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Three-roton bound states
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The existence and binding energy of three-roton bound states with a vanishing total momentum
are investigated. In the presence of attractive roton-roton interaction, however weak it may be,
three-roton bound states of s- and d-wave symmetry are necessarily formed. Those binding energies
can be expected to be about 1 K. The observability in experiments such as Raman scattering is also
discussed. Further, the effects of four- and Ave-excitation states on the Raman spectrum are brieAy
discussed.

I. INTRODUCTION

Landau' proposed that superfluid He, He II could be
understood as an interacting phonon-roton gas. From
this viewpoint, understanding the interaction between
phonons and rotons is essential to explain the thermo-
dynamical and transport properties of He II.

Raman scattering ' has been a useful tool to investi-
gate the interaction between excitations in He II.
Theoretically, Iwamoto and Ruvalds and Zawadowski '

showed that the Raman spectrum I& should have cusps
or inflections with infinite derivatives at E =260 and 2A&,'

E is the energy transferred from the incident light to He
II, and 50 and 5& denote the minimum and the maximum
energies of the phonon-roton dispersion curve, i.e., the
roton and the maxon energies, respectively. Further-
more, they argued that a resonance should appear below
E =26 0 if the interaction between two rotons was attrac-
tive. This resonance was clearly observed by Murray,
%'oerner, and Greytak.

Recently, Ohbayashi and his co-workers have per-
formed Raman scattering experiments with a fairly high
resolution around E =260 and also at higher-energy re-
gions and observed several abrupt changes in dItt /dE at
energies higher than 2b 0 and 26&. By taking account of
three-excitation states, Hirashima and Iwamoto showed
that the Raman spectrum should also have cusps or
inflections with infinite derivatives at E =360, 250+6&,
50+25&, and 3A&. In a refined experiment by Ohbayashi
et al. ' values of E at which structures appear agree fair-
ly with those values mentioned above. In this paper we
investigate the possibility of the formation of three-roton
bound states.

In Raman scattering the produced excitations have a
vanishing total momentum, E=O, and are dominantly of
d-wave symmetry. Thus the above-mentioned result, i.e.,
confirmation of the existence of a two-roton resonance,
means that the interaction between two rotons with X=O
and of d-wave symmetry is attractive. Even between two
rotons with E=O, however, there can be many interact-

ing channels other than the d-wave one; the total angular
momentum l can be any even integer. (The fact that it
should be even comes from the Bose statistics. ) Neither
Raman scattering nor neutron scattering provides us with
any information of the interaction at K=O in the chan-
nels other than the d-wave one.

For a finite E, there can also be several interacting
channels between two rotons. Since the rotational invari-
ance in momentum space is broken in this case, / is no
longer a good quantum number. In particular, for a large
E, EC ~go, po being the roton momentum, channels are
characterized by the magnetic quantum number m
around K; again only channels with even m are relevant

' due to the Bose statistics. Indeed several authors"' ar-
gued that, to explain the experimentally observed roton
lifetime and energy shift consistently, it was essential to
work with a roton-roton interaction which is of a finite
range (not a 5-function type introduced first by Landau
and Khalatnikov' ' ) and is of several channels.

One can also deduce the quantitative information on
the roton-roton interaction at large X by studying the ro-
ton linewidth (or viscosity) and the roton energy shift. It
was shown"' that to explain the linewidth the interac-
tion at a large K should be large compared with that at
E=0 in the d-wave channel deduced from Raman
scattering. Furthermore, the sign of the energy shift (de-
creasing with the temperature increasing) implies that the
dominant interaction is attractive. Note that, however,
those results are obtained after the thermal average in
contrast to the results obtained from Raman and neutron
scatterings, where one can see the elementary processes
at least at the absolute zero, T=O.

Owing to the peculiar dispersion, in the presence of at-
tractive interaction, however weak it may be, two rotons
with a finite EC also form bound states. ' lf it is clearly
observed in neutron scattering, it will give us definite in-
formation on the roton-roton interaction with a finite K.
In addition to the experimental resolution, however, sin-
gle roton linewidth present at finite temperatures has
prevented us from drawing any definite conclusion on the
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existence of two-roton bound states (resonances) at a
finite E. Actually Smith et al. ' analyzed the neutron
data using the theory of Zawadowski et al. and reported
that the roton-roton interaction at large E's (2.7
A '&K /Pi&3. 3 A ') was repulsive .{See also Refs. 17
and 18).

