PHYSICAL REVIEW B

VOLUME 40, NUMBER 16

Absence of localization in certain statically disordered lattices in any spatial dimension
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We present a statically disordered electronic system in which under certain circumstances an ini-
tially localized particle necessarily becomes delocalized at long times regardless of the spatial di-
mension and the magnitude of the disorder. The model is based on correlations between diagonal
and off-diagonal matrix elements and is shown to be applicable to structurally induced disorder in
solids. Numerical and analytical calculations in one dimension indicate that transport is
superdiffusive, with the mean-square displacement growing in time as ¢3/2, regardless of the magni-
tude of the disorder. Transport is shown to arise in this model from a set of measure-zero unscat-
tered states at a particular energy in the parent-ordered band. It is argued that, when the Fermi lev-
el coincides with the energy of the unscattered states, an enhancement of transport should obtain.
In addition, it is shown that superdiffusive motion persists for a wide range of correlations between
the diagonal and off-diagonal matrix elements when the disorder is structurally induced and chosen
from a bivalued distribution. The relevance of these results to transport experiments is discussed.
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I. INTRODUCTION

One of the widely accepted results in solid-state phys-
ics is that all the electronic states of a disordered one-
dimensional system are exponentially localized, even for
infinitesimal values of the disorder.!™® The existence of
exponentially localized states is generally believed to lead
to an absence of diffusion or long-range transport in such
systems. The early work of Anderson on the site-
diagonal disorder in tight-binding models,"? and of Mott
and Twose,> form the basis for the prevalence of this
view. Although it is realized,* however, that certain
disordered electronic systems might exist in which ex-
ponential localization does not obtain, no such model has
yet been constructed. Nonetheless, in this paper we
present a physically realizable disordered electronic sys-
tem in which an initially localized particle will necessari-
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In Eq. (1.1) fi is a unit vector pointing along the uth
direction from the site m to its neighbor along that direc-
tion. The electronic operators a;, create an electron at
site m with energy gy, and x4 is the displacement from
equilibrium, in the uth direction, of the ion at site m.
The energy of the bare lattice is denoted by H ... We
remind the reader that the electron-lattice coupling terms
are such that, when the mth ion moves closer to its neigh-
bor at site m +1 by an amount
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ly become delocalized at long times, regardless of the spa-
tial dimension and the magnitude of the disorder. We
present numerical and analytical calculations in one-
dimension that indicates that the transport of an initially
localized particle is superdiffusive. We show that our re-
sults can be explained by the presence of electronic states
whose localization lengths diverge.

The model we consider is one in which the site energy
€,,, at site m is correlated with the off-diagonal matrix
elements V,, ,. Such a correlation between the disorder-
induced fluctuations of the matrix elements of the Hamil-
tonian may be described with various models, depending
upon the source of the disorder. However, we consider
specifically, the correlation between ¢, and V,, , that
arises in the standard® single-particle Hamiltonian in
which the particle energy is coupled linearly to the dila-
tion of the lattice
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the electronic energy at site m and the transfer-matrix
element change linearly by an amount G#Af-‘l,m +a and
y#A’;’m o respectively. The linear form of the interac-
tions may arise, for example, from the lowest-order term
in a Taylor-series expansion about the equilibrium posi-
tions of the ions. Note that we have considered only the
dominant nearest-neighbor interactions. This form of
electron-lattice coupling is often taken to describe
structurally induced disorder in solids. For example, Su,
Schreiffer, and Heeger’ have considered this model with
off-diagonal coupling only in the context of transport in
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perfectly dimerized polyacetylene. The electron-phonon
coupling constants G, and y, represent the first-order
terms in a Taylor-series expansion (in the displacement of
the ions) of the diagonal and the off-diagonal matrix ele-
ments in the electronic basis, respectively. In the general
case, the off-diagonal matrix elements may be complex.
For simplicity, we will choose ¥V, and y, to be of the

form V#el * and yuelg", where the complex nature is en-
tirely contained in the phase angles ¢, and 6,. It is in-
structive at this time to point out the profound effect
correlations between site and off-diagonal disorder have
on the eigenstates of H. To see this, we write Eq. (1.1) in
momentum space:

