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High-temperature superconductors exhibit harmonic generation when immersed in an ac magnet-
ic field. To explain this phenomenon, we propose a macroscopic critical-state model as an alterna-
tive to the loop model used by Jeffries et al. While the original Bean model of the critical state only
predicts odd harmonics, our extended model also predicts even harmonics by taking into account
the dependence of the critical current upon magnetic field. The results of our measurements of har-
monic signals as a function of ac magnetic field, dc magnetic field, temperature, and harmonic num-
ber are consistent with the proposed model. In particular, we find that, as the magnetic field is in-
creased, the critical current crosses over from the Bean regime, where J, is independent of field, to
the Anderson-Kim regime, where J, is approximately inversely proportional to the field.

I. INTRODUCTION

A type-II superconductor will generate higher-
harmonic components of magnetization when immersed
in an ac magnetic field. These phenomena were studied
extensively by Bean, who used a critical-state model to
explain them;! only odd harmonics were reported for
conventional superconductors even in the presence of
nonzero dc magnetic fields. Similar experiments have
been performed more recently on high-temperature su-
perconductors. It is found that these superconductors,
whether they are in the form of bulk ceramics, powders,
or single crystals, also generate higher harmonics.?®
Only odd harmonics are generated in a pure ac field,
while in the presence of an additional dc field, even har-
monics are also generated. To explain these phenomena
in high-temperature superconductors, various theoretical
models have been proposed, such as the inverse Joseph-
son effect,” quantized loops with weak links,>* and the
loop model with phase slips.” However, in addition to us-
ing questionable physical assumptions, none of these
models can account for all of the experimental aspects of
harmonic generation in high-temperature superconduc-
tors.

In this paper, we extend our earlier work® based on the
macroscopic critical-state model and develop an ‘analyti-
cal solution which accounts naturally for odd- and even-
harmonic generation in high-temperature superconduc-
tors. The generation of even harmonics arises from a
strong field dependence of the critical current in high-T.,
materials, even at very small fields. We also report mea-
surements of the harmonic amplitudes as a function of ac
magnetic field, dc magnetic field, temperature, and har-
monic number. By measuring harmonic power, we ob-
served that as the magnetic field is increased, the critical
current crosses over from the Bean regime,! where J. is
taken to be independent of field, to the Anderson-Kim?®
regime, where J, is taken to be inversely proportional to
the field. Generation of even harmonics only occurs in
the latter case.
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II. MATERIALS AND PROCEDURE

The high-temperature superconductors used in our ex-
periments are bulk and powder samples of YBa,Cu;0,
obtained both commercially’ and through synthesis in
our lab. Using ac fields of up to 10 G in our experiments,
we observed strong harmonic generation in powders
(average size about 100 pum) and bulk ceramics, while
weaker harmonic signals were seen at 77 K in our
higher-grade bulk ceramics. We attribute this difference
to the fact that the higher-grade materials have higher
critical currents, so that the fields used in our experi-
ments were insufficient to drive the samples into the re-
gion where harmonic generation is readily observable.

The apparatus used in our experiments is similar to
those used in making mutual inductance ac susceptibility
measurements. A function generator (500 Hz to 50 kHz)
supplies an ac current to a primary coil to produce a field
H, . cos(wt). The current is measured by monitoring the
voltage across a 2-{) resistor connected in series with the
coil. Inside the primary coil is a secondary coil of 80
turns which encloses the sample and is connected in
series with an identical coil counterwound and positioned
to give a zero net signal when the sample is absent. The
output of the secondary coils, which is proportional to
the time derivative of the magnetization, is connected to
a Hewlett-Packard 3561A dynamic signal analyzer.
Another coil coaxial to the primary coil is used to pro-
duce dc fields.

. We also measured hysteresis loops for the samples us-
ing an oscilloscope. The x axis of the scope is connected
to voltage across the 2Q resistor which is proportional to
the ac drive field, and the y axis of the scope is connected
to an integrated version of the secondary coil output,
which is proportional to the magnetization.

III. CRITICAL-STATE MODEL

The critical-state model proposed by Bean' provides a
mechanism for harmonic generation in type-II supercon-
ductors. For simplicity, it was originally assumed by

10 936 ©1989 The American Physical Society



40 CRITICAL-STATE MODEL FOR HARMONIC GENERATION IN ...

Bean that J, is constant in the critical state, but this leads
to the generation of only odd harmonics. Now we will
show that a generalized critical-state model with J, (H)
predicts the generation of both odd and even harmonics
in the presence of an additional dc field.

