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Transfer-matrix method for the complex band structure of superlattices
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We demonstrate that a real-space transfer-matrix method can be used to directly evaluate the
complex and real band structures of superlattices. The transfer-matrix method avoids the introduc-
tion of a supercell in the band-structure calculations. As a prototype we have used the direct space,
minimal-basis linear combination of gaussian orbitals method to evaluate the Hamiltonian and
overlap-matrix elements. Our results for strained (Si)„/(Ge)„(001) superlattices (n =2—5) are
presented. We find all the above superlattices to have indirect band gaps. In particular, for
(Si)4/(Ge)4 the lowest direct transition is at 1.38 eV. The results are in good agreement with recent
experimental measurements.

I. INTRODUCTION

In recent years there has been much interest in calcu-
lating the band structure of superlattices, and not a little
controversy over some of the results. The interest. stems
both from a fundamental concern with electronic struc-
ture of these novel materials and from a practical concern
with the possibility of designing structures that exhibit
desired optical or electronic properties. The controversy
stems both from the difficulty in calculating the electron-
ic properties of these complex structures and from the
problems in growing these materials with sufficient ease
so that a host of experiments on many well-characterized
samples can be performed. A case in point is the strained
(Si)„/(Ge)„(001) superlattices (n =2—6) that have re-
cently been studied. ' For n =4, the majority view'
is that the transition observed at 0.76 eV is indirect, but
some researchers find it to be direct. '

In this paper we present a transfer-matrix method for
calculating the complex band structure of superlattices.
The method can be implemented within any approach
based on a tight-binding description of the electronic
states, ranging from empirical to ab initio self-consistent
density-functional models. The difticulties associated
with a "supercell" basis, which become particularly
onerous as the size of the superlattice unit cell increases,
are avoided: The size of the matrices which must be di-
agonalized in our approach is independent of the size of
the unit cell of the superlattice. Further, the part of the
complex band structure of the superlattice that would be
useful in investigating, e.g. , surface states localized at the
interface between the superlattice and its substrate are
found at the same time as the propagating electronic
states are calculated.

In the transfer-matrix method we seek superlattice
wave functions as linear combinations of two-dimensional
Bloch states constructed from atomic orbitals on each
atomic plane perpendicular to the superlattice axis z. We
henceforth refer to these planes as "superlattice planes. "
Whereas usual band-structure calculations proceed by

specifying the crystal momentum k = ( k„,k, k, ) and
finding the wave-function energies E, we proceed by
specifying the transverse wave vector k, =(k„k ) and the
energy E, and determine k, : For a fixed k, and E,
transfer matrices are constructed which relate the expan-
sion coefficients of two-dimensional Bloch states on a
given superlattice plane to those on previous planes. By
multiplying an appropriate number of these matrices and
using Bloch's theorem, an eigenvector equation is set up.
The eigen values yield longitudinal wave-vector com-
ponents k„real k, specifying propagating states and
complex k, specifying complex bands with real wave-
vector components (k k~ ) perpendicular to the superlat-
tice axis; the eigenvectors give the expansion coefficients
of the superlattice wave function. It is because the
transfer matrices depend only on the range of interaction
between orbitals on different planes, and on the number
of orbitals used in the expansion, that the calculation is
essentially independent of the size of the superlattice
unit-cell size.

We note that Schiilman et al. have used a transfer-
matrix method to evaluate the complex band structure of
bulk materials within the framework of an empirical
tight-binding model. They then use the complex state of
bulk materials to obtain a real band structure for a super-
lattice made up of these materials. But their approach is
quite different from ours. They make an initial guess at
the energy of one of the superlattice states, and for this
energy and for a fixed k, transfer, matrices are construct-
ed for each constituent bulk material using the bulk
empirical matrix elements. The appropriate products of
transfer matrices for each bulk material are diagonalized
to obtain their complex band structures. The complex
bulk states so obtained are used to construct a "reduced
Hamiltonian, "matrix for the superlattice, and the super-
lattice band structure is then obtained by diagonalizing
this matrix. Since the energy is assumed in calculating
the bulk complex states at the beginning, the procedure
must be iterated until the assumed energy and the ob-
tained energy are reasonably close. Brey et al. ' have
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pointed out that this method requires very lengthy calcu-
lations.