H=H, ..+ >€0a Iak +32 V,cos(¢,—k,)a Eak
k k,u
+ 3 2i[y,sin(k,—6,)—y,sin(k,—q,—6,)
k,q,u

_G#sin(q#)]x;‘alak_ﬁqu , (1.2)

where al]: creates an electron with dimensionless crystal-
momentum k, and x’; is the discrete Fourier transform of
xk. The last term in Eq. (1.2) contains the effects of the
dynamic electron-phonon coupling. We see directly from
(1.2) that the magnitude of this term, which modulates
the scattering of the electron, is governed entirely by the
coupling constants G, and y,. In fact, for the special
case when y,=G,,, the scattering term disappears alto-
gether for k, =6, for each u. Hence, there is an absence
of scattering of a particular electronic state when G, is
equal to v, regardless of their magnitude and the spatial
dimension of the system. The absence of scattering is a
direct consequence of correlations between the site-
J
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where C,, is the amplitude for the electron to be on site
m and E is the energy eigenvalue. We see clearly in (2.1)
that any deviations of the lattice ions from equilibrium
naturally introduces disorder into the electronic system
such that the fluctuations of the diagonal matrix elements
and the off-diagonal matrix elements are correlated in a
nonlinear fashion. However, a linear relationship be-
tween the diagonal and off-diagonal disorder is obtained
when ¢ —6=0 or . The physical significance of these
relationships will be discussed in the following sections.

To analyze the dynamics of an electron obeying (2.1),
we calculate the mean-square displacement

mr=3m?C, ()| 2.2)

by numerically integrating the equations of motion for
the site amplitudes for the initial condition Cy(0)=1 for
different realizations and amounts of the disorder, using
the fourth-order Runge-Kutta method. In order to max-
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diagonal and site-off-diagonal matrix elements. The par-
ticular electronic state that remains unscattered possesses
a wave vector k={0,,0,,0;,...,0,;} in the parent-
ordered band.

This result is true whether the disorder is static or dy-
namic. In this paper we study, through numerical simu-
lations, the consequences of the absence of scattering of
particular electronic states in the static disorder limit for
a one-dimensional system described by Eq. (1.2). We find
that, depending on the location of the unscattered state in
the parent ordered band, diffusive or super-diffusive
transport is obtained. Specifically, if the unscattered
state is at the bottom or the top of the band, where it has
zero velocity, transport will be diffusive. Super-diffusive
transport obtains otherwise.

II. RESULTS

For a one-dimensional system described by Eq. (1.1),
the phases of the elements in the basis set of functions
can always be chosen so that the off-diagonal matrix ele-
ments will be real. By choosing new operators, which are
the old operators modulated by a phase,

m
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the eigenvalue equation for the electronic system in the
rigid lattice or Born-Oppenheimer approximation may be
written as

)1C,, +[V2+Y2Afn +1,m —27’VAm+1,mCOS(6“¢)]V2Cm +1
+[V2+y2A% =2y VA, mcos(6—)]1'*C,,