The central idea of the critical-state model is" “there
exists a limiting macroscopic superconducting current
density J,=J_.(H) that a hard superconductor can carry
and, further, that any electromotive force, however small,
will induce this full current to flow locally. On this pic-
ture only three states of current flow are possible with a
given axis of magnetic field: zero current for those re-
gions that have never felt the magnetic field and full
current flow perpendicular to the field axis, the sense de-
pending on the sense of the electromagnetic force that ac-
companied the last local change of field.” The average
magnetization induced by a given external field can be
calculated by averaging the local flux density. We note
that this model does not require the critical current to be
constant, and that in general J, does depend on the local
field.

When a superconductor is immersed in a pure ac field
H=H,.cos(wt), we have M(wt)=—M(wt+1), since J,
only depends on |H| which is the same for wt and wt + .
Since

1 «

sin(nowt)=(—1)"sin[n(wt +)]
and

cos(nwt)=(—1)"cos[n(wt +m)],

an M(wt) having this symmetry (of only changing sign
when ot-—>ot+7) can contain only odd n harmonics.
Now if we apply a dc field in addition to the ac field, then
J. at

H=Hy +H,.ccos(wt)
will not be equal to J, at

H=H, +H,. ccos(wt+1)

because J, depends on |H|. Therefore the generalized
critical-state model wyith J,(H) allows the generation of
even harmonics in the presence of a dc field.

The generation of even harmonics has not been report-
ed in conventional superconductors. The probable
reason is that in order for this generation to be prom-
inent, the following conditions must be satisfied: (1) the
critical current is field dependent, (2) the dc and ac fields
are of the same order of magnitude, and (3) the total field
is much greater than H_,. Since H, is rather large for
conventional materials except near T, the generation of
even harmonics may not be observable with the rather
small ac field amplitudes typically used in this type of ex-
periment. In high-T,. superconductors, the lower critical
field H,; of the effective medium!'® (defined as the
minimum field for flux to penetrate between the grains) is
about 1 Oe (or even less if the intergranular coupling is
weaker), so that the generation of both even and odd har-
monics occurs at more convenient fields.

Now we present an analytical solution based on the
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critical-state model. First we discuss the Bean model
where J, is taken to be constant. Then we discuss the
case where J, is taken to be field dependent. Work by
Anderson and Kim and coworkers® shows that taking J,
to be proportional to the inverse of H is a good approxi-
mation for the critical state. This case will be called the
“Anderson-Kim model.” Before going into the algebraic
details of the two models, we point out that any field
dependence in J,, such as J, proportional to exp(—&H)
for example, will also lead to the generation of both even
and odd harmonics. Therefore the Anderson-Kim model
is only a simple example with which the essence of the
underlying physics can be seen.

A. Bean model

The critical current can be taken to be more or less
constant in two cases: (1) when the total field is small,
and (2) over a subloop which is small and far away from
H =0, so that the fractional change in H is small.

The assumption that J, is constant leads to a straight
line flux density profile. For a sample of a given size,
there exists a minimum field H* to penetrate the whole
sample. For an infinitely long slab of thickness D and an
infinitely long cylinder of radius R, this size-dependent
penetration field is given for the slab and cylinder, respec-
tively, by!

2xDJ, /c, (1)

* =
H*=14%RT, /c. 2
If a field H is cycled from O to H, to 0 to —H,, etc.,
with H, < H*, the entire hysteresis loop can be calculat-

ed for the slab and cylinder, respectively, by'

B=HH,/2H*+(H?>—H})/4H* , 3)
B=HH,/H*+t(H>—H3})/2H*+(H}—H*H,)/4H**
—(HH3+H?*/3)/4H*? , @)

where the “plus” and “minus” signs correspond to in-
creasing and decreasing H, respectively.

If Hy>H*, Egs. (3) and (4) no longer hold. For
H,>H?*, we extend Bean’s analysis to get B(H) for the
case of a slab. For H increasing,

B=H—H*/2+(H+H,—2H*?/4H* ,

for —Hy<H <—Hy+2H* ,
B=H—H*/2, for —H,+2H*<H<H, ,
and for H decreasing , (5)
B=H+H*/2—(H—H,+2H*)/4H*

for Hy>H >H,—2H* ,

B=H+H*/2 for Hp—2H*>H>—H, .
For the case of a cylinder, for H increasing,
B=H—H*/3—(H+H,—2H*)’/12H*?

for —Hy<H<—H,+2H* ,
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B=H—H*/3 for —H,+2H*<H<H,,
and for H decreasing , ' (6)
B=H+H*/3—(H—H,+2H*)’/12H*?

for Hy>H >H,—2H* ,
B=H+H*/3 for Hy—2H*>H>—H, .

