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Theory of positron annihilation in superconductors
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A theory of positron annihilation in Cooper-pair superconductors is presented. It is assumed that
the positron and electrons are not correlated. It is argued that a comparison of positron data with
density-of-states measurements might be used to test the hypothesis that superconductivity in the
high-temperature superconductors results from pair formation. The prospects for the observation
of the e6'ects of the superconductive transition are briefly reviewed.

Within the past year or so there have been numerous
angular-resolved positron-annihilation experiments re-
ported on YBa2Cu307. ' Under suitable circumstances,
such measurements yield a projection, onto one or two
dimensions, of the Fermi-sea distribution function, p(p),
in momentum space and, indeed, there are already reports
that indicate the existence of a Fermi surface in
YBa2Cu307 in the normal state. Given realistic limits of
resolution, there is little hope, with earlier conventional
superconductors, that the changes in the momentum dis-
tribution which accompany the transition to the ordered
state can be detected. However, because of the rather
small Fermi velocity and, depending upon which mea-
surements one trusts, the possibility of, at least, an order
of magnitude larger gap, there is some reasonable hope
that such changes might be observed in these new materi-
als. In the superconducting state the Fermi edge in
momentum space is broadened by an amount 6p, which
can be estimated from 5p =5 /Avz, i.e., 5k /kF
-2/~gokF —10 ' for YBa2Cu302 or the newer Bi and Tl
compounds. State of the art technique permits the reso-
lution of a few percent of the Fermi momentum.

Despite the relative simplicity of the calculation, a
theory of the momentum distribution seen in positron-
annihilation experiments on superconductors does not
appear to have been previously presented; in this paper
the simplest such theory will be developed. The ap-
proach is based upon the BCS theory, however, as the
calculation will demonstrate, the basic assumption is that
the superconductivity is associated with pairs described
by the usual two parameters uk and vk (see later for
definitions). In turn these two same parameters deter-
mine, or are determined by, the density of states which
might be measured in tunneling experiments, etc. Posi-
tron measurements, if they can be realized, therefore
represent a rather direct check of the hypothesis that su-
perconductivity is associated with pair formation and
not, e.g., with the condensation of Bose particles such as
holons (if in fact the holons are bosons ). The theory
will not account for the dynamic correlation between the
positron and electrons.

The simplest considerations have been given, many
years ago, by de Gennes. He observed that probability
of finding an electron in a state with wave vector k, in the
BCS ground state, is

which results in

P =p —I[(haik) —p ] +(2m') I' (2)

from which they calculate a momentum distribution
function. This approach predicts the existence of a Fer-
mi edge in the superconducting state and also predicts a
reduction in the momentum of all occupied states and
therefore a narrowing of the momentum distribution.
Th1s conclusion is cvldcntly Ilot 1Q agl cement with dc
Gennes's elementary considerations and warrants exam-
ination.

Before performing the formal calculation it is perhaps
useful to review a few pertinent results of the BCS pairing
theory. Independent of the pairing mechanism the re-
duced Hamiltonian will be of the form

k(cktckt +C —kgc kJ. )
k

V~ ck yc k gc k$ck
k, k'

where the prime indicates that the sum is over all k
values such that gk lies within some limited range, usually
denoted coD, about the Fermi surface. This energy inter-
val is determined by the region where the pairing interac-

(cc)=U = —1—2
k k k

k

where Ek = (g+ b )
' and where b, is the energy gap.

As stated earlier, in the condensed state, this implies a
smearing of the Fermi distribution 5k —b, /A'UF. De
Gennes noted that ideally vk could be measured via the
Compton CAect or positron annihilation.

The only formal theory aimed at positron annihilation
in superconductors is that of Brovetto et ar. In order to
obtain a momentum associated with the quasiparticles in
the superconducting state, they assume that the energy of
such a quasiparticle is purely kinetic, i.e., in terms of a
momentum P, the energy, measured relative to the
normal-state Fermi energy, is (P pF)/2m. The—y then
equate this to the energy of an occupied quasiparticle
state

E = —)(E )2+g2]1/2

40 10 958 1989 The American Physical Society



40 THEORY OF POSITRON ANNIHILATION IN SUPERCONDUCTORS 10 9S9

and

COkC k t
—gkc k t kC (5a)

kC ki = gkc kt 5 Ck

The secular determinant for these equations is

(5b)

~k+4 =0 (6)

and results in an eigenenergy
—(g2+ g2)l/2

The corresponding eigenvectors are

Aky
=ukCky VkC k

k& =uk' k&+UkCk

where

(8b)