2.1

imize the effect of the disorder, we considered YA to be a
spatially independent random variable from a uniform
distribution of full width W /V, such that 0O W/V <2.
The limits on the distribution were set to avoid severing
the lattice connections altogether. Calculations were per-
formed on a self-expanding chain to eliminate any edge
effects; whenever the probability to be at the ends of the
chain exceeded 10™%, ten new sites were added to each
end. The results from several random samples are shown
in Figs. 1-3. Figure 1 clearly illustrates the tremendous
difference between the correlated disorder when G =y,
and purely diagonal and off-diagonal disorder. In the
latter two cases, Fl; 1 illustrates that m? is strongly lo-
calized, whereas m “ is an increasing function of time for
the correlated disorder case. In Fig. 1, ¢ —6 was taken to
be zero. In Fig. 2 we compare m“/Vt for values of the
disorder ranging from W/V =0.5 to W/V=1.9 for
¢—0=0 and G=7y. The slope of the curves approaches
zero at long times, indicating that the transport is
diffusive. The more extensive simulation to ¥¢#=3000, in
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FIG. 1. The mean-square displacement as a function of time
(V) for site-diagonal, site-off-diagonal, and correlated disorder.
The full width of the distribution of the disorder is W /V=1.0.
The curves are: (a) correlated disorder, (b) site-diagonal disor-
der, and (c) site-off diagonal disorder. The mean-square dis-
placement is bounded for (b) and (c), indicating localization, and
grows with time for (a), indicating diffusion.

the most disordered case (W =1.9F), shows clearly that
the transport is at least diffusive at long times. Depicted
in Fig. 3 is a numerical calculation of m?2/(¥t)*/? for an
initially localized particle for G=vy, W/V =2, and five
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FIG. 2. The mean-square displacement divided by time (V?),
as a function of time, for the case of correlated disorder. The
different curves show the response to different amounts of disor-
der; W/Vis (a) 0.5, (b) 1.0, (c) 1.5, and (d) 1.9. The approach to
a straight line with zero slope at long times indicates that the
process is diffusive.
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FIG. 3. The mean-square displacement divided by (¥2)3/?, as
a function of Vi, for the case of perfectly correlated disorder
with complex off-diagonal matrix elements. The different
curves show the response for different phase angles; (¢—0) is
(a) 90°, (b) 60°, (c) 50°, (d) 40°, and (e) 30°. The approach to a
straight line with zero slope at long times indicates that the pro-
cess is superdiffusive. W/V=2. '

values of the phase difference: ¢—0=30°, 40°, 50° ,60°,
and 90°. The lack of any deviation of mZ/(Vt)*/? at long
times from a straight line indicates that the mean-square
displacement in all of these five cases is indeed growing at
t3/2. This is the principal result of this paper, namely,
that correlations between site and off-diagonal disorder,
can give rise to superdiffusion transport even in one-
dimension, regardless of the amount of disorder.

III. EXPLANATION OF RESULTS

To explain the numerical results presented in Sec. II,
we define 4,, to be the amplitude that the electron is in a
state created by the operator a,! exp(im ), and let the site
energy €,=—2V cos(¢—6). The resulting eigenvalue
equation is

EAmz(_Fm—{—l,mAm +F:1+1,m Am+1)

—(—Fm,m—lAm—1+F;,m—1Am)’ (31)
where
Fm+l,m = Vei(qs*e)_‘yAm,m—i—l .

We note that for this choice of phase, the amplitude 4,,
is conserved; that is, (d /dt)3,,, A,, =0. The existence of
the conservation law for this model suggests that our re-
sults may be explained by analogy with corresponding
disordered classical models.

Let us begin by considering the case of 6=¢. The ei-
genvalue equation that results in negative-semidefinite
and equivalent to that of the bond-symmetric disordered
master equation.®”!! Because the eigenvalues are re-
stricted by symmetry to be negative, localized states can
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only form below the band. We will see that the states-

which would normally form localized states above the
band edge in the absence of the correlation now remain in
the band as current-carrying states in the neighborhood
of E=0. At this point, we introduce the amplitude flux

Jm =Fm+1,m(Am—Am+1) ’
and write (3.1) in the form,

m

E—=-2J,+J, 17, 1 (3.2a)

Fm+l,m
or equivalently,
EJmZEAme+<%>“1(—2Jm+.]m+1+]m_1), (3.2b)
where
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The angular brackets denote a configurational average.
We note that, apart from a shift in the energy by an
amount —2V Eq. (3.2b) is isomorphic to an equation for
the amplitudes with site-diagonal disorder,