In our method we construct one set of transfer ma-
trices directly for the superlattice, and obtain the com-
plex band structure of the superlattice for a fixed k, and
any desired energy. Only one diagonalization is needed,
namely that of the product transfer matrix. More impor-
tantly, we do not make a guess at the superlattice energy
and, therefore, there is no iteration of energy. Further,
the "reduced Hamiltonian" method produces only real
bands, while we obtain complex bands of the superlattice
itself.

The paper is organized as follows: In Sec. II we give a
description of the transfer-matrix method for superlat-
tices. To implement it requires an evaluation of Hamil-
tonian and overlap matrix elements. With an eye to-
wards self-consistent calculations, we detail this evalua-
tion in Sec. III for a linear combination of Gaussian or-
bitals (LCGO) expansion of both the atomic orbitals and
the effective single-particle potential. This expansion al-
lows for the analytic evaluation of matrix elements; in an
a priori calculation the expansion coefFicients would be
modified after each calculation until self-consistency was
achieved. In Sec. IV we present a sample calculation ap-
plying our method to the strained (Si)„/(Ge)„series of su-
perlattices. Since our main goal in this paper is to
demonstrate the transfer-matrix method, we do not per-
form a self-consistent calculation. Instead, we simply use
the semi —ab initio orbitals and effective potentials of
bulk semiconductors to construct the superlattice orbitals
and effective potentials. In this manner we do not do any
fitting to the superlattice properties. The band gaps that
result from the calculation should thus be identified with
the observed transitions, as opposed to density functional
calculations where the "band gaps" must be adjusted
with quasiparticle corrections, '" or more approximately
by an upward shift in the conduction bands. ' ' Despite
the simple model used for calculating the matrix ele-
ments, it is gratifying to see how well our results agree
with experimental results. ' Our results and conclusions
are given in Sec. V. For simplicity we only present the
real bands found from our calculation. We plan to turn
to applications involving the complex bands, as well as
self-consistent calculation and the calculation of optical
properties using this approach, in future publications.

II. TRANSFER-MATRIX FORMALISM
FOR SUPERLATTICES

The transfer-matrix formalism for superlattices is simi-
lar to the formalism of Schulman et al. for bulk materi-
als. However, some of the details are different and, more
importantly, the wave functions and Hamiltonian matrix
elements in our approach refer to the superlattice. We
outline the formalism below, relegating some of the alge-
braic details to the Appendix.

Let A index the atomic planes perpendicular to the su-
perlattice axis direction (z), such that A=O refers to the
plane at the origin. We denote the ith orbital of an atom
located in the Ath plane by N;z(r —diaz), where dz is the
distance between the Ath plane and the origin along z. A

two-dimensional Bloch state for this orbital is construct-
ed as follows:

g, ~(r —d~z)= g e ' 4;~(r R(A—) d~z—),
R(A)

(2.1)

where the summation is over all the two-dimensional vec-
tors R(A) pointing to the lattice sites in the Ath plane.
The full two-dimensional Bloch state in the Ath plane,
1t~, is given by

P (r —d z)=g C, (A)g, (r —d z), (2.2)

where C;(A) are the expansion coefficients for the
different orbital Bloch functions. Finally, the superlattice
wave function is written in terms of these Bloch states as

q'(r)=y ijjA(r "A*)=Xx C (A)0 A(r "Az) ~ (2.3)

In order to find the C;(A) we require the wave function
%(r) to satisfy the Schrodinger equation 8%(r) =E+(r)
which, in the nonorthonormal g, z basis yields

gg fdr[/, "~(r)(8 E)g~~—+t,(r d~+~z)]C—J.(A+6 )

(2.4)

Defining the quantity in the square brackets to be
(H~ ~+& );, Eq. (2.4) can be rewritten as

g g (Hg p+g)& C.(A+A )=0
j

(2.5)

Hp p+gC(A+6)=0 (2.6)

Solving (2.6) for C(A+ Y), one gets

Y—1

C(A+Y)= —H, g H. . .C(A+~) .
A= —Y

(2.7)

Using Eq. (2.7) and the trivial identity C( A+ 6 )

=C(A+5), a matrix equation of the following form is
obtained:

C(A+1 —Y)
C(A+2 —Y)

C(A+2Y —Y)

C(A —Y)
C(A+1 —Y)

C(A+2Y —1 —Y)

(2.8)

where T~ is defined by

In principle, the outer sum runs over all the planes in the
superlattice. However, at some point the contributions of
the far planes become negligible and one can truncate the
sum. Let us restrict the sum to range —Y~+A~Y,
where the choice of Y depends on the desired accuracy of
the calculation. With this truncation and using matrix
notation, Eq. (2.5) becomes
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0
0 0

0

0
0
0 (2.9)

GA, A+1 —Y GA, A+2Y —1 —Y

Here 1 in general, is a nonsquare unit matrix and the ma-
trices G in (2.9) are defined by

transfer matrix is essentially independent of the superlat-
tice period.