4
u =—1+k U = 1

2 Ek
(9)

In terms of these operators the Hamiltonian is of the
form

&=E, + Q Eka„ak
ka

(10)

where E, is the ground-state energy. Recall that al-
though the sum in this expression runs over k vectors
which lie above and below the original Fermi surface, the
excitations which correspond to ak all have positiue en-
ergies, i.e., this standard form of the Hamiltonian does
not have a set of quasiparticle states which are full in the
ground state and which might evolve from the occupied
Fermi sea as b, is adiabatically turned on. (In order to
make a connection of this sort, it would be necessary,
e.g., for the usual Fermi sea, to effect a particle to hole
transformation for those levels which lie below the Fermi
surface but not for those above the Fermi sea). Trivially
Ek = [gk~/(1 —2U k ) ] and so, if gk~ is determined from
normal-state data, the density of states of the supercon-
ductor is determined once Uk is known.

Inverting Eqs. (8) gives for an electron (as opposed to a
quasiparticle) destruction operator

~k~ =uko'k~+ Uk —k —~ . (1 1)

The first term on the left-hand side represents the ampli-
tude associated with the possibility that the destruction
of an electron will result in the destruction of a quasipar-
ticle. Since there are no quasiparticles excited, such a
process is not possible at T=O. The second term con-
tains a hidden destruction operator for a pair (see Tink-

tion is attractive. The order parameter, or gap function,
is defined by

b.= Vg' (c ktckt ),
k

and the following equations of motion are obtained:

X (&0, (x)C&, (y))( 4&~ (x)@~ (y)),

where, in order to factor the electron and positron expec-
tation values, it has been assumed that these entities are
uncorrelated and where a thermally weighted sum over
initial states has been substituted for the ground-state
wave function so that, now, the angular brackets ( . . )
imply that the thermal average is to be taken. In order to
easily evaluate p(p), it is necessary to express the local
creation and destruction operators in terms of similar
operators but for which the effect on the superconducting
eigenstates is known.

First, we transform the electron expectation value to
real momentum space, i.e., write

y eik Xct1
e QL

klan

k

so that

(@t (x)@, (y) ) =—g e'" "e '" "(ck ck ) .
kk'

(15)

If we are to be concerned with real crystalline materials,
the ck~ do not create energy eigenstates. In the normal

ham ) and hence corresponds to the amplitude for a pro-
cess in which the positron annihilates half a pair leading
to the creation of a u~

k quasiparticle. This latter pro-
cess is possible for T =0 and it is therefore the amplitude
Uk which is important for positron annihilation in this
limit. The definition, Eq. (9), of this amplitude gives
Uk —1 for k vectors which would correspond to states
well below the conventional Fermi surface and, because
the admixture of creation into destruction operators be-
comes small, falls to zero, for vectors which have k A,

values which are much more than 5k larger than kz.
Turning to the straightforward, but less transparent,

formal derivation, the cross section that a positron will
annihilate and produce two y's is given accurately by the
golden rule. However, because there is no energy resolu-
tion for the outgoing photons, it is possible to integrate
out the energy delta function and so there is a free sum
over all possible final states, i.e., the probability, p(p),
that a pair of y's with a net (real) momentum of p will be
created is given by

2

P(P) 2PlC

2
X g fdr(0~e '~'@,(r)@z(r)lf ) (12)

f
where (0~ and

~f ) correspond, respectively, to the (here
superconducting) ground state and final state and where
@,(r) and @~(r) are the local destruction operators for
electrons and positrons, respectively. The square of the
integral can be written as the product of two integrals
and the sum over final states extracted using the com-
pleteness relation to give the definition

p(p)= g fdx f dye
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state, such eigenstates are created by a set of Bloch wave
creation operators blk where k is assumed to lie in the
first Brillouin zone and l is a band index. The momentum
creation operator may be decomposed in terms of these
operators:

ck+G~ = g aG (k)b,
l

(16)

where ao (k) are complex coefficients and Cx is a lattice
vector in the reciprocal lattice. Using this we have

(C, (x)4, (y)) =—g g e'"+ '"e '"+ '" a'*( k) a'*( k')( b,„b,„),1

ll' k, G
k', G'

and substituting, we easily find

p(p)= —g g g fdx1 dy e ' '" "'e'"+ '"e ' + '"(@ (x)4 (y))a'*(k)a' *(k')(b b ~ )
ll' k G a

k', G'

=~k&k +Uk& —k— (19)

We need

~bk bk' ~ ~(ukak +vka —k — ( k'ak' +vk' —k'—

(uk (ak ak &+vk &a-k — a —k — ~ +kk

(20)