EC,=¢,C, +V(IC, 1+C, 1), (3.3)
if J,, and (1/F) ! in (3.2b) are associated with C,, and
V in (3.3), respectively. There is, however, one crucial
difference. In (3.2b) the diagonal matrix element, EA,,,
which now contains the full effect of the correlated disor-
der, is scaled by the energy. Consequently, for the case of
correlated disorder, the states near E =0 will show little
deviation from Bloch states. The flux-transformed eigen-
value equation for our correlated disorder model is
mathematically equivalent to the eigenvalue equation for
an isotopically disordered linear chain of harmonic oscil-
lators.!?71® As in Eq. (3.3) the energy band of this model
is bounded from one side. In the bond disordered master
equation the presence of a one-sided energy band results
in a branch point of the Green function at |E| =0, as evi-
denced by the nonvanishing of the diffusion constant.®~!!
In the isotopically disordered harmonic chain system, the
branch point at |E|=0 results from a set of eigenstates in
a neighborhood of |E|=0, whose localization lengths
exceed the system size.!?”'® In one dimension the early
results of Dean and Bacon,!® Payton and Visscher,'* and
Matsuda and Ishii'? established that the fraction of such
states is of zero measure, and scales as 1/V'N. Matsuda
and Ishii!? have shown for the harmonic-oscillator system
that although the width of the unscattered states near
|[E|=0 in one dimension vanishes as the system size
grows, such states are nevertheless sufficient in number to
give rise to a divergence of the thermal conductivity for
particular boundary conditions. Similarly, it is straight-
forward to show that the number of states with diverging
localization lengths is sufficient to give rise to diffusive
behavior observed in Sec. II. In one-dimension, states
with localization lengths longer than the system size
behave as unscattered Bloch states. Their wave vectors k
must lie between k=0, and k~1/V'N as shown by
Matsuda and Ishii.'> Furthermore, they have a mean free
path A on the order of the size of the lattice, A~ N, and
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have a velocity V (k) proportional to k at the top of the
band. An estimate of the diffusion constant D shows that
in the limit that N — oo, it remains finite:

D= [viorkdk~ tim N [ Mkak~1, 3.4
N-— o0 0

which is in agreement with the long time calculation of
the mean-square displacement shown in Fig. 2.

In order to understand the superdiffusive results of Fig.
3 for the case that ¢6 and y =G, it is helpful to com-
pare the density of states, p,(E), of the correlated and
disordered system for the special case that ¥y =G, with
the density of states of the pure crystal, po(E). We have
displayed in Figs. 4(a) and 4(b) an overlay of the numeri-
cally calculated densities p,(E) and py(E) for two cases.
In Fig. 4(a) ¢=6, and in Fig. 4(b) ¢ —O0=m/2. When
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FIG. 4. A comparison of the density of states for the pure
linear chain and the density of states for the disordered linear
chain, when the disorder is perfectly correlated. The density of
states for the disordered system is superimposed upon the densi-
ty of states for the pure system. In Fig. 4(a), the phase of the
off-diagonal matrix elements is zero, $—60=0, and W/V=1.
The density of states is identical to that of the pure system at
the upper band edge. In Fig. 4(b), $—6=90°, and W /V=S5.
The density of states matches the density of states for the pure
system in the middle of the band.
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¢=0, p;(E) shows no deviation from py(E) at the band
edge, which is in agreement with the previous discussion
of the unscattered Bloch states at the band edge. When
¢—6=m/2, however, the point where p,(E) shows no
deviation from py(E) is in the center of the band. In the
general case for ¢70, the energy of the point in the band
where p (E)=py(E) may be determined by the second
term of Eq. (1.2). The unscattered states occur where
k =86, which corresponds to an energy of 2V cos(¢—6).
Consequently, the velocity of a particle described by a su-
perposition of such unscattered states is proportional to
2V sin(¢ —0). Although the eigenvalue equation in this
case lacks the bond symmetry that is obtained when ¢=26
(and hence is distinct from the disordered harmonic
chain), the observation of superdiffusive transport can be
explained by assuming that the width of the unscattered
states still scales as 1/V'N. In analogy with Eq. (3.4), we
compute the diffusion constant by integrating over the
number of unscattered Bloch states:

