nearest-neighbor forces must be accounted for, the
nature of the problem changes drastically. The energy of
a configuration will now depend not only on the number
of plaquettes but also on the number of corners. This
makes the combinatorics very difficult and completely
different in character from what we have had to deal with
here. It is clear that, in any case, it will be useful to ex-
pand about a 2D model describing the central layer con-
taining the step. An interesting open question is whether
the step free energy is rigorously bounded from below by
the interfacial free energy of that 2D model and, if so, un-
der what conditions.
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APPENDIX A: SERIES
FOR THE 2D ISING MODEL

Pl 2D(8)= ~cos8~arcsinh(a~cos8~ )

+
)
sin 8[arcsinh( a

(
sin8( ) (Al)

and

The interface free energy per unit length and the ECS
of the 20 Ising model are given in their most convenient
form in Refs. (17) and (19), respectively, as oo

=2—2T
n odd

and

—I 2D(7r/4) =yzD (x =y2D ) = T ln(sinh2p)
1

2

(A5)

nipulation computer program) the series displayed in
Tables III and IV. In the symmetry directions these ex-
pressions simplify to

I zD(0) =yzD(0) =2+ T ln(tanhP)

~yzD (x)
~

= T arccosh ——cosh(Px )

where

=1 1 —4ha=—
1+(sin 28+ 4h cos 28) '

' 1/2

(A2)

(A3)

=2—T ln2+ g-
n=l

APPENDIX 8: SERIES FOR y(7r/4)
OF THE BCRSOS MODEL

(A6)

and

h
sinh2P

(A4)
cosh 2P

Expanding (Al) in powers of v =—e ~ and (A2) in powers
of w =e ~, we obtain (with the aid of an algebraic ma-

Reference 7 gives a closed form series for the BCRSOS
facet shape in terms of implicitly defined functions.
Reexpanding this series (with J~2J to make contact
with the energy scale of this paper) in powers of
u =exp( —4I3) we obtain, aided by the algebraic manipu-
lation program REDUCE,

1—y( —)(BCRSOS)=2+T( —ln2 —u+ —'u +—"v +—"u +—'"u +—"'u +""u + '"'u + "'"v
v'2 4 2 3 4 5 3 7 8 9

+. 10823
U

10 6172
V

150053
V

2 1993668
V

5o83256
V

1 445312
U

198297247
U5 11 6 13 7 5 16

814643486
U

~7 1625206543
U

~8 12681689860
U

I9 4858460157 V20 8 7/6 3O4 516U2I
17 9 19 2

340811734532
U

22 2502 599042 576
U

23 4536558436405
U

24 32478 199 348 916
U

25
11 23 12 25

57358896324242 V26 399349718315896
V

27 341 863037952600 U28 4591877224341056 U29
13 27 7 29

7 525021 925258 524
U

30 47 780 502385 670032
V

3~ 145 024421 300 144 799
U

32
15 31 32

410388042705 413 374
U

33 510 842904954910 389
V

34 1 840425 563 886041 612
U

35
33 17 35

+ 356 819 183 917 550 041
U 36+ 31 642 674 797 949 425 588

V
37 + 11 414 142 063 730 282 438

V
38

18 37 19

+ 422991335 163343 500056 v 39+ 630708 193372 567078915 v 40+. . . )13 4
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