Comparing Egs. (3) and (5) with Egs. (4) and (6), we see
_that for both Hy<<H™* and H,>>H?*, the formulas for
the slab and the cylinder are the same except for a prefac-
tor. This is because for any geometry, flux penetrates
only the surface area if H, is much smaller than H*, so
that the hysteresis is proportional to H3. It is also true
that for H, much larger than H*, there is a maximum
field that the shielding currents can screen out, corre-
sponding to a flat region in the magnetization. Therefore
in the two limiting cases Hy,<<H?* and H,>>H®*, the
formulas for the slab should apply to other geometries as
well, except for a prefactor. Hence we will focus the
remainder of our discussion on the slab case.

a,=fB,=0 (for even n) ,
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Using the nonlinear magnetization given by Egs.
(3)-(6), we can calculate the amplitude of the harmonics
generated when an ac magnetic field is applied to a sam-
ple. We assume the ac field has the form
H =H, cos(wt). Substituting into Egs. (3)-(6) and using
Fourier analysis, we find

B=3 a,cos(wt)+ Y B,sin(wt), n=1,2,3,..., 7)
n n
where the coefficients «, are the in-phase components

and B, are the out-of-phase components. For the slab
case with H, < H*, the results are, as found by Bean,!

a,=HZX /(2H*)

a,=0 (forn>1),

B,=0 (for even n),

B,=—(H2, /H*)[2/m(n —2)n(n +2)] (for odd n) .
(8)

If H, > H*, we find from our Eq. (5)

ay=H, —(47H*)"{(HZ /2)[sin(3X) /3 +sinX |+ [H2, +2(H,. —2H**1sinX — H, (H,, —2H*)[sin(2X)+2X ]} ,
Bi=2H*/m+(4mH*) ((H2, /2){[cos(3X)—1]/3+(1—cosX)}
+[H2 +2(H,,—2H*)*](cosX —1)—H, (H,,—2H*)[cos(2X)—1]) , )
a,=—(4TH*) " ((H2, /2){sin[(n +2)X]/(n +2)+sin[(n —2)X]/(n —2)} +[H2, +2(H,.—2H*)*]sin(nX ) /n
—2H,(H,.—2H*){sin[(n +1)X]/(n +1)+sin[(n —1)X]/(n —1)}) (for odd n>1),

B,=2H*/nm+47H*)"'[(H2, /2)({cos[(n +2)X]—1} /(n +2)+{cos[(n —2)X]—1} /(n —2))

+[H2 +2(H,,—2H*)*][cos(nX)—1]/n

—2H, (H,.,—2H*)({cos[(n +1)X]—1}/(n +1)

+{cos[(n —1)X]—1}/(n —1))] (for odd n >1),

where
X=cos 1—2H*/H, ), 0<X<m.

The Bean model predicts that in the slab case for
H, <H*, all odd harmonics are proportional to
H: /H*. For H, >>H*, X approaches zero, so that the
out-of-phase component 3, approaches 2H* /nm, while
a, approaches zero.

As already noted, the Bean model (with J, =const)
does not predict the generation of even harmonics even in
the presence of an additional dc field. Calculation shows
that except for the dc component, the magnetization in
the field

H=H, +H,coslwt) ,

is given by Egs. (3)-(6) with H replaced by H —H ..
Therefore Egs. (8) and (9) remain valid in the presence of
the dc field.

[
B. Anderson-Kim model

The critical current density in the critical state is deter-
mined by the pinning force:

a:(l/C)JcXHlocal N (10)

where a is the pinning force per unit volume and c is the
speed of light. A series of papers by Anderson, Kim, and
co-workers® indicates that taking a as a constant is a
good approximation for many systems, so that

Jo=ca/H,, . (1n

This leads to a parabolic flux density profile as illustrated
in Fig. 1. Here, we discuss only the slab case, although
our results hold for other geometries (except for a prefac-
tor) in the limiting cases H <<H* and H>>H*. The
penetration field H* for a slab of thickness D is

H*=(4maD)?. (12)
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FIG. 1. Flux density profile for an infinitely long slab in a
field H cycled between H, and H,, where H,<0<H,,
|H,|>|H,|,and H, < H*. Vertical axis is local flux density. (a)
External field H decreasing from H, to H,; (b) H increasing
from H, to H,.

Now we calculate the magnetization of the supercon-
ductor immersed in a field H cycled between H, and H,,
where H,>H,. There are two cases depending .on
whether

A’=[H2sgn(H,)—Hp2sgn(H,)]

is greater or less than 2H*?. Here the definition of the
function sgn(x) is given by

sgn(x)=1 if x>0,
sgn(x)=—1 if x <0, (13)
sgn(x)=0 if x=0.
For the case A%2>2H *?, the result is, for H decreasing:
B=[2/(3H**)]{2|[H?gn(H)+H2sgn(H,)]/2|>"
—|H|*—|H*2— H2sgn(H,)|*’?)
for
H,>H > |H2sgn(H,)—2H*?|"*sgn[ H2sgn(H,)—2H**],
B=[2/(3H*»)]{|[H?sgn(H)+H**]|32—|H|*