D= [ V(lAKk)dK ~ lim N
N—)QO

% fe~¢+1/\/_1v

2V sin(—¢)dk ~V'N .
0—¢—1/V'N

(3.5)
The unscattered Bloch states traverse a distance on the
order of N in a time

f—o— N
2Vsin(6—¢) ’

so ¢t and N can be interchanged in Eq. (3.5). Because the
diffusion constant is defined as D =lim,_, . (d /dt)m 2 we
see clearly from (3.5) that wherever 6=¢ is nonzero, the
mean-square displacement will grow as #3/2 at long times,
as observed in Fig. 3. ¢=0 is a special limiting case in
which bond symmetry obtains and the resultant diffusive
transport is described by Eq. (3.4).

IV. PHYSICAL IMPLICATIONS

We first point out that for the length of the simulations
we have performed, the particle explores distances on the
order of 500 to 1000 lattice constants. In addition, for a
typical solid ¥z ~3000 corresponds to times comparable
to the inelastic scattering time. Hence, in a real material,
the motion predicted here will be distinct from hopping
transport where the mean free path is of the order of a
lattice constant.

In the Anderson model of site-diagonal disorder, in
higher dimensions, when the amount of disorder W
exceeds a critical value W,, all of the states in the system
are localized except possibly for a set of delocalized states
of measure zero.!'? It is easy to see for the case of corre-
lated disorder with ¢ =6, however, that the critical value
W, tends to infinity. From the d-dimensional eigenvalue
equation for the fluxes

EJY =EalJ? + <—Vl—> IS T 2T
“

4.1)

for the amplitude flux J},, it is clear that in any dimen-
sion because the disorder aj, along the vth direction
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scales with the energy, the states near E =0 will be per-
turbed by an effectively reduced amount of disoder.
Thus, given a value of W > W,_, which would cause com-
plete localization of the states of (3.3), a value of E can al-
ways be found in the correlated case such that, in (8)
|EW| < W,, thereby suppressing the Anderson transition
for a finite value of W. We believe this result still holds
when ¢+#0, although we have not been able to construct
an equation of the form of (4.1) for this case. We
reiterate that the source of delocalization or transport in
this model is a set of states of zero measure whose locali-
zation lengths are longer than the system size. It is worth
reemphasizing that the standard analyses' ~> of Anderson
localization do not preclude the presence of a set of states
of zero measure at a particular energy whose localization
lengths diverge. For example, a calculation of the imagi-
nary part of the self-energy (as in Ref. 2) for correlated
disorder reveals that the self-energy tends to zero regard-
less of the energy. That is, a set of states of zero measure
is insufficient to give rise to a branch point along the ReE
axis. Under usual circumstances, this state of affairs
would signify an absence of transport. However, for
correlated disorder, the fraction!? (1/ v'N ) of such states
with localization lengths longer than the system size is
sufficiently great that they give rise to transport. The
fraction of the particle wave function that is formed from
the electronic states whose localization lengths diverge
moves through the lattice ballistically and ultimately
gives rise to superdiffusion. That such a state of affairs
could arise does not appear to have been previously anti-
cipated.