—1
6A, A —Y H A A+YEA, A —Y ~

~—1
GA A+1 —Y ~~ A A+Y A A+1 —Y ~ (2.10)

III. LINEAR COMBINATION
OF GAUSSIAN ORBITALS (LCGO) METHOD

0'(r+drz)=e ' "%(r),

which in terms of expansion coefficients becomes

(2.11)

C(A —Y+I )

C(A+1 —Y+r)

C(A+ Y—1+r)

C(A —Y)
C(A+1 —Y)

0

C(A+ Y—1)

(2.12)

~—1
~A, A+2Y —1 —Y ~~ A, A+YEA, A+2Y —1 —Y ~

etc.
Now if in the x direction the superlattice repeats itself

every I number of planes, then from Bloch's theorem we
have

In the past the LCGO method has been used in calcu-
lating the band structures of a variety of bulk materials
such as group-IV and -III-V semiconductors, insulators,
metals, alloys, etc. ' ' The advantage of employing the
LCGO method over most other tight-binding ap-
proaches, which are empirical in nature, is that it can be
implemented at either a semi —ab initio or ab initio level.
Moreover, all the integrals involved in the evaluation of
the Hamiltonian and overlap matrix elements can be car-
ried out analytically. The details of this method as ap-
plied by Ching et a/. ' have been adequately discussed.
Below, we give a summary of how we apply this method
to our problem.

The effective -potential of atoms of type A is fitted to
the functional form

Using Eq. (2.8) I times, one can obtain the left-hand side
of (2.10) as follows:

2 pA 2

V (r)= — e " +gC;e ' =V, +V„", . (31)

C(A —Y+I )

C(A+1 —Y+I )

C(A+Y —1+I )

TA, l
P

C(A —Y)
C(A+1 —Y)

(2.13)

C(A+Y —1) '

(2.14)

where

P
TA, I = TA+I TA+I —1 TA+1 TA

Comparing (2.12) and (2.13) we get

In a fully-self-consistent calculation these effectiv poten-
tials would be determined iteratively. Here, we simply
use the semi —ab initio bulk silicon and germanium po-
tentials. That is, as a first approximation we neglect any
modification of these effective potentials due to the fact
that the atoms reside in a superlattice rather than in a—a.r 2 —a,.r 2

bulk crystal. Next, s-type (e '
), p-type (xe ', etc.),—a,.r

'2
and d-type (xye ', etc.) Gaussian orbitals are used to
expand the atomic orbitals as follows:

C(A —Y)
C(A+1 —Y)P

TA, f'

C(A+Y —1)

C(A —Y)
C(A+1 —Y+ )' z"r

C(A+ Y—1)

(2.15)

@",(r) =g I)",„G"(a„,r,p, q, s ), (3.2)

~nr 2

where G "(a„,r,p, q, s) =x~~y~ zz e " " are the Gauss-
ian functions and 2)~~, „are the expansion coefficients.
Defining i—:Ip, q, s I as a collective index, we have

To find the complex band structure for any desired ener-
gy and k„ the product matrix TA & is diagonalized, and
from the eigenvalues the values of k, can be determined.

Note that for very-long-period superlattices many of
the transfer matrices TA, or perhaps products of a few of
them, will repeat a number of time in the product (2.14).
In such a case, the evaluation of the product TA & can be
simplified by first diagonalizing the repeating unit, con-
stru'cting the product in that basis, and transforming
back to the original basis. For such large-period super-
lattices, then, the difficulty in eonstrueting the product

4,"(r)=+2),"„G"(a„,r, i ) . (3.3)

Here again, we adopt the bulk silicon and germanium ex-
pansion coefficients as a first approximation to the super-
lattice expansion coefficients. In a self-consistent calcula-
tion, these orbitals could be improved iteratively. The
matrix elements (Hz z+&), . in terms of these orbit-A, A+ I~J~+~
als and the potential of the form even by (3.1) are present-
ed in the Appendixes. Note that all the integrals in-
volved in these expressions are performed analytically.