CRITICAL-STATE MODEL FOR HARMONIC GENERATION IN . ..
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for

|H2sgn(H,)—2H*?|'%sgn[ H2sgn(H,)—2H**]>H > H, ,

and for H increasing , (14)
B=—[2/(3H**)]{2|[H*gn(H)+ H?sgn(H,)]/2>"

—|H]?—|H**+ H2sgn(H,)|>"%}

for

H, < H <|H}Zsgn(H,)+2H**|'*sgn[ HZsgn(H, )+2H**],
B=—[2/(3H*))]{|[H%gn(H)—H*?]|**—|H|*}

for

|H2sgn(H,)+2H*?|%sgn[ HZsgn(H, )+2H**1<H <H,.

The other case is A2 < 2H *2; the result is,

B=[2/(3H*?)]{2|[H?gn(H)+H2sgn(H,)]1/2]3*—|H|?

—|[HZsgn(H,)+ Hjsgn(H,)1/2|**}+ B,

for H decreasing from H,to H, and (15)
B=—[2/GH*?)1{2|[H?gn(H)+H2sgn(H,)1/2]**—|H|?
—|[HZsgn(H,)

+H}2sgn(H,)1/2|**}+ B,

for H increasing from H, to H,. B,, which is the dc
component contributed by the inactive interior of the
sample [deeper than a distance of A2D /(4H*?) from the
surface] that is not reached by the ac field, depends on
the initial condition. We plot one example of the flux
density profiles in Fig. 1 to indicate how Egs. (14) and
(15) are calculated.

For the special case of symmetric field swings where
H,=—H,=H,, the preceding results can be simplified.
If H, < H*, we have from Eq. (15)

B=+(2H}/3H*?)
. X{2[(1+H/Hy|H/H,|)/2P"*—|H /H,|*} ,
(16)

where the plus and minus signs correspond to decreasing
and increasing H, respectively.

When a superconductor is immersed in a pure ac field,
i.e., H=H,.cos(wt), we have H,=—H,=H,=H, . If
H, <H*, the harmonic signal is proportional to
H? /H*? which is the prefactor in Eq. (16). The other
case H, > H* is a little more complicated, since Eq. (14)
cannot be simplified into a single equation. However, in
the extreme case H,, >>H*, we find the harmonic signal
to be approximately proportional to H*>/H,.. These re-
sults differ from the Bean model results quoted after Eq.
9. ’

As pointed out in the beginning of Sec. III, only odd
harmonics exist in zero dc field, while even harmonics ap-
pear in a dc field. If we assume the external field has the
form H=H 4, + H, cos(wt ), the Anderson-Kim model re-
sults Egs. (14) and (15) can be used to study the magneti-
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zation and harmonic generation. Here H,=H, +H,_
and H,=Hy —H,.. We notice that A2>2H*?, which is
the condition for Eq. (14), is always satisfied if H, > H*.
Also, for a given dc field, we have to switch from Eq. (14)
to Eq. (15) as the ac field is decreased, since A2 <2H*? is
always satisfied when H, << H*.

Now we let the external field

H=H, +H,cos(wt) ,

and use Fourier analysis to write the field B (¢) from Eq.
(14) and Eq. (15) as

B(t)=3 a,cos(nwt)+3 B, sin(nwt)+5, ,

n=12,3,...,
(17)

where 3, is the dc component and the coefficients «, and
B3, are given by the Fourier integrals:

a,== [7 Blt)cos(not)d(ot) , (18)
o -7

B,= 7 Blosin(not)d(wn) . 19)
w -7

The magnitude of the nth harmonic B, is then equal to
(a2 +pB2)'/2. The integrations for a, and B, were done
numerically. Figure 2 is a plot of the harmonic signal B,

Harmonic signal (10 dB / div. )

-2 -1 0 1 2
Hg. / Hae

FIG. 2. Harmonic signal numerically calculated from the
Anderson-Kim model as a function of applied dc field for vari-
ous harmonic numbers n, where A% <2H *2,
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as a function of applied dc field for various harmonic
numbers n for the case A2<2H*?, calculated from Eq.
(15). For fixed Hy. /H,., B, scales with H3, but these
curves are universal as long as A2 <2H*?, Clearly, even
harmonics are nonzero for H 4 #0. As shown in Fig. 2,
we also find that in the region H,y <H,., the nth har-
monic signal has an oscillatory dependence on Hy /H ..