We see then that correlations between the site-diagonal
and site off-diagonal matrix elements of the type dis-
cussed here lead to superdiffusion in one-dimension and
ultimately suppress the Anderson transition (for finite W)
in higher dimensions. Hence, our results are in stark
contrast to the presently held view that transport can
only obtain in a disordered system for d >2.° It is impor-
tant then to determine under what circumstances the be-
havior predicted here can be experimentally observed.
We first note that as the phase angle (60 —¢) is varied, Eq.
(2.1) describes a wide range of correlations between the
site energies and the transfer-matrix elements. For exam-
ple, when 0<|0—¢| <m/2, Eq. (2.1) indicates that the
correlations between €, and V, .. are such that when
two neighboring ions move closer together, the transfer-
matrix element increases and the site energy decreases.
In the regime 7/2<|60—¢| <, the transfer-matrix ele-
ment decreases the more tightly bound an electron is on a
given site. In either case, perfect correlation (y =G) be-
tween €, and ¥, ,, ensures that an unscattered state will
persist in the band at a value of the dimensionless wave
vector k=0—¢ and if k0, then m>~¢3/2. This result
is true whether the disorder is static or dynamic. A
quasione-dimensional material possessing such perfect
correlations will exhibit the enhancement in conductivity
(mZ~1372) if the Fermi level coincides with the position
of the unscattered state in the band. Successive doping of
a material until Fermi level coincides with the unscat-
tered state should result in a marked increase in the con-
ductivity if perfect correlations between ¢, and V, ,i
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are present. GaAs heterostructures, which can be grown
layer by layer using molecular beam epitaxy to possess a
specified arrangement of quantum wells of varying thick-
ness and depth!” may be ideal systems for seeing the
effects of correlations between €, and V,, ;-

In systems in which control over ¢, and ¥V, , 4, is less
than ideal it is important to understand what role the
correlations, which are naturally present, play in deter-
mining the transport properties. Equation (2.1) suggests
a straightforward extension of our results from the per-
fectly correlated (y =G') case to the regime y*G. When
the disorder is small relative to the parent bandwidth,
GA,, , +1 <4V, the square root in (2.1) can be expanded
in powers of GA, ., /V. To linear order in
GA,, +1,m /V in the perfectly correlated case, Eq. (2.1) be-
comes

Ecm :[80+G(Am+1,m +Am,m -—1)]Cm
'+'[ V—G C()S(€9‘—'qb)lk,n +1,m ](:nn<+1

+[V =G cos(0—$)A, —11C,m 1 - 4.2)

Equation (4.2) is the approximate eigenvalue expression
for the perfectly correlated case for small relative dis-
placements of the ions. In the linear regime then, the
effective off-diagonal coupling constant y is equal to
G cos(8—¢), or more importantly, |y|=<|G|. Conse-
quently, when the disorder is small, the stringent condi-
tion that ¥ must equal G for the presence of an unscat-
tered state is no longer necessary. When |y | <|G|, an un-
scattered state will exist in the parent-ordered band at an
energy 2V cos(6—¢), that is, 2Vy /G, and furthermore,
for |y| < |G| the mean-square displacement will grow as
t3/2, Of course, this result is only true at times short
enough so that the effect of the terms to second order in
GA,, +1,n»/V may be neglected. An example of this be-
havior is shown in Fig. 5, where we have calculated
m?2/Vt from Eq. (4.2) for three cases: (a) the perfectly
correlated case of y =G =0.5, (b) an imperfectly correlat-
ed case ¥ =0.4 and G =0.5, and (c) an imperfectly corre-
lated case ¥ =0.5 and G=0.4; W/V=1. For the time
scale considered, the imperfectly correlated case (b)
. behaves as though it were perfectly correlated, with the
less-strongly-localized states contributing to a nonzero
velocity. We see that, although the mean-square dis-
placement increases as ¢ for the perfectly correlated case,
|y|=|G]|, on the same time scale it increases even faster,
as t3/2, for |y| <|G|. This result is certainly surprising,
and illustrates the resilience of the perfectly unscattered
states to weak off-diagonal perturbations. On the other
hand, the imperfectly correlated case (c) for |y|> |G| is
subdiffusive for this time scale, showing a stronger locali-
zation than case (a). Thus, if the dominant source of
scattering is due to electron-photon interactions, a sharp
rise in the dc conductivity should occur when the Fermi
energy matches 2Vy /G, provided that the off-diagonal
electron-phonon coupling is weaker than the diagonal
electron-phonon coupling, and that temperatures are
sufficiently low so that the electron-phonon interaction is
small compared with the bandwidth. Once the energy of
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FIG. 5. The mean-square displacement divided by Vt, as a
function of Vi, for correlated disorder with off-diagonal matrix
elements which have been linearized in the relative displace-
ments A of the ions. The perfectly correlated case (b) for
W=yA=GA=0.5V gives rise to diffusion. However, in the
imperfectly correlated case (a) for yA=0.4¥V, GA=0.5V, the
transport is much faster for this time scale, with the mean-
square displacement growing as #3/2. In the imperfectly corre-
lated case (c) for yA=0.5V, GA=0.4V, localization is
stronger, and transport is subdiffusive.