To simplify the calculation, we reduce the dimensions
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0

TABLE I. Lattice constants in A.

Substrate

Si 5.43

Si
a&

5.43

aGe

5.82

of our transfer matrices by orthogonalizing the valence
Bloch state of each type of atom to the core states of all
the atoms. In this smaller basis, the valence, states of the
diFerent-type atoms are mixed, and we have the added
advantage that all the matrices Hz z+& are square. For
example, within the minimal number of orbitals scheme
we identify core and valence states of Si as (ls, 2s, 2p) and
(3s, 3p), respectively, while for Ge the core and valence
states are (ls, 2s, 2p, 3s, 3p, 3d) and (4s, 4p), respectively.
So a transfer matrix before orthogonalization includes
four types of H~ ~+& matrices:

(i) the 9 X 9 matrices between two Si planes,
(ii) the 9X18 matrices between a Si plane and a Ge

plane,
(iii) the 18 X9 matrices between a Ge plane and a Si

plane, and
(iv) the 18 X 18 matrices between two Ge planes.

By applying the orthogonalization procedure, we trans-
form all these matrices to 4X4 matrices, as presented in
the Appendixes. Note that this procedure is applicable
regardless of whether minimal or extended number of or-
bitals are used, and that it can, of course, be used for
more complicated superlattices. The product transfer
matrix T~ & is then constructed and diagonalized. The
result is a "first-order" complex band structure of the su-
perlattice. In this paper we stop at this level. In a self-
consistent calculation the eigenstates of T~ z are used to
construct improved potentials and orbitals for the super-
lattice in a manner analogous to the procedure used in
bulk calculations, ' and the procedure is repeated to con-
vergence.

t
I «»~( L f)

X(Lp)

FIG. 1. The strained (Si)„/(Ge)„superlattice Brillouin zone.

[~Re(e ' )~+ Im(e ' )~]' (4.1)

The real bands are then given by

constants obtained from relying on the macroscopic
Poisson's ratio, as described by Van de Walle et al. ' and
Hybertsen et at'. The Si—Ge bond length is taken to be
the average of the cubic Si—Si and the strained Ge—Ge
bond lengths. These values are summarized in Table I.
Results of a self-consistent energy-minimization calcula-
tion' show that the above lattice spacings produce a su-
perlattice geometry which is very close to the minimum-
energy geometry.

The potentials for bulk Si and Ge for simplicity have
been obtained' from the Xa method by adjusting a to
give the correct band gaps of each bulk material. These
bulk potentials are used to construct the superlattice po-
tential as described in Sec. IIB. In this manner we do
not do any fitting to the superlattice properties. The su-
perlattice potential is expanded over 17 planes (i.e., over
each central plane A and eight planes on each side of it).

Here, for simplicity, we only present the real part of
our complex bands. The real band structure of the super-
lattice is obtained from the complex band by requiring

Ek dp
the eigenvalues e ' to satisfy the conditions

IV. RESULTS AND DISCUSSION

In the present work, for a superlattice grown on a Si
substrate we have used transverse and longitudinal lattice

TABLE III. Band-gap and transition energy in eV for
{Si)4/(Ge)4 from the present calculation along with correspond-
ing experimental results from electroreAectance (ER) (Refs. 4
and 8) and photocurrent (PC) (Ref. 8) measurements and the
quasiparticle (QP) calculation (Ref. 3).

Superlattice

{Si)2/(Ge)&
(Si)3/{Ge)3

(Si) /(Ge)
(Si),/(Ge) &

Direct gap

1.86
1.20
1.38
1.26

Indirect gap

0.78
0.77
0.78
0.76

TABLE II. Band gaps (from this calculation) for (Si)„/(Ge)„
superlattices.

Present
calc. ER'

Eg
ZFb

Eo
El

0.78
1.38
2.05
2.43
2.61

0.85, 0.95
1.24, 1.34
1.76, 1.86
2.4, 2.5

2.50, 2.55

0.76, 0.76
1.1, 1.25

1.8
2 2 2 3

2.45, 2.58

'Two different samples were used.
Transitions to zone-folded states at I .