The integral over the real-space variables can be elim-
inated by defining the squared (temperature-dependent)
Fourier transform of the positron wave function as

In order to obtain an expression appropriate for a su-
perconductor, only one more step is required. It is neces-
sary to express the normal-state Bloch states in terms of
the Bogoliubov-Valatin quasiparticle operators ak which
can be written in terms of the Bloch operators and which
correspond to energy eigenstates of the superconductor.
For simplicity it will be assumed that only a single band
is involved in the superconductivity and so dropping the
band index, l, we write

I

Thus in this limit

p(p)= g g ~4(p —k+Cx)~ ~aG(k)~ vk (23)

and in the limit 6~0, the normal metal result is
recovered since vk~e(p~ —p), i.e., becomes a step func-
tion. For a finite 6, if free particle wave functions are as-
sumed for both the positron and electron, this final ex-
pression reduces to that of de Gennes. It is not possible
to recover the expression of Brovetto et al. , since here
the Fermi edge is lost in the superconducting state, and,
while the edge of the momentum distribution broadens,
the width does not change.

Current technique does not permit the resolution of all
three components of the momentum; rather, the experi-
ment yields a one- or two-dimensional projection of p(k).
By way of illustration, the simplest case will be con-
sidered, namely, the one-dimensional projection for a
free-electron model at zero temperature. In this case
p(k)=vk, and integrating out the perpendicular com-
ponents of the momentum gives straightforwardly

i4 (p)i'= —Jdx J dye

X Ic'.(x)C .(y)) . (21)
p(k, ) ~— k,

kF

2 1/2
—1 +

This is a delta function, 5(p), if the positron wave func-
tion is assumed constant.

Finally, substituting into the foregoing gives the result

p(p)= y y [e(p —k+a)( )ao(k)[
k, G o

(24)

where 6"F is the Fermi energy and where the normaliza-
tion still needs to be determined. If N=2 p k, , then

with d =1+(b. /6F),
X [u k(1 nk )+v—knk), (22)

where nk=[1/(e +1)] is the thermal distribution
—PE„

function for quasiparticles in the superconductor. It
should be noted that at T =0, (ak ak ) =nk = 1, for all
k, while (ak ak ) =1 nk=0. T—his reflects the fact that
none of the ak states are occupied at zero temperature.

l

dN
dh

kF~
K

2@~F&d
(25)

where K(k) is the complete elliptic integral of the first
kind. An expansion for this function, valid for small
(b, /6~), results in a now normalized

3 ([[(k,/kF) —1] +(b/6F) I'~ +[1—(k, /kF) ])
p(k, )=—

1+—,
' (5/6F ) [ln32+1 —2 in(b /@F )]

(26)
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This function is plotted for several rather large values
of the gap in Fig. 1. The solid curve corresponds to the
normal state, while the dashed curve reflects a realistic
6/8~=0. 1. The sharp Fermi edge disappears with an
appreciable tail extending out to a k, —1.25. The other
two values plotted are most likely too large but serve to
illustrate the fashion in which this projected distribution
broadens. In real two- or three-dimensional materials the
Fermi momentum depends upon the direction, and there-
fore the normal-state Fermi edge itself becomes rather
difficult to observe. It is therefore even more difficult, but
perhaps not impossible, ' to detect the presence of a gap
by its effects on this edge. However, rejecting the net
broadening of the distribution, the probability of finding
small momenta, k„decreases, approximately like

1 —const

where the constant is of order of unity. This few percent
effect is insensitive to details of the dispersion relation
and will be of a similar magnitude in real materials. This
reduction, most likely, represents the simplest fashion in
which to detect the appearance of the gap.

Very recently Doniach' has considered the momen-
tum distribution in the normal state of the high-
temperature superconductors using a model in which the
electrons are strongly correlated. He uses the so-called
slave-boson method" and the mean-field approxima-
tion. ' Within this mean-field approximation, for a near-
ly half-filled band, there is a very marked narrowing of
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FIG. 1. The probability, p(k, ), that the y's have a center-of-
mass momentum component k, . The value 1.0 corresponds to
k, =k+ where k+ is defined in the normal state. The solid curve
corresponds to the normal state while the dashed, dotted, and
dash-dotted curves corresponds to increasing values 0.1, 0.25,
and 0.5, of the ratio 6/8F.

the "coherent" part of the density of states; if t is the bare
hopping matrix element, then the effective such element
is 5 I; where 5 is the concentration of holes. This renor-
malization also enters, as a prefactor, in the expression
for the Green's function which determines the density of
states and which would be rejected in the positron spec-
trum. The slave-boson representation of the Green's
function is

