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Ferrimagnetic Heisenberg chains [—'-S] (S= 1 to 2): Thermal and magnetic properties
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Energy spectra and thermodynamic quantities (partition function, entropy, specific heat, suscepti-

bility) of ferrimagnetic Heisenberg chains, made up of two spin sublattices [—-S], are discussed from

the exact results computed for finite rings. Extrapolation of the theoretical data versus the length of
finite rings X is discussed for S ranging from 1 to 2 and compared with previous reported findings

for the [—-oo] spin chain. In the low-temperature region, similarities between the ferrimagnetic

chains [z-S] and the regular ferromagnetic ones (with spin S-2) are used for the determination of

the limiting curves.

I. INTRQDUCTIQN

In spite of extensive literature, the one-dimensional
exchange-coupled systems always offer a great challenge
to physicists and chemists for describing phenomena that
cannot be explained in higher dimension. ' Several
physical situations were inspected and solved rigorously,
although some of them appear, to a certain extent, to be
of purely academic interest. Thus, closed expressions of
the thermodynamic quantities were derived when the in-
teractions between nearest neighbors spread out in a
one-dimensional (1D) Ising network or in an XY an-
isotropic one. Likewise, the Heisenberg-chain problem
was shown to be soluble analytically only in the classical
limit, S~~. Unfortunately, an exact treatment is not
available when an isotropic interaction is assumed in the
quantum chain. The limiting behavior may then be es-
timated from the numerical results of finite closed chains
(rings) extrapoled to the thermodynamic limit N~ oo.
Such a method was initiated by Bonner and Fisher' for
the S =

—,
' regular chain and subsequently extended by

geng" and Blote' to arbitrary spin quantum numbers.
The same computational procedure was used by Duffy
and Barr' for solving the alternately spaced S =

—,
' chain,

involving two distinct exchange parameters between
nearest neighbors.

Although several works have focused on the behavior
of exotic chains, and despite the large collection of 1D
materials, ferrimagnetic chains made up of two unequal
spin sublattices have not been extensively investigated. A
first analysis of the correlation functions and specific heat
was suggested by Dembinski and %'ydro' in the particu-
lar case of a quantum-classical Heisenberg chain. Fur-
ther, Blote' determined the expression of the susceptibil-
ity by neglecting the contribution of the quantum sublat-

tice with respect to the classical one, making this treat-
ment unadaptable for real systems.

The recent discovery of ordered bimetallic chain com-
pounds has given rise to a significant development of this
challenging problem. ' For the first time, we have fo-
cused on the [—,'-1] Heisenberg spin chain, the solutions

of which were computed for finite rings of increasing size
X. The calculations were performed up to ten spins for
distinct values of the g, and gb Lande factors, and then
extrapoled to the thermodynamic limit (N~~). In-
dependently, Verdaguer et a/. have solved this problem
up to eight spins by neglecting Zeeman contributions due
to alternating Lande factors (g, Agt, ); further Seiden
et a/. have solved numerically the magnetic susceptibil-
ity of the [—,-S] chain when S is a classical spin, and more

recently Cxeorges et a/. have derived analytical solu-
tions for the J-alternating [s-S] system, s being an arbi-
trary quantum spin. Lastly, we have proposed in the
classical limit (both spin sublattices are classical vectors
which only differ through Lande factors) an analytical ex-
pression of the susceptibility which was shown to be con-
venient for large spin systems. Further, in the case of
anisotropic exchange (Ising-type coupling), exact solu-
tions have been derived for a large number of spin
configurations, including local anisotropies and alternat-
ing exchange. ' The most striking feature predicted
by this model is the occurrence of a compensation tem-
perature, similar to that of ferrimagnetic garnets, al-
though long-range ordering can only be observed at abso-
lute zero.

The study reported here deals with thermal and mag-
netic properties of [—,-S] Heisenberg chains by assuming

an antiferromagnetic exchange coupling between nearest
neighbors, only. Numerical results will be discussed for S
ranging from 1 to —,

' and compared to the classical limit

S—+~.
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II. EIGENVALUE PROBLEM TABLE I. Matrix dimension for the [—'-S] chains.

%'e consider a Heisenberg quantum chain made up of
two spin sublattices, namely S, and Sb. Let S;
(i =1,2, . . . , 2N) be the current spin vector with values

S, or Sb depending on whether the site parity is odd or
even. Assuming a finite closed chain of 2N spins, the ex-
change Hamiltonian is expressed as

H = —Jg S~;(S~;,+S2;+, ),

System Largest block

22

65

13

Reduction factor

100

190

150

130

where a negative J value refers to an antiferromagnetic
coupling and cyclic boundary conditions impose
S2N+1 =Si.