When H, > H*, harmonic signals in the presence of a
dc field are given by the Fourier transformation of Eq.
(14), and the results depend on the parameter H, . /H*.
However, when H, . /H* is very large, this dependence
only changes the absolute value of the harmonic signal
rather than the overall structure. Figure 3(a) is a plot of
the numerically calculated result with H, . =10H*. The
regular oscillating structure is apparent, with a quasi-
period of oscillation 6H g, ~wH . /n.

A simple argument can be made to explain the above
oscillating structure when Hy /H, <1 for the case of
large H,./7H*. In Fig. 4, we plot the magnetization M (¢)
as a function of time, for a sample in the field

H=H, +H,cos(wt) ,

with =1, Hy,=5H*, and H,,=10H*, for —7 <t <.
The plots are from the Bean model and the Anderson-
Kim model, respectively. It is clear that the Bean model

L (a) |

Harmonic signal (10 dB/div.)

2 -1 0 1 2
Hgyc / Hae
0F ; —
~ | b) |
§-10 (b)
al?-z()* 4
=-30( h
-2 -1 0 1 2
Hy. / Hac

FIG. 3. (a) Harmonic signal numerically calculated from the
Anderson-Kim model as a function of applied dc field for vari-
ous harmonic numbers n, where H,. = 10H*; (b) ninth harmon-
ic signal vs H,. /H . as given by the approximation Eq. (20).
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o

-0.5F \ -

---- 4nM, Anderson-Kim model

1
:

H

" — — 4nM, Bean model 1-10
"

y —— H=5H*+ 10 H* cos(t)

-3 -2 -1 0 1 2 3
t

FIG. 4. Magnetization as a function of time t, —7m <t <, in
external field H=5H* 4 10H *cos(t), as predicted by the Bean
model and Anderson-Kim model.

M(t) has flat regions and is not sensitive to H (¢), while
the Anderson-Kim model shows two peaks in M (¢) when
H(t)=0. We argue that the contribution from these two
peaks is the physical reason for the oscillation of the har-
monic amplitudes, since M (¢) elsewhere is much smaller
and slowly varying, and for high n largely cancels out
when multiplied by cos(nwt) and sin(nwt) in the Fourier
integration. For simplicity, we use & functions to
represent the magnetization, so that M(H)~+8(H),
where “+” and “—” signs are for decreasing and in-
creasing H, respectively. Therefore

M(t)~=+8(H, +H,.cos(wt)) .

For |H, /H,|<1, M(t) has a nonzero value only at
wt=cos (—Hy /H, ) and ot=-—cos (—H, /H,,).
Therefore for |Hgy | <H,, the in-phase component a,
and the out-of-phase component 3, of the nth harmonic
signal can be approximated by

a,~{cos[n cos " (—Hy. /H,.)]
—cos[—ncos”(—Hy /H, )1}
~0,
B, ~{sin[n cos " (—H, /H,, )]
—sin[—n cos™(—H4. /H,.)]}

(20)

~2sin[n cos™(—Hy /H, )] .

Since
cos N x)=mw/2—x

for small x, the nth harmonic signal has a quasiperiod of
oscillation 8H . =mH . /n. In Fig. 3(b), we plot the ninth
harmonic signal predicted by Eq. (20). Note the similari-
ty between the periodicities of this approximation and
that of the exact calculation for n =9 plotted in Fig. 3(a).
When H,, is much larger than H,, J, is predominant-
ly determined by Hy. Thus for the entire subloop of
magnetization, J, is approximately constant for any given
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dc field. In this region, the results of the Anderson-Kim
model converge to those of the Bean model. In particu-
lar, the Anderson-Kim model predicts that the even har-
monics disappear for Hy, >>H .

IV. COMPARISON OF EXPERIMENTAL
RESULTS WITH THEORY

A. Hysteresis loops and harmonics
versus ac field

We measured the magnitude of the odd harmonics as a
function of H, with zero dc field in both powder and
bulk samples. Since the results depend on the sample
geometry, we focused our measurements on thin slab
samples and compared our results with those predicted
earlier by the critical-state model for a slab geometry.
Our samples fall into two categories: (1) samples with
small H* (comparable to the measuring magnetic field),
and (2) samples with high H* (much larger than the fields
used in our experiments).

Most samples in the first category are degraded bulk
samples with very small penetration fields H* (about 1
Oe), though similar results can be seen in powders. Since
H* is very small, we are able to see the predicted satura-
tion of harmonic amplitude as H, exceeds H*. At
smaller H,, the third harmonic signal is proportional to
(H,.)", with v observed to be between 1.5 and 2, while
the Bean model predicts v=2 for H,. <H*. This devia-
tion may be attributed to a decrease in the demagnetiza-
tion effect as flux penetrates deep into the sample. For
H, >H*, we observe that the harmonic signal ap-
proaches a constant as predicted by the Bean model.