the unscattered states and the parent bandwidth 4V have
been determined, the relative strengths of the off-diagonal
and diagonal electron-phonon coupling in a particular
sample can be obtained. We note in passing that, when
the off-diagonal coupling constant is zero, the least-
localized states are in the middle of the band at E =0.
This is in agreement with the results for systems with
purely site-diagonal disorder.*

In the preceding discussion we have treated the disor-
der as a continuous variable. That is, we have allowed
the relative displacements of the ions to range freely
within the bounds of a distribution. In some cases, how-
ever, esprically at low temperatures, strain defects may be
found in very limited varieties. Consider, for example, a
case in which the nearest-neighbor pair potential has two
minima, as in glasses.!® There are defects in such samples
in the sense that one or the other minima may be occu-
pied in an irregular fashion throughout the material. To
model systems of this type, let us treat the normal ion-
separation as the position of one of the minima, and the
defect ion separation to be at the position of the other
minima, a distance A away. The off-diagonal matrix ele-
ment between sites m and m +1 is in general some func-
tion g(X,, —X,, +,), and the diagonal matrix element for
site m is the sum of the interactions with the nearest
neighbors to the left and to the right of m,

f(Xm —Xm+1)+f(Xm—1_Xm) .

The functions f and g may be nonlinear and are functions
only of the relative displacement between nearest neigh-
bors X,, —X,, ;. Note that X,, —X, ., need not neces-
sarily correspond to a linear displacement. In systems
with more than one atom per unit cell, X,, —X,, ., could
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correspond to a rotation of one cell relative to the other.
Nonetheless, f and g will be evaluated for only two values
of the argument: X,, —X,,,,=0 or A. The eigenvalue
equation for the system is

ECm =[€0+f(Xm _Xm +1)+f(Xm —1 —Xm )]Cm
+8(X,, —X,, +1)Cp 118X, 1 —X,)C,, .
(4.3)

Depending on the relative magnitudes of f(X,,—X,, +{)
and g(X,, _,—X,, ), the mean-square displacement of the
correlated system described by (4.3) will quite generally
be either bounded, or grow superdiffusively, as #3/2. To
see this, we map (4.3) into the form of (2.1) by solving for
the constants V, g, and ® such that the following two
equations are satisfied:

(V24+[f(0)+¢gy/2]?

—2V[f(0)+¢y/2]cos(P)}2=g(0) , (4.4a)
{(V2+[f(A)+ey/ 27
—2V[f(A)+ey/2]cos(P)}2=g(A) . (4.4b)

If a solution to the system of Egs. (4.4a) and (4.4b) exists,
then the motion predicted by (4.3) will be indistinguish-
able from the motion predicted by (2.1) in the perfectly
correlated case. Namely, the localization lengths will

5

2
g(o)
—
g (A)