G(r) = ( TIf(r)b "(r)b(0)f (0) I )

which, with the mean-field approximation,

(b)'(TIf(r)f (0)I) &'(TIf(&)f (o)I),
for the important coherent contribution. The fashion in
which 6 enters is equivalent to a renormalization factor
z, i.e., the factor which narrows the bandwidth exactly
cancels the prefactor in the Green's function and so the
density of the states at the Fermi level remains un-
changed. However, this is not so for the momentum dis-
tribution. The Fermi step in momentum space is reduced
by a factor of $ and so, if $ -0.1~0.2, this represents
very important effect. One of the present authors has ar-
gued' that the mean-field approximation is not justified
for the relevant class of models. Also, even if one
suspends one's disbelief, it is not clear that the Green's
function calculated in this fashion is the one relevant to a
positron experiment. Physically, the factor of 6 is asso-
ciated with the "blocking" of the hopping process in the
highly correlated limit, i.e., if there is already an electron
on a given site then another electron is blocked from hop-
ping to that site and hence the bandwidth is controlled by
the number of holes since this determines the concentra-
tion of sites which are available for hopping. With this
mindset, one observes that the above-mentioned mean-
field expression for the Green's function is the one ap-
propriate to the creation of a test electron, i.e., to one
specific time ordering of the operators. It is the other
time ordering, corresponding to the creation of a test
hole, which is relevant in the positron context. The
creation -of such a hole requires the site to be occupied
and the relevant Green's function should therefore con-
tain a prefactor of 1 —5 rather than 6, and it follows
that the renormalization effect is not important for p-type
superconductors. (Mathematically it is also clear that the
operator combination replaced by a c number is either
b b —&5 or bb "~l—5, according to the time ordering).

Finally, it might be noted that, if we set
4&(p —k+Cr) =5(p —k+Cy), Eq. (22) gives the Comp-

ton scattering profile.
In summary, it has been shown that the angular corre-

lation of positron-annihilation y rays, in the absence of
electron-positron correlations, is described by

P(p) g & IWp —k+&) I'Ia (k)I'
k, G 0.

X[ug(1 qn) van—q] .

This result shows that, in the momentum space mapped
by positron annihilation, the sharp Fermi edge is lost in
the superconducting state. There are two processes. The
term proportional to Uk represents a process which can
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occur at zero temperature; the positron annihilates, say,
the k spin o. half of a pair and thereby results in the
creation of a -k-o quasiparticle. On the other hand, that
part of the expression which involves uk reAects the
direct destruction of a ko. quasiparticle. Since, at zero
temperature, there are no quasiparticles excited, this
latter process can only occur at finite temperature. It is
to be emphasized that this two-Quid-type picture corre-
sponds to one in which the ground state of a supercon-
ductor is viewed upon as consisting of condensate in
which all the relevant electrons, i.e., those within coD of
the Fermi surface, form part of a pair. This is to be con-
trasted with the semiconductor picture, in which the
effect of the superconductivity is to open a gap at the
normal-state Fermi surface; in the ground state a11 the
states below the gap are full and all those above empty.
With this picture the destruction of a quasiparticle, at
T=O, results in the creation of a quasihole, which is the
equivalent of the above-mentioned quasiparticle. Howev-
er, in using this picture it must be recalled that the pro-
cess occurs with a reduced amplitude Uk and that the two
pictures must not be mixed, either, at T =0, the positron
is viewed upon as destroying half a pair, or creating a
hole below the gap; there are not two distinct processes
for the ground state. It has been pointed out that
positron-annihilation experiments reAect the distribution
of states in momentum space and thereby provide corn-

plimentary information about the superconductive state
to that obtained from, say, tunneling or optical measure-
ments, since these latter reAect the distribution of occu-
pied states in energy space. Should sufficiently accurate
data become available for these two methods, it is possi-
ble to test rather directly the hypothesis that supercon-
ductivity arises through pair formation. In the meantime
it is suggested that the change, near k, =0, in the one-
dimensional projection of the momentum distribution
might be the easiest fashion in which to detect the effects
of entering the superconductive state; this decreases by a
fraction -(b, /6'~) with the formation of the gap h. In
principle this few percent effect, illustrated in Fig. 1,
should be relatively easy to detect for the new high-
temperature superconductors. However, it is imperative
that the temperature dependence of the lattice parame-
ters be also determined and, if need be, corrected for. It
seems probable that there are lattice anomalies near T,
and these might easily mimic, or mask, the sought for
electronic effect.
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