We also measured hysteresis loops for our degraded
samples at various H,., as shown in Figs. 5(a)-5(c). We
observe that a flat region emerges and increases in width
as we increase H,.. Figs. 5(d)-5(f) show a fit for several
values of H, /H* using the formula

47M =4rMy,,,—aH ,
where a =0.3 and
47TMBean =BBean —H

is given by Eqgs. (3) and (5). The aH term accounts for the
diamagnetism of grains which are still in the Meissner
state (since H,,, is about 60 Oe), even if flux is penetrat-
ing between the grains. For granular superconductors, a
is expected to be less than one, as noted by Clem and Ko-
gan.'! There is good agreement between the experimen-
tal results and this theoretical model. Estimating that
H*=0.6 Oe for a degraded sample with a thickness of
about 4 mm, the critical current density is approximately
2.4 A/cm?

The samples in the second category were the standard
ones with large H*, for which the available measuring ac
fields were always less than H*. Figure 6 shows the third
harmonic signal as a function of H,.. Since we find that
the harmonic signal continues to rise steeply for H,, up
to 12 Oe, which is the maximum ac field used in our ex-
periments, H* must be larger than 12 Oe although we
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1.25}F b
(d)
. L b
=
= 0.00} .
[
-
-1.25¢ B
. . . . L
-1.25 0.00 1.25
H/H*
2.5F R
(e)
*
o
= 0.0f g
[
-
-2.5 g
-2.5 0.0 2.5
H/H*
5 - .
(f)
*
o] \
= ol ]
3
-
-5+
-5 0 5
H/H*

FIG. 5. (a)—(c) Hysteresis loops measured at 77 K in a bulk
sample of Y-Ba-Cu-O with small H* (degraded sample) for vari-
ous H,.: (a) H,,=0.7 Oe, y axis: 5mV/div.; (b) H,,=1.4 Oe, y
axis: 10 mV/div.; (c) H,,=2.8 Oe, y axis: 20 mV/div. (d)-(f)
Hysteresis loops predicted by the formula
47M =47My,,, —0.3H: (d) H,. =1.25H*, (e) H,.=2.5H*, (f)
H, =5H*.

could not determine its value exactly. This minimum
value for H* corresponds to a critical current density of
2X10* A/cm? for a 1-mm thick sample. Since the
measuring field was probably much less than H*, the flux
only penetrated near the surface. Thus the demagnetiza-
tion coefficient, which is small in any case due to the thin
slab geometry, remains more or less constant when we
change the field.

As shown in Fig. 6, for small H, ., we find that the
third harmonic is proportional to H2, corresponding to
the Bean model. For larger H, (>3 Oe), we find that the
third harmonic is proportional to H3_, corresponding to
the Anderson-Kim model. When H,  crosses over from
the Bean regime to the Anderson-Kim regime, the gen-
eration of even harmonics becomes observable.

B. Harmonic amplitude versus temperature

We measured the temperature dependence of the third
harmonic signal in constant ac fields (with Hy =0) in
both bulk and powder samples, as shown in Fig. 7(a). For
an ac drive field with a constant amplitude of 5 Oe, a
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FIG. 6. Third-harmonic signal measured at 77 K in a bulk
sample of Y-Ba-Cu-O with large H* (>>H,_) as a function of
H,.

peak in harmonic amplitude near the transition tempera-
ture is observed in our bulk samples but not in our
powder samples. This feature can be understood in the
general framework of the Bean model as follows. (The
same qualitative result can be obtained from the
Anderson-Kim model.) Assume we have H,  <H* at
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FIG. 7. (a) Third-harmonic signal as a function of tempera-
ture measured in bulk and powder samples of Y-Ba-Cu-O,
H,.=5 Oe; (b) theoretical temperature dependence of the
third-harmonic signal for various values of H*(0)/H,..



40 CRITICAL-STATE MODEL FOR HARMONIC GENERATION IN . ..

some lower temperature where J, is large. As the tem-
perature increases, the harmonic amplitude V,, which as
shown in Eq. (8) is proportional to the inverse of H* and
therefore the inverse of J,, should increase since J, de-
creases with increasing temperature. But as the tempera-
ture approaches T,, the critical current becomes very
small causing H* to become much smaller than H,, so
that ¥, becomes proportional to H*, as indicated by Eq.
(9). As a result, V, should decrease with J,(T) near T,
and we should expect a peak somewhere near the transi-
tion temperature. However, there is no peak if H* at
zero temperature is still smaller than H,.. If we assume
the critical current has the two-fluid temperature depen-
dence