PCa

0.78, 0.90
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FIG. 2. Energy band structure of the strained (Si)„/(Ge)„superlattices, (a) (Si)2/(Ge)2, (b) (Si)3/(Ge)3, {c){Si)4/(Ge)& (note that the
interface bonds lift the fourfold symmetry about the crystal axis, rendering points I.j and I.2 distinguishable), and (d) (Si)5/(Ge)5.
Darker regions represent energy regions where finer energy and transverse-wave-vector mesh size where used.
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ik d~
A cos[Re(e ' )]

Z (4.2)

But A cos is defined between 0 and m, therefore we must
require the condition 0~ k, dz ~m. This, in terms of the
eigenvalues, translates into

lk
Im(e ' ")~0 . (4.3)

Note that, for a chosen energy and fixed k, =(k„,k~),
any vector k=(k„,k, k, ) specifying a point in the Bril-
louin zone that lies on a line parallel to the z and passes
through (k„,k~, 0) specifies a real band as long as its z
component satisfies Eqs. (2.15), (4.1), (4.2), and (4.3). This
means that, for a fixed energy and k„we obtain all the
possible solutions of k, along this line in one calculation.
In practice, a window size is established for conditions
(4.1); typically, we required Eq. (4.1) to be satisfied to
within 0.1%.

Since the main aim of the present work is to introduce
the transfer-matrix method for superlattices, in this sam-
ple calculation we have chosen to work with the minimal
number of orbitals LCGO (MLCGO) method to calculate
the transfer-matrix elements. The advantage of using a
minimal number of orbitals is that the size of the result-
ing matrices is small. However, as expected, MLCGO
conduction bands even in bulk materials are not as good
as the extended number of orbitals LCGO (ELCGO) cal-
culations, since working in a larger vector space o6'ers
more Aexibility regardless of whether the calculations are
ab initio or semi —ab initio. For example, the ELCGO
calculations of Wang et al. ,

' which employ 18 orbitals
for Si ( ls, 2s, 2p, 3s, 3p, 3d, 4s, 4p ), produce bands that have
very similar topology to corresponding pseudopotential
bands obtained by employing a large number of plane
waves. But the MLCGO calculation' using only nine or-
bitals (ls, 2s, 2p, 3s, 3p) results in conduction bands which,
at som. e points of 8rillouin zone, have considerably
di6'erent topology than pseudopotential bands. This
problem is even more drastic in superlattice calculations.
A case in point is the small magnitude of the splitting of
the first and second pairs of the zone-folded states of
(Si)&/(Ge)4, at I, in the present calculation (see Fig. 2).
With MLCGO we observe these splitting magnitudes to
be about 0.01 and 0.03 eV, respectively, compared to oth-
ers, e.g., Hybertsen et al. , who get 0.1 and 0.2 eV. This
discrepancy can be easily understood in terms of
insufficiency of using a minimal number of orbitals.

For example, we consider the case of the pair of the
zone-folded states near 2.1 eV. These states correspond
to the two degenerate bulk states at the I point of Si and
Ge. Our bulk calculations show that these states are de-
generate because their corresponding wave functions
transform into each other under a space-group operation
54, = IC„,~

—,'a(1, 1, 1)I which belongs to Oh (Ed3m), the

space group of the diamond structure. '~ Under this
operation the atoms in plane A =0 are moved to the posi-
tions of the atoms in plane 4= 1, etc. Now in (Si)4/(Ge)4
this is not a symmetry operation because Si atoms in the
plane A=3 must be moved to the positions of the Ge
atoms in A=4 plane, etc. But note that atoms in planes

A=0, 1, 2, 3, 5, 6, 7, etc. are moved to positions in planes
which originally were occupied by the same type of
atoms. So, 54, is almost a symmetry operation of
(Si)&/(Ge)4. Further note that, as the period of a superlat-
tice increases, this operation gets closer to a true symme-
try operation.

Thus the two superlattice wave functions correspond-
ing to the degenerate bulk states do not quite transform
into each other under this operation because the Bloch-
state contributions to these wave functions from the
planes A=4, etc. do not transform properly. If the num-
ber of the valence orbitals on each atom from which the
Bloch states are constructed is small, the di6'erence be-
tween the two superlattice wave functions will not be
much. However, if a larger number of valence orbitals
for each atom is used, the di6'erence can be expected to
become greater and the near degeneracy to be removed
further. Therefore, it is not surprising that in the present
sample calculation, where we have utilized minimal sp-
orthogonalized valence Bloch states, the resulting magni-
tudes are probably smaller than what they should be. We
would expect to observe a better estimate of these magni-
tudes if the sp -orthogonalized valence Bloch states were
augmented by, say, the inclusion of d-type valence states.
Also note that, since in pseudopotential calculations of
semiconductors the basis set typically consists of a large
number of plane waves, it is perhaps not surprising that
the splitting magnitudes should be closer to the true
values.