For finite strings of N pairs (S, —Sb), the eigenvalue
problem consists of solving a (2S, +1) X(2Sb+1) ener-

gy matrix. As shown in Ref. 25, significant reduction of
the computational work is obtained by fully taking into
account the geometrical and spin space symmetries of the
2%-site closed chain. Then, eigenfunctions of K trans-
form according to the irreductible representations of the
point group D&, instead of Dz when assuming linear seg-
ments.

Considering the translation operator T, which trans-
forros the site i into i+2, and the mirror operator I,
which transforms i into 2(N+1) i, we c—an define sym-
metrized Bloch states which result in a much more tract-
able eigenvalue problem. These operations drastically
reduce the size of the largest block matrix to be diagonal-
ized by a factor depending on the spin multiplicities
(Table I). For the [—,'-l]5 closed chain, for instance, the
size of the largest block to be solved is 76X76 instead of
7776 X 7776, when no symmetry is involved.

III. DISCUSSION OF RESULTS

A. Energy spectrum

The procedure for estimating thermal and magnetic be-
haviors in the thermodynamic limit (N~ ao) from those
of finite closed chains was discussed in the case of regular
antiferromagnetic chains. ' ' ' lt needs finding correla-
tions between the calculated results for finite closed
chains, depending on the size ¹

Thus, the ground-state energies of finite rings (Table
II), normalized to the (—,'-S) pair, are assumed to be relat-
ed to those of the infinite system by the relationship

E~(0)=E„(0)+a/N~,
where p is real and positive. Note, in this case, that the
determination of E (0) is more diScult than for the reg-

ular antiferromagnetic chain, since E„(0) is ap-
proached monotonically by lower values, only. Anyway,
it is rather well defined for the [—,'-1] system due to the
rapid convergence of the levels when X increases. Fur-
ther, it may be noticed that the exponent p is not an in-
teger as suggested for regular antiferromagnetic chains.

When dealing with [—,'-S]& systems with larger S, we
may expect that the reduction of the maximum chain
length results in a poor estimate of E„(0);for example,
the ground-state energy of the infinite [—,

'-
—,']z system is

determined from the limited sequence N=1 to 3. The
rigorous treatment for S~ ac (quantum-classical chain)
shows, in fact, that a two-spin unit enables us to describe
the behavior of the infinite system; a smoother depen-
dence of the properties with N is thus expected when S
becomes large enough.

The comparison of the ground-state energies is report-
ed for a sequence of S values as E (0)/NJ(S- —,') versus
(S-—,

'
)

' (Fig. 1). The limiting value (S~ oo ) corresponds
to the exact solutions of the quantum-classical chain
solved by Dembinski and hydro

E (0)/NJ= —(1/x)in[2/x (xsinh —coshx +1)]

with x =
~ J~ Ik T, which tends towards unity as T~0 K.

Clearly, this value is very well fitted (the accuracy is
better than 2%) by linear extrapolation of E„(0)versus
(S-—,

'
) ', justifying the above remarks when S increases.

The determination of the partition function is based on
the knowledge of the complete set of eigenvalues for each
[—,'-S]& ring. As shown in Fig. 2 for [—,'-l]z, the number
of levels increases drastically with N, giving a quasicon-
tinuous spectrum for N =5 (not reported on the graph).
Closer examination shows that the density of levels be-
comes swiftly substantial in the intermediate region of
the spectrum, while these are quite spaced in the vicinity
of the ground state. An energy continuum being expect-
ed as X~~, it is clear that the extrapolation procedure
of the thermodynamic functions may lead to severe devi-

TABLE II. Ground-state energy of [—'-S] N rings.

E~(0)/NJ
system

2.0000

2.5000

3.0000

3.5000

1.5000

2.0000

2.5000

3.0000

1.4626

1.9716

2.4760

2.9800

1.4560

1.9680

2.4740

1.4546 1.452

1.965

2.472

2.975
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Eco(O)

NJ(S-1j2)

3/2

s=sn 2~

(UIN~ J~ ) versus kT/~ J~ is given in Fig. 3. We note that
for increasing N: (i) the limiting curve is approached
monotonically by lower values. (ii) the difference between
isothermal energies decreases swiftly with increasing ring
sizes. As a result, the limiting energy appears to be reli-
able in all the temperature ranges with an error lower
than 0.5%%uo. In the limit of low kT/~J~ values, it may be
verified that the power law,

U (T)=U (0)+AN~J /x3i'

0
0 0.5 1.5 2 (S-1j2)

FIG. 1. Cyround-state energies of [—'-S] ferrimagnetic chains.