FIG. 6. The phase diagram for the two-state correlated mod-
el. If the point located by particular values of the parameters
W, g(0), and g(A) lies within the shaded region, motion is
superdiffusive. Points lying on the boundary of the shaded re-
gion, correspond to diffusive motion. The mean-square dis-
placement is bounded for all points lying outside the shaded re-
gion.
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diverge for states with energy tending to 2¥ cos(®), and
the mean-square displacement will increase as ¢3/2 (unless
® is zero or 7, in which case diffusion occurs). If a solu-
tion to the system (4.4a) and (4.4b) does not exist howev-
er, there will be some scattering of every Bloch state. In
this case, every state will be exponentially localized with
a finite localization length, and the mean-square displace-
ment will remain bounded at long times. Thus, there is a
transition from subdiffusive transport to superdiffusive
transport in the one-dimensional system. In order to de-
scribe the transition point, we consider the case in which
the probability of finding a defect separation (A) is P, and
the probability of finding a normal (zero) separation be-
tween the ions is 1—P. Without loss of generality, we
choose the arbitrary constant g,

£o=2[(P—1)£(0)—Pf(A)]

such that the average of (f +¢€,)/2 is zero. After a little
algebra, we find that the constants ¥ and ® are given by

(4.5)

V=[Pg(A)*+(1—P)g(0)*—W?*(1—P)P]'/?, (4.6)
_ 1|1 |g0)—g(A)P—(2P—1)W?

d=cos X% W , (4.7

provided that the condition
W4+[g(0)>—g (AP <2W?[g(0)°+g(A)?]  (4.8)

is satisfied. The full width of the diagonal disorder
W=f(A)—f(0). Condition (4.8) defines a region in
which the parameters W, g(A), and g(0) must lie in order
for the transport to be superdiffusive. This region is
shown explicitly in Fig. 6. For parameters outside the re-
gion, the mean-square displacement is bounded. If the
parameter lie on the boundary, the mean-square displace-
ment grows as ¢. For parameters within the region, how-
ever, the mean-square displacement grows as #3/2. We re-
mark that for the special case that g(A)=g(0)=wv, the
description of the boundary between superdiffusion and
the absence of diffusion is considerably simpler. In this
case, the boundary is located at W=2v. For W <2v
transport is superdiffusive. When W =2v, transport is
diffusive, and if W > 2v, there is no transport at all. We
note that Eq. (4.8) does not depend on P. Hence, the
transition point depends only on the magnitude of the de-
fects, and not on their concentration. The behavior pre-
dicted here should be experimentally observable in
quasione-dimensional materials such as conducting poly-
mers in which the dominant disorder is structural and is
described for the most part by a bivalued distribution.

V. FINAL REMARKS

In closing, we have presented an electronic system in
which correlations between diagonal and off-diagonal ma-
trix elements lead to an absence of localization of an ini-
tially localized particlee. ©= We have shown that
superdiffusive transport can obtain in this one-
dimensional system, regardless of the magnitude of the
disorder when the unscattered state in the band has a
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finite velocity. Such transport in the perfectly correlated
case was shown to be resilient to weak off-diagonal per-
turbations. As a result then, the experimental cir-
cumstances under which the behavior predicted here can
be observed are quite general. In addition to GaAs het-
erostructures which can be designed to test the predic-
tions of the perfectly correlated model, quasi-one-
dimensional systems such as phthallocyanine macrocyclic
compounds,'® in which the position of the Fermi level is
easily tuned, are likely candidates for testing the general
predictions of correlated phonon disorder. In addition to
enhancing the conductivity in disordered systems, corre-
lated disorder can also serve as a probe of the relative
magnitudes of the diagonal and off-diagonal electron-
phonon coupling constants.

Because many more paths are available, it is likely that
transport in a higher-dimensional system with correlated
disorder will be faster. Our preliminary calculations for
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the case in which the unscattered state lies at the top of
the band indicate that based on the exponential diver-
gence'! of the localization length near E=0 and the
zeroth-order estimate of the mean free path
[AMk)~Kk~@*D] that, in two dimensions, the diffusion
coefficient diverges as In(N). Further work is needed to
fully extend the analysis presented here to higher-
dimensional systems.
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