The real band structures of (Si)„/(Ge)„(001) superlat-
tices for n =2—5 along certain directions in the Brillouin
zone (see Fig. 1) are given in Fig. 2. The direct and in-
direct band gaps are summarized in Table II. We find the
gap for all of these superlattices to be indirect. Our re-
sults for the band-gap and direct-transition energies for
(Si)~/(Ge)& are in good agreement with experimental
and the quasiparticle (QP) calculation results, as seen
from Table III, despite the fact that our present calcula-
tion is not self-consistent.

To summarize, we have demonstrated that a real-space
transfer-matrix method can be used to directly evaluate
the complex and real band structures of superlattices.
We plan to turn to applications involving the complex
bands, to improving our bands through use of ELCGO
and self-consistent calculations, and the calculation of op-
tical properties using this approach, in future publica-
tions.
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APPENDIX A: MATRIX ELEMENTS

The Hamiltonian matrix elements (H~ ~+&), . are of the formA, A+5 lAJA+

ik, R, (A, h)
(~w, a+a )i~q'~+~ X e X X+i,m+q, n

s(A, A) m n

X f dr G(a, O, i)( —
—,'V )G(a„,R, (A, b, ) —d~z, j)

—g Z(A, A) g fdrG(a, O, i)
A(A) t(A, Q)

expI —P(A, A)[r —R, (A, Q) —dnz]~I

lr —R, (A, O) —dnzl

XG(a„,R, (A, A) —
diaz, j)

+ g g gC„(A, A) fdrG(a, O, i)
Q(A) t(A, Q) u

Xexpt —y„(A, Q)[r —R, (A, A) —dnz] ]

XG(a„,R, (A, b, ) —diaz, j)
Efdr —G(a, O, i )G(a„,R, (A, b ) —diaz, j) (A1)

where A(A) labels different planes over which the potential is expanded, s(A, b, ) and t(A, A} give the number of two-
dimensional vectors included in each plane, and other symbols are as defined in the text. Typically, we restrict the vec-
tors to lie within a sphere of radius equivalent to eight nearest neighbors and centered at the origin of the plane A. All
the integrals are performed analytically.

APPENDIX B: ORTHOGONALIZATION TO CORE BLOCH STATES

Let lb~ z & v be the abstract state representing the two-dimensional superlattice valence Bloch (VB) state g, ~+&+ A+A,

located in the (A+A)th plane. Similarly, lb~+n &c represents a core Bloch (CB) state in the (A+A)th plane. Note
that V and C differ from plane to plane, i e., V= V(A+5) and C=C(A+0). We construct a new VB state lb&+& & v
as follows:

lb~+~ &v=lb, +~&v+ X
e(A+a) c'(A+a, e)

~a+a, v;w+e, c'lbw+e&c' ~ (81)

where 6(A+6} runs over all the planes such that A+6 —Y~e A+6, +'f. The condition for orthogonality requires
that

& bc+a lbw+n & vc =O .

Substituting (81) into (82) we get

& by+a lbp+n & vc+
e(A+6) C'(A+A, e)

~a+a, v w+e, c'&bw+elbw+n &c'c=O .

(82)

(83)

To determine the coefficients A, a series of simultaneous equations must be solved. However, since the overlap between
different core states is small, we assume

& bw+e lbw+n &c c=bc,c~e,n .

With the above approximation, (83) gives

~w+a, v;w+n, c=
& bc+a l bw+n & vc .

Substituting (85) into (81},we get

lbw+a & v= lbw+a & v X X lbw+e &c&bw+elbw+a &cv .
e(A+a) c(A+a, e)

(84)

(85)

In the actual calculation the orthogonalization procedure is applied to the matrix HA A+&. In the new basis this matrix
is given by
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~IIA, w+~ ~ v'v—:& b A IH lb ~+a & v v

c & b~+~ lb~+g & cv
Q(A) C(A, Q)

&b, lalb
e(~) c (A, e)

+ g g g g & bA lbp+e & v'c'& bA+e l~lbA+g &c'c& bp+~lbA+g &cv ~

n(A) c(w, n) e(z) c'(w, e)
(B7)
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