B. Thermal properties

Let us examine the thermal behavior of [—,'-1]~ rings

with X running from 1 to 5. A plot of the internal energy

ations from the real behavior when approaching absolute
zero. Further, it may be noticed that the multiplicity of
the low-lying levels (corresponding to the length of the
straight lines on the graph) decreases continuously from
%+1 to 1 or 2, according to X parity. Thus, the very
low-temperature diagram closely resembles that of a X
spin- —,

' chain with a ferromagnetic exchange coupling be-

tween nearest neighbors. Such an analogy, already em-
phasized in a previous paper, was used for very low-
temperature extrapolations. Obviously, the comparison
with the ferromagnetic S =

—,
' chain becomes totally ir-

relevant at higher temperatures.

which holds for the S =
—,
' ferromagnetic chain, is a good

approximation. The curves giving the thermal variation
of the entropy (S/Nk) are displayed in Fig. 4. Due to
the crossing of successive curves in the range
kT/~ J~ =0.2 —0.4, the determination of the limiting
curve appears to be more complicated. At absolute zero,
the entropy, which only depends on the ground-state
multiplicity, falls to zero for X—+ ~ as 5/Xk
= (1/N)ln(N + 1).

According to the spin-wave theory, and the computa-
tions performed for limited ferromagnetic chains, one
may predict the low-temperature behavior to be accurate-
ly described by the power law

S„(T)=ANk/x'~

where the power —,
' is obviously directly related to that

found above for the internal energy. For the S =
—,
' fer-

romagnetic chain, Bonner and Fisher found A =0.85
while spin-wave theory predicts an amplitude larger by a
factor about 1.3 (Ref. 10). An attempt to make a descrip-
tion of the low-temperature behavior from spin-wave
theory (dashed curve in Fig. 4) agrees well with the ex-
pected trend from limited chain findings. From these re-
sults, it is now possible to discuss the specific-heat curves

E/I Jl

3 I

DEGENERACY

12

FIG. 2. Energy levels of [—'-1]~ rings for X running from 2 to 4.
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FIG. 3. Internal energy (per spin pair) of [—-1]. The limiting

curve is displayed as (+).

FIG. 5. Specific heat (per spin pair) of [—-1]z rings. The lim-

iting curve (X—+ Oo ) is displayed as the dashed line. The S = —'

ferromagnetic chain is reported in dotted-dashed line.

of ferrimagnetic Heisenberg chains. We have plotted in
Fig. 5 the specific-heat results for [—,'-I]~ closed chains.

Unlike the antiferromagnetic chain, the curves for
finite X do not bracket the limiting curve, making the ex-
trapolation procedure a more difBcult task, at least at low
temperature. It can be emphasized that successive curves
cross for kT/~ J~ ranging between 0.3 and 0.6 and show,
for X =5, an unexpected inAection point at low tempera-
ture. Owing to these remarks, it is clear that any extra-
polation procedure used at high temperature becomes ir-
relevant in the crossing region and below. In fact,
remembering the analogy with the S =

—,
' ferromagnetic

chain, one can estimate the limiting curve in the very
low-temperature region (kT/~ J~ (0.2) from Bonner and
Fisher results' (dashed-dotted line). It then appears that
the specific heat varies as T' for T~O K, while we
found for finite closed chains an exponential variation.
This apparent disagreement results, in fact, from the oc-
currence of large gaps between low-lying levels in the
case of finite chains (see Fig. 2), while in the thermo-
dynamic limit these levels close up to give a continuum,

with a high-spin multiplicity. This induces a remarkable
phenomenon which is the occurrence of a second anoma-
ly at low temperature for the infinite [—,'-1] chain. Fur-
ther, we note that the low-temperature anomaly is
significantly enhanced when S increases, as can be ob-
served in Fig. 6, for [—,'-2]~. Clearly, it is closely related
to the spin multiplicity of the basic unit [—,-S], so that a
drastic evolution of the specific heat might be inferred for
the quantum-classical spin chain as T~O K. We have
plotted in Fig. 7 the numerical results for [—,'-S] quantum
closed chains together with those of the quantum-
classical one. Only the curves corresponding to finite
rings are drawn for S ) 1. Due to required computing
times, the calculations were only performed up to N =4
for S =

—,
' and 2, and 3 for S=—,', making the extrapola-

tion a more difticult task. Nevertheless, the height and
position of the Schottky-type anomaly should by closely
approximated. These results are summarized in Table
III.

For the quantum-classical chain, the expression of the
specific heat is given by'

C~ /Nk =2+x ( —x —cosh x +coshx +x sinhx ) /(x sinhx —coshx + 1 )

1.2

Cp/R

0.8

06.

0.4

0.4
l

/
/

I CO

0.2 .

oI
0 02 0.4 06 08 1 0 $.2 1.4

kT/~ JI

FIG. 4. Magnetic entropy (per spin pair) of [—'-l]~ rings.
The limiting curve calculated from the spin-wave theory is
given in dashed line.