—(T/T )21 —(T/T)*1'"*,

we can use Eqgs. (8) and (9) to predict the temperature
dependence of the harmonics. Figure 7(b) shows a plot of
the resulting predicted temperature dependence of the
third harmonic component for various H*(T =0)/H .
For large H*(T =0)/H,, the peak is very close to T,.
For smaller H*(T =0)/H,., the peak occurs at lower
temperatures, finally disappearing for H*(T =0)/H,
smaller than 0.58 [see the following]. In our experiments,
powder samples with small H* (small particle sizes) do
not show peaks, while bulk samples with much larger H*
show definite peaks near T, as expected from this model.
The peak occurs at the temperature where

(aB,,/aT)Hac=(8B,,/aH*)Hac(dH*/dT)=0 .21

Since H* decreases monotonically as temperature in-
creases, (dH*/dT) is always nonzero. Substituting
B, _;, given by Eq. (9), into Eq. (21), we find

H*(T e ) =~0.58H,,

for the third harmonic signal for the slab case of the Bean
model. The Anderson-Kim model predicts a similar re-
sult.

Shaulov and Dorman® reported measurements of the
third harmonic amplitude in very small constant ac fields
as a function of temperature for various dc fields ranging
form O to 1 kOe. As they increased the dc field, the peak
moved to lower temperatures. This is consistent with the
results of our critical-state model since H*, proportional
to J,, decreases as the dc field is increased. We also note
that a similar temperature dependence for the peaks in
the out-of-phase component of the ac susceptibility has
been reported by various experimental groups.'?

C. Harmonic amplitude versus harmonic number n

Figure 8 shows the magnitudes of the nth harmonic
signals as a function of (odd) n measured in a thin slab of
Y-Ba-Cu-O (13.6X 10X 1.6 mm®) at various ac field am-
plitudes (in zero dc field). The ac fields used in the mea-
surements were always smaller than the penetration field
H* of the sample, i.e., H,. < H*. The surface of the sam-
ple was sanded before making the measurements to mini-
mize the effect of bad surfaces. The solid line is the Bean
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FIG. 8. Magnitude of nth harmonic signal as a function of n
for various H,. in a thin slab sample of Y-Ba-Cu-O at 77 K,
f=5 kHz, Hy=0: (a) H,,=2.4 Qe, (b) H,,=4.0 Oe, (¢
H,.=11.3 Oe. Dots: experimental data; solid line: Bean mod-
el, H,, <H?*; dashed line: Anderson-Kim model, H,. <H*.
Fits are scaled to third-harmonic amplitude.

model prediction when H, <H*, given by Eq. (8), and
the dashed line is the Anderson-Kim model prediction
when H, < H*, numerically calculated from the Fourier
transformation of Eq. (16). Both of these curves are
scaled to fit the third harmonic signal. For small H,_, the
power spectrum is very close to that predicted by the
Bean model. But as the ac field amplitude is increased,
the spectrum deviates from the Bean model and moves
toward that which is predicted by the Anderson-Kim
model, corresponding to a crossover from one model to
the other. In order to accurately predict the crossover, a
more realistic model such as one based on J,=ca/
(H +H,) would be necessary, where H, is a material-
dependent parameter characterizing the crossover.

We notice that the crossover field in Fig. 8 appears to
be of the order of 10 Oe, while the crossover field for the
third harmonic signal shown in Fig. 6 appears to be
around 3-4 Oe, even though the measurements were
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done on the same sample. The reason for this difference
is not quite clear. However, since the theoretical line for
the Anderson-Kim model is lower relative to that of the
Bean model for the higher harmonics, the lower harmon-
ics must change faster and hence must change first in the
transition from the square to the cubic dependence on
H,.. Therefore it is plausible that the third harmonic sig-
nal would cross over first as H,_ increases.

D. Harmonic amplitude versus dc field

We also measured the even harmonic signals as a func-
tion of dc field. We observed a very sharp dip in the
second harmonic amplitude at H =0 due to the restora-
tion of the broken symmetry of the hysteresis loop. Fig-
ure 9 is a plot of our experimental results and a predic-
tion by the Anderson-Kim model. Due to the limitations
of our present setup, we could only measure harmonics in
H,. up to 0.4 H, , and hence we were not able to verify
all the theoretical results shown in Figs. 2 and 3 for the
bulk slab sample.

Jeffries et al.* have reported structures similar to those
shown in Fig. 3(a) measured in powder samples in ac
fields larger than 10 Oe. Though the measurements were
from powder samples which should fit our slab results
only qualitatively, the measured spacing between minima
shown in Fig. 5 of Ref. 4 is very close to wH,./n, as pre-
dicted by our critical-state model. These structures are
understood as resulting from a symmetry-breaking pro-
cess.

E. Effect of sample thickness

One bulk piece was cut into several smaller samples of
the same length and width but different thicknesses. The
third-harmonic signals measured in these samples in zero
dc field were found to be more or less independent of
sample thickness. This is consistent with the critical
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FIG. 9. Second-harmonic power as a function of Hy./H,.
Solid line calculated from the Anderson-Kim model with
A?2<2H*?. Dots are measured in a Y-Ba-Cu-O bulk sample at
77 K with H,.=4.75 Oe.