So far we have given a brief summary of the present
understanding of the roton-roton interaction. Details on
the subject were reviewed by Zawadowski. ' A brief but
recent review was given by Bedell, Pines, and
Zawadowski {hereafter referred to as BPZ) (see also
Refs. 21 and 22).

Now we return to Raman scattering. Confining our-
selves to two-excitation states we get information only on
the interaction between two rotons with E=0 and l=2 as
mentioned before. However, three-excitation states with
a vanishing total momentum, P=O, can also be involved
in Raman scattering. (Note that we denote the total
momentum of three-roton states by P while that of tmo-

roton ones by K in this paper. ) In the presence of attrac-
tive roton-roton interaction, then, we can expect that
three-roton bound states (boson analog of a triton) are
formed and will be observed in the experiment. We
should note that, as far as three-roton states with P=O
are concerned, as in this paper, relevant interaction is not
one between two rotons with E=0, but one with E =p0.
Observation of three-roton bound states [strictly speak-
ing, resonant states (see Sec. III D)] would thus enable us
to directly estimate the strength of roton-roton interac-
tion with E=pp ~ This would, needless to say, give us
valuable information to deepen our understanding of the
roton-roton interaction and thereby of the various prop-
erties of He II.

As we will see, in the presence of attractive interaction
between two rotons, three-roton bound states are neces-
sarily formed just like two-roton ones. Those binding en-
ergies are much larger than those of the two-roton bound
states with E =p0 for the same coupling constants. On
the other hand, it is not clear whether they are larger or
smaller than those of two-roton bound states with E=0,
bemuse the relevant interactions are different for each
case.

In this connection we should mention the recent work
by BPZ. They calculated the strength of the interac-
tion between two rotons with large E's as well as that
with E=O using the polarization potential approach.
Their results showed that the former was attractive and
larger (by almost an order of magnitude) than the latter.
Note that their results are not inconsistent with those ob-
tained from the analysis of the roton linewidth and the
energy shift already mentioned. Using their values for
the coupling constants we will see that the three-roton
binding energy is about 1 K, which is large compared
with the observed d-wave two-roton binding energy of
0.27 K. '

Investigation of the three-roton bound state is in itself
of great interest, because the roton is a unique excitation
due to its peculiar dispersion. Indeed two-roton bound
states (resonances) also originate from this peculiarity.

In this paper we are mainly concerned with three-
excitation (roton) states. We, however, have no firm

reason to truncate more than three excitation states;
those states can also be involved in Raman scattering.
Indeed, in a recent experiment, ' Ohbayashi et al. sug-
gested that there might also appear structures at
E = n ho+ m 6& with n +m ~ 4 in the Raman spectrum.
In this paper we touch on effects of four- and five-
excitation states on the Raman spectrum by simply ex-
tending the discussion made by Hirashima and Iwamo-
to. '

The paper is organized as follows: In Sec. II we give
an appropriate form of two-roton interaction for a large
E and wave functions describing three-roton states with
P=O and angular momentum I. In Sec. III we solve the
Schrodinger equation to investigate the existence and the
binding energy of three-roton bound states with l=O, 1,
and 2, and then discuss several points including the ob-
servability of those states. Section IV is devoted to a
brief discussion on four- and five-excitation states. In
Sec. V we give a summary of the paper. Throughout the
paper we restrict ourselves to the case with T=O.

II. ROTON-ROTON INTERACTION FOR K =p0
AND THREE-ROTON WAVE FUNCTIONS

Before studying three-roton bound states, in this sec-
tion we first give the interaction between two rotons with
a large E and then construct wave functions describing
three rotons with P=O as preliminaries.

A. Roton-roton interaction for a large K (K ~p0 )

Since we are mainly interested in Raman scattering, we
concern ourselves exclusively with three-roton states with
P=O. It is then sufficient to consider the interaction be-
tween two rotons with E =p0. For E ~pa, the interac-
tion U (p1, p2, p3, p4, K), which is depicted in Fig. 1, should
take the following form:

U(p12 p34 K)=& ' X U~.~«)expl: —1m(v 12
—

v 34)]

where pj =(p; —pj )/2, 0 is the system volume, and y;J
the azimuthal angle of p; around K. (See Fig. 2.) All p s
(i = 1—4) take the value

p0 —~p, -p; -pa+~p,

v {pl,p2, p3, p4', K)

FIG. 1. Interaction between two rotons; p&+p2=p3+p4= K.
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B. Three-roton eave functions

FIG. 2. Scattering of a roton pair (p3, p4) into another pair
(p„p, ); K=p, +p, =p, +p4 and K~po. All p s lie approxi-
mately on the sphere with a radius po.

Ap, being the cutoff momentum, hp, =0.2po. If all p s
lie exactly on the sphere with a radius po, the Bose statis-
tics require that m in (1) should be even, which we as-
sume in the following; this amounts to neglecting terms
of order (bp, /po) (see Sec. III D). Note that in general
there also exists three-roton interaction, which cannot be
expressed as a sum of two-roton interactions. In this pa-
per we disregard that interaction.

In three-roton states with P=O, the total angular
momentum I is a good quantum number. In this subsec-
tion we give the wave function describing the three-roton
states with P=O and with any I. Here we should note
that in the three-roton case, the Bose statistics do not
preclude odd I states, in contrast with the two-roton case.
In the following we give the derivation of the three-roton
wave functions in some detail, because it is not a trivial
task.

Since, besides I, its projection m is also a good quan-
tum number, the wave function of three rotons with P=O
is specified by l and m, 4" (p, , p2, p3; P= g, , p, =0}.
Owing to the condition P =0, 4' is expressed by six vari-
ables. It is convenient to take as the variables the magni-
tude of p; (i = 1,2,3), p &, pz, and p3, and the Euler angles
(a, P, and y) to specify the orientation of the triangle
formed by p&, p2, and p3. For the definition of the Euler
angles, we follow the convention taken by Bohr and Mot-
telson or Rose. We denote the space-fixed coordi-
nates by (XYZ) and the body-fixed ones by (xyz).

The wave function 4' is a superposition of states
specified with I and its projection m' onto the body-fixed
z axis. We denote the corresponding wave function by
u' (p„p2,p3), which is a function of p&, pz, and p3', we
assume that it is symmetric under any permutations of
p, 's. The wave function 4' is then expressed in terms of
u '

~ as follows:

I
'P' (p&, p&, p3)=& g D' (a,P, y)u' (p&,p2, p3) (2)

m'= —I

where 4 stands for the symmetrization with respect to
the permutations of the p s. The D function is, following
Bohr and Mottelson, defined by

D ' (a,P; y ) = ( lm
~
exp( i alz )ex—p( igl r )—exp( i y iz )

—
~
Im ' ) '

=exp(i am)d' .(P)exp(iym '), (3)

with

d'~ (P)=(lm'~exp(igli, )~lm } . (4)

In Eq. (2) (and from now on) we do not explicitly write
the condition P = g3, p, =0.

To obtain the symmetrized wave function we add up
the unsymmetrized ones with the arguments permuted,

+m (Pl&P2~P3 } Pm (Pl~ P2~ P3 }+fm (P]~ P3&P2 }
I I I

+0' (P2 P3 Pi }+

where g' is the unsymmetrized wave function.
Now we have to determine how to take the body-fixed

coordinates for the given arguments (p;, p, pk }
(i,j,k=1,2,3). Note that the order of the arguments is
important. First we take the z axis to be parallel with the
first argument p;, and then the y axis with p; Xp; conse-

FIG. 3. Body-fixed coordinates (x &,y&, z& ). The triangle
formed by p&, p2, and p3 lies on the x&-z& plane. 5(12) is the an-

gle made by p& and p2.
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quently the y axis is perpendicular to the plane on which
the p, -p2-p3 triangle lies. The x axis is uniquely deter-
mined by the requirement that the (xyz) coordinates are
right-handed ones. We denote the body-fixed coordinates
defined in this way for (p„p2, p3) by (x,yiz, ) (see Fig. 3)
and the corresponding Euler angles by (aipiy, ), and for

{Pi P3 P2) by (xIy lz1 ) and {all lyi)' Similar y
define (x2y2z2) and (a2132y2), and (x3y3z3) and (ag3y3),
etc.; the xz axis is parallel with p2 and the y2 axis with
p2Xp3, for example.

Since we have assumed that u' is symmetric, we see
that %' reduces to the following:

%" (p„p2, p3)= g [D' .(a„p„y,)+D' (a'„p'i, y', )+D' .(a2, p2, y2)+ . ]u' (p~ i,P2,p3),
m'= —1

where we assume u '
~ is properly normalized.

It is convenient to express the five D' 's in terms of the remaining D', e.g., D' (a„P„y,). Firstly, since
x ', = —x, and y 1

= —y „in other words, y', =y, +m. (see Fig. 3), we have

D' ~ { aip' iy', )=D ~~. ( ap„y, +m)=D' .(a„p„y,)e' =( —1) D' (ai,p„y, ) .

Next, since (x2,y2, z2 ) is given by the rotation of (x „y„z, ) with 5(12) around the Y axis [5(12) is the angle made by

p, and p2, cos5(12)=p, p2/(p, p2)], D' (a2, P2, y2) is given by

D' .(a2,p2, y2) =
& 1m

I exp( —ia, lz )exp( —ip, lr)exp( i y, lz—)exp[ i 5{1—2)lr] I lm' &'

I
D' -(a„P„y,)d' ~ (5(12)) .

m"= —1

By similarly considering the remaining permutations and noting that the same result is also obtained in terms of
(ai, p2, y2) and (a3,p3 y3), we finally have the symmetrized three-boson (roton) wave function with the angular momen-
tum I and its projection m onto the Z axis as

{Pi P2 P3) =1

m', m"= —I
"{al l 1 y1)~ " '{Pi P2 P3)+ '(Pl P2 P3)I

m', m"= —1

2 l 2 y2)~ " '{P2 P3 P1) '{Pi P2 P3)1 1 1

m, m = 1

1 I 1
mm" {a3~~3~y3+n1 "m'(P3~P1~P2 )~m'(P 1 &P2~P3 ) ~ (7)

where b, ' (p„p2,p3) is defined by

(p„p2,p3)=[5 +d' (5(12))+d' ( —5(31))][1+(—1) ] .

Note that the dependence of b, ' ~ on p „p2, and p 3 comes through that of 5(ij ) on them; e.g.,
5(12)=arccos[(p3 —pi —p2)/2pip2]. Since states with a definite 1 but with diff'erent m are degenerate, we drop the
suKx m attached to 4' from now on.

III. THREE-ROTON BOUND STATES AND THEIR BINDING ENERGIES

We denote the ground state and the one-excitation state of He II by IO & and b~ IO &, respectively. We require that bz
and b should satisfy the Bose commutation relations. The effective Hamiltonian describing two interacting rotons is
given by

&= g co(p)blab~+ —,
' g u(p, p';K)bx)2+~bx)2 ~bx)2 p bx)2+~

p p,p, E

where co(p) is the experimentally observed roton dispersion; for the roton dispersion we use the parabola expression,
co(p)=ho+(p —po) /(2p), for po —bp, ~p ~po+bp, in this paper. For large K expression (1) can be used for
u (p, p', K) in (9) as noted in the preceding section. We approximately express the three-roton states with P=O and the
angular momentum I as

g 0'(p „P„P3)b,' b,' b', IO &,
1'

p, .p,

where 1II (p„p2, p3) is given in the preceding section [Eq. (7)] and the factor 1/3. is introduced to avoid overcounting the
Mi»mizing &q"l~lq"& —«q"I+'&, i.e., 5(&+'l~lq"& —&&q"Iq"&)=0, «adiiy l~~d~ « the
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Schrodinger equation for 4'(p„p2, p3),

~3(pl P2 P3)]+ (Pl P2 P3) + g U~
~

e g e + (Pl P2 P3)+e "Xe "+'(Pl P2 P3)
m =even P23 P31

I

+e ye +(Pl P2 P3) (10)
I

P12

where (1) has been used because the total momentum of any pair is about po, e.g., ~p, +p2~ =p3 =pa, E is the energy of
the state 4', and to3(p l,p2,p3 ) = g;, co(p; ). Furthermore, we have assumed U

~ ~

(K) to be constant,
U( ((e)=v( i(po)=vI (.

Owing to the condition P=O, the summations on the right-hand side of (10) are restricted by the triangular inequali-
ties, e.g., ~pz

—pp pl p2+p3. Since all p s are close in magnitude to po, po —bp, ~p; ~po+bp„however, the ine-

qualities are automatically satis6ed. Hence, it is sufticient to perform the summations with the condition

po —hp, ~p; ~po+ hp, but without any further restrictions.
The three-body Schrodinger equation is exactly solvable, i.e., without the variational method for example, for a separ-

able interaction. Similarly, we can solve Eq. (10) exactly. It should be noted, however, that the form of the interac-
tion (1) is not assumed to solve the problem, but it naturally results from the symmetry considerations. (Moreover, it is
required to explain the experimental results as mentioned in Sec. I.)

As usual we transform the summation in Eq. (10) into integration; in doing so it is convenient to take the variables as
follows:

, f dp' =,"„, ' f p'dp' f P'dp' f"d7, ,
t 21rf2 p 1 c c 0

PZ3

where c means po —bp, p pa+ bp, (i=2,3). Note that A&3= —yl. Substituting (7) on the right-hand side of Eq.
(10) we find that it is reduced to

I
'I

%l'(p, ,p„p3)=[E t03(p„p„—p3)] ' p 3 g D' .(aj,p„zj) F' (pj),
m'= —l even ( ~) j=1 Pj

with
I

F' (p)= g f p'dp' f p"dp"5' ~ (p,p', p")u'. , (P,p', p") .
C C

(12)

Since we are interested only in bound states, i.e., those states with E (co3(p„p2,P3) (but see the following), no homo-
geneous term appears on the right-hand side of Eq. (11). Noting the orthogonality of D ~ and the relations of
D ~ (al, pl, y, ), D' (a2, p2, y2), and D' (a3,p3, y3) [see (6)], we have, after a straightforward manipulation, a set of
integral equations for F ~ (p),

2&U~m l~F' (pl)=-
m" = —l, even

P2dP2P3dP3

c M3(plqp2qp3) Em Im I I

F -(pl )
1

[1+(—1) ]d' ~ ., (5(12))dp2p3dp3 F' -(p2)
~3(pl P2 P3) —E (13)

where the relation d' (P) =( —1) d' ( —P) has been used. If Eq. (13) has an eigenvalue E such that E (350 (but
see the following), we have a bound state and the binding energy is given by Etl =36,o —E ( )0).

Before proceeding we make a simplification. In deriving (1) we neglected terms of order (Ape /po). In according with
it we also neglect such terms in Eq. (13) to have 5(12)=—,'m. We then see that 5' .(p„p2,p3) defined by Eq. (8) be-
comes constant,

b, ' m =[5 +d' ( ', n)+dmm ( —
—,'n)]—[1+(—1) ]=I5 .+[1+(—1)™mv]d' . ( —', m)I[1+( —1) ],

i.e., 5 ~ is finite for even m and m', and otherwise vanishes. Consequently I' ~ also survives only for even m' and Eq.
(13) is rewritten as

F' (p)=— 27TU [mt~]

X
m" = —l, even

Flp'dp'p "dp" m" P +2d 1 (, )
dp'p "dp" Fl (,)

~ ~3(p p' p") E p '~3(»p» (15)

Although Eq. (15) is valid for any l, we study only the cases with 1=0, 1, and 2 in the following; only s- and d-wave
states are observable in Raman scattering at T=O as will be discussed in Sec. III D.

From now on we set U
~

~'s to be negative; they are assumed to be attractive.
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A. s-wave case

For the s-wave (1=0), doo(P) = 1. Equation (1S) is then
reduced to

a(E;p)Foo(p)+ f dp'P(E;p, p')Fo(p')
C

2.0
X10

Iv, l

(2iriri)
Fo(p), (16)

where

=2~ I tl

~(E;p) = J dp' J dp"
p c c Co3(p~p', p" ) —E

and
II

P(E;p,p')=4ir J dp"
c co3 p,p ,p

(18}

Equation (16) is of a similar form with the ordinary
Schrodinger equation for a two-body problem, but in con-
trast to it, where the eigenvalue E is determined for a
given coupling constant, in Eq. (16) the coupling constant

I vo I, actually its inverse, is the eigenvalue for a given E.
We can then make an interpretation of Eq. (16) resort-

ing to the analogy with the Schrodinger equation. We see
that F(p) (suffixes dropped) stands for the wave function
for a free roton with p with the remaining two interacting
rotons. The second term on the left-hand side represents
the eff'ect of the "interaction"; the free roton represented
by F(p) also interacts with both of the remaining two ro-
tons. Indeed in the absence of the second term Eq. (16)
gives the following expression for E:

2
—1

26O —E =C — exp
hp,

Ivol
—1

2p
ppo

2

2M p

p po
2

2p
(19)

where C is a number weakly depending on E and p
(C = 1.12). The first term is the binding energy of tiuo ro-
tons with K =p and the second term the free roton ener-
gy.

Now it becomes clear that indeed the continuum
threshold is not E =36O, but E =26O —E„where E, is
the maximum of the right-hand side of Eq. (19). In other
words, if a state has the energy E less than 3ho but larger
than 2ho E 26O E (E &36O it is not a three-roton
bound state, but a state where two rotons form a bound
state with a scattering roton; it is a state in the continu-
um. Since the right-hand side of Eq. (19) takes the max-
imum value for p =po, the continuum threshold is ap-
proximately given by

hp,
3AO —E, =C exp

2p
ppo

2mB
luol (20)

The relation of Eii, Eii=3ho E, and lvol, obtai—ned
numerically from Eq. (16), is shown in Fig. 4, where di-
mensionless quantities

e~ =E~/(po/2t }

1.0
l

I

I

I
/

/

/

0.0 0.2 Iv, l

FIG. 4. Three-roton binding energy of the s-wave state as a
function of Iuol for three different values of bp, : Ap, =0.16,
0.20, and 0.24. The binding energy and the strength of the in-
teraction are respectively normalized as cz =Ez/(po/2p) and
Ivol=lu&&l/(2ppo/HA'}. The X on the abscissa stands for the
value of Iuol obtained by BPZ at zero pressure. The hatched re-
gion represents the continuum states. The dashed curve is the
two-roton binding energy for K=O (see the text).

and

I vo = luo /(2ppo/77 fi )

are introduced. Using the values for po and p,
po/A'=1. 92 (A ') and @=0.16m4 (m4 being the mass of
a He atom), we have Eti = 140eii(E) and

Ivol =2.69X10 Ivol(«gem )

In Fig. 4 we have shown the ski
—lvol curve for three

diQ'erent values of Ap„' Ap, =0.16, 0.20, and 0.24. The
continuum states for hp, =0.20 noted above are also
shown. Furthermore, for comparison, we show the two-
roton binding energy cz' with K=O and angular momen-
tum l; it should be noted that for this case the abscissa
should be considered to represent

I
u 'I, which is the

strength of the interaction between two rotons with K=O
and the angular momentum /; Ez'=(ir /8)

I
u 'I .

From Fig. 4 we first note that cz varies exponentially
for small

I uo I
as expected from Eq. (19},and that for the

same values of luol and lu I Eii is much smaller than Eii .
The latter fact is easily understood by considering the
available momentum space; for the three-roton case, or
for the case with two rotons with a finite E, the momen-
tum space in which two interacting rotons can move is
restricted, as shown in Fig. 5, in contrast with the case
with two rotons with K=O, where two rotons can move
on the whole sphere.
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B. p-wave case

Since only terms with even m' and m" appear in Eq.
(15), we can consider only the m ' =m "=0 component for
/=1. The resultant equation reads as

a(E;p)F'(p)+doo( ', m) f—dp'P(E;p, p')Fo(p')
C —1

Fo(p) . (21)

Since

FIG. 5. Available momentum space for interacting two ro-
tons with K =go.

On the other hand, cz is much larger than the two-
roton binding energy with K =po, which is approximate-
ly given by the continuum threshold (20). Furthermore,
we note that for large lvol, lvol &0.1, E~ sensitively de-
pends on the cutoff bp, . Since l vol may take such a large
value (as will be discussed in Sec. III D), a calculation
without using the parabola approximation for the roton
dispersion (and thereby without the introduction of the
ento% may be desired.

dII(p)=[4m'/(2l+1)] ~
YIO(p 0)

we have

doo(2m/3) = —
—,
'

In analogy with the Schrodinger equation done in the
preceding subsection, we see that the "interaction"
represented by the second term on the left-hand side of
Eq. (21) is repulsive and consequently that three-roton
bound state is not formed in the p-wave states; the two-
roton bound states are also formed though. Since the
wave function changes its sign in the momentum space, it
efFectively feels repulsive interaction though vo itself is at-
tractive.

C. d-wave case

In this case we must consider m'= —2, 0, and 2 com-
ponents. After a little manipulation we can decouple the
3X3 coupled equations to the following one decoupled
and 2X2 coupled equations:

a(E;p)F2 (p)+[dz2( —,'~) —d2 2( —', vr)] f dp P(E;p,p )F2 (p )—
C (2miii)

(p)

and

a(E;p)FO(p)+d~( ', ~)f dp'13(-E;pp')Fo(p)+ lv, l lvol 'd2O(-', ~)f dp'P(E;p p')F', , (p')=
C C (2vrfi)

Fo(p),

a(E;p)F', , (p)+[d2, ( 3~)+d',-,( 3~)]f d-p'WE;p, p')F', +(p')+2lv,
l lv, l

'd2, (,'~)f dp'P(E;p, p')Fo(p')
C C —].

F2+ (p)
(2m.A)

(23)

where

F2+ (p) =F2(p)+F' &(p)

and the relations

d' .(P)=( —1) d' (P)=( —1) d' (P)

have been used. Substituting the values,
doo(2~/3) = —

—,', d2 2(2m/3) =
—,'„d2O(2m. /3) =3&6/16,

and dz2(2n. /3)= —,'„we first note that Eq. (22) yields no
bound states because dz2(2~/3) —d2 2(2m/3) is nega-
tive.

We proceed to investigate the coupled Eqs. (23). The
numerical result for hp, =0.20 is given in Fig. 6. We
have found a bound state for a given set of (IV&I, lvol).
Note that, however, if lvzl vanishes, there appears no
bound state only with attractive interaction vo in the
m =0 channel, because doo(2~/3) is negative. In Fig. 6 a
finite value of s~ is given even for Ivzl =0; this should be
regarded as the continuum threshold mentioned before.

D. Discussions

We have found that three-roton bound states do exist
in the presence of the attractive roton-roton interaction
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FIG. 6. Equibinding-energy curve for the d-wave three-roton
bound states. The X stands for the values of (IU2I, IDoI) ob'-

tained by BPZ at zero pressure.

and obtained the relation between the binding energy and
the strength of the interaction. In this subsection we give
some discussion on the results obtained so far.

We have just assumed that the roton-roton interaction
for K =po is attractive. Recently BPZ (Ref. 20) calculat-
ed the roton-roton interaction by means of the polariza-
tion potential approach. They found that the roton-
roton interaction for large K, U~ ~(K =po), was attractive
(at least at small pressures), and that its strength was
larger by almost an order of magnitude than that of the
interaction for K=O, u'. If we use their values of uo and
u2, which are identified with their g4 and g4, respectively,
we find that the three-roton binding energy has a value
around 1 K for both s- and d-wave cases. We noted in
Sec. III A that if uI

~

were of the same magnitude as u. ',

three-roton binding energy would be much smaller than
the two-roton one with K=O. However, the three-roton
binding energy can be much large than