0
0 0.5 2.5 kT/I Jl

FIG. 6. Specific heat (per spin pair) of [z -2]~ rings.
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FIG. 7. Specific heat of [—'-S]b rings showing the enhance-

ment of the low-temperature anomaly when S increases. The
classical result is displayed in dashed line.

FIR. 8. Critical g, /gb values of [—,'-1]b rings giving zero

magnetic moment in the ground state.

We note that a Schottky-type anomaly is still present in
the same range of kTIl Jl, but the low-temperature varia-
tion drastically differs. Thus, C shows a nonzero value
at T=O K, originated by the classical spin sublattice,
which obviously prevents any comparison with real sys-
tems.

C. Magnetic properties

TABLE III. Thermal and magnetic properties of [—'-S]
Heisenberg ferrimagnetic chains.

Specific heat Magnetic susceptibility'
Sy~te~ Cp ../& kT ../I Jl &n, ~i. kT;. /IJI

[—,'-1]

I:
—'-—']
2 2

[-,'-&l

[—,'-5]
[i ~]'

2

0.377

0.356

0.351

0.35

0.705

1.2

1.507

2.221

2.609

2.80

0.577

1.190

2.1

2.9

2.98

'Values assuming g, =g& (r~ = 1).
Classical spin scaled to S = 2.

The magnetic behavior of finite rings [—,'-1]~ has al-

ready been discussed in Ref. 25. It was emphasized that
a nonzero magnetic moment is stabilized in the ground
state, except when the ratio between Lande factors (r )

approaches a critical value, (r ), . For this value, the sys-
tems behave like antiferromagnetic species in the very
low-temperature limit. For the infinite chain, the critical
value was approximated from the plot of (r ), versus
I/X (Fig. 8), giving (rs), =2.66. From the same study
for the other [—,'-S] Heisenberg chains, the spin depen-
dence of the critical r value was shown to be given by
the relationship (r ), =—", (S+1). This result can be com-
pared to that obtained when the exchange is Ising like.
In that case, we show that the compensation of both sub-
lattices arises for g, /g& =2S. The origin of this
difference lies within the larger degrees of freedom of

Heisenberg spins with respect to Ising ones.
Spin waves are known to provide a convenient descrip-

tion of low-lying magnetic excitations and neighboring
spin correlations at low temperature, but they fail to de-
pict accurately all the features of the ground state. The
compensation phenomenon deals with both long-range
and short-range effects, and it was interesting to examine
to which extent this theory can account for it.

We have derived the critical Lande factor ratio from
the ferrimagnetic. spin-wave spectrum,

g, /gb =(Sq+ —,
' —X)/(S, + —,

' —X)

with, for 1D ferrimagnets:

X= f (S, +S&)/(S, +Sb —2S,S„cosx dx)'i

In the case of [—,'-1] chain, we get g, /gb =3.56 which is

significantly larger than the genuine value 2. This shows
that the origin of this efTect lies probably in the ground-
state spin reduction which is the larger, the smaller the
spin. The fact that spin-wave theory ignores the interac-
tions between the various modes is doubtless at the origin
of the discrepancy between this value and our extrapolat-
ed estimate.

The temperature dependence of the magnetic behavior
is now discussed in terms of reduced X„Tproduct

X„T=IOXTI[(N, p Ik)gq ,'r +S(S+1)],—
which uniformly takes the value —', in the high-
temperature limit. In this expression, X represents the
magnetic susceptibility per spin pair.

Figures 9 and 10 display the behavior of [—,'-I]& closed
chains, for r =1 and 2. In the former case, XT decreases
as T is raised (except for K = 1), then presents a rounded
minimum near kT/l Jl =0.5, which is the signature of a
ferrimagnetic chain. The extrapolated curve (X~ ~ ),
drawn as a dashed line, has been estimated from well-
known procedures. It is worth noticing that around the
minimum and at a higher temperature, the variation of
the limiting curve closely coincides with that of the [—,-I]&
ring. Below this minimum, the observed divergence
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topology effects. In the former, it is clear that alternat-
ing g factors in a S-spin chain must induce different mag-
netic moments on successive sites. The ground state is
S =0 for an antiferromagnetic coupling, so that the low-
temperature behavior uniquely results from mixing in be-
tween different spin states, namely second-order Zeeman
contributions. On the other hand, particular arrange-
ments of identical spins on a 10 network, like intertwin-

ning double chains, can stabilize a ground state in which
spin sublattices do not compensate each other. The fer-
rimagnetism is then purely of topological origin. The
theoretical study of such systems shows that all the
features of ferrimagnetic chains are still present, and that
their behavior may, in some cases, be approximated by
that of [—,'-S] chains reported here.
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