JI, SOHN, SPALDING, LOBB, AND TINKHAM 40

state model so long as H,, < H*. The nth harmonic com-
ponent of the magnetization, B,, is proportional to the
inverse of sample thickness in the regime H, <H*, ac-
cording to Eqgs. (8) and (2) of the Bean model or Egs. (16)
and (12) of the Anderson-Kim model. Since the harmon-
ic signals in the secondary coil voltage output are propor-
tional to B, times the sample volume, they are indepen-
dent of sample thickness. Stated more physically, the
measured signal comes from a surface layer penetrated by
the field, which is independent of the thickness of the
inactive material between the two surface layers.

V. COMPARISON WITH OTHER MODELS

The critical-state model just presented deals with mac-
roscopic current flowing through an effective medium.
Previous attempts to explain harmonic generation in
high-temperature superconductors have relied on simple
network pictures involving Josephson junctions and in-
ductive loops.?”> The formula that results in the
inverse-Josephson-effect model® appears to be mathemati-
cally equivalent to the single-loop formula used in the
loop model.** We will focus our discussion on the
differences between the loop model proposed by Jeffries
et al.>* and the critical state model proposed in this pa-
per, and compare the predictions of both models with the
experimental observations.

First, the temperature dependence of the harmonic am-
plitude in the loop model is basically the same as that of
the critical current. Therefore no peak in the harmonic
amplitude as a function of temperature is predicted by
the loop model. The temperature-dependence measure-
ments were done with powders in the work of Jeffries
et al., yielding results which seemed to be consistent with
their theory. The same proportionality to J, is obtained
from the critical state model, if the value of H* is much
smaller than the measuring ac fields, as is the case with
our powder samples. However, our critical-state model
predicts that the temperature dependence of the harmon-
ics is a function of H{;—,)/H,. and that a peak appears
if H—o, /H,. is greater than ~ 1, as supported by our
experimental results from bulk samples. These features
cannot be explained by the loop model because it neglects
macroscopic shielding effects.

To explain why the spacing between minima of the nth
harmonic amplitude as a function of dc field is propor-
tional to H,./n, it is suggested in Ref. 4 that the effective
loop area is proportional to H,_, but no clear justification
is given. It follows naturally from our model that the
spacing 8Hy, is wH, /n for small H, /H, when
H,. > H*, which appears to explain the measured results.

The harmonic signal in zero dc field as a function of
H,_ is not discussed quantitatively in earlier work while
we observe experimentally and describe theoretically the
behavior corresponding to a crossover from the Bean re-
gime to the Anderson-Kim regime.

The dependence on the harmonic number n is de-
scribed by our model quantitatively for small H,, i.e.,
the Bean regime, and qualitatively for large H,, i.e., the
Anderson-Kim regime. The loop model only qualitative-
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ly describes this dependence.

The critical-state model has been used successfully to
describe magnetization in hard superconductors for the
past twenty-five years, and it describes many other exper-
imental results in high-temperature superconductors.'’
Given its simplicity and agreement with a broader range
of experimental results, the critical-state model seems to
be a preferable explanation for harmonic generation com-
pared to the loop model which involves new assumptions
of uncertain applicability.

VI. CONCLUSIONS

The critical-state model appears to account for all ex-
perimental results on low frequency harmonic generation
in Y-Ba-Cu-O samples without the ad hoc assumptions of
other models. Since the fields used in our experiments
were rather small, we could only probe properties related
to the intergranular critical current density and not the
intragranular critical current density. However, the same
physics probably applies to both situations.
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A theoretical limitation of the critical-state model may
result if the actual vortex state in high-temperature su-
perconductors is some sort of melted or liquid state in-
stead of the conventional rigid Abrikosov lattice, as has
been proposed by Nelson.!* For a complete analysis of
such a case, the critical-state model would have to be
modified to take into account explicitly the time-
dependent relaxation effects.

After this manuscript was completed, we became
aware of the work of Miiller et al.,!* which also applies a
critical-state model to interpret harmonic generation in
Y-Ba-Cu-O and reaches similar conclusions concerning
the role of a dc magnetic field.
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FIG. 5. (a)-(c) Hysteresis loops measured at 77 K in a bulk
sample of Y-Ba-Cu-O with small H* (degraded sample) for vari-
ous H,.: (a) H,,=0.7 Qe, y axis: 5§ mV/div.; (b) H,.=1.4 Oe, y
axis: 10 mV/div; (¢) H,.=2.8 Oe, y axis: 20 mV/div. (d)-(
Hysteresis loops predicted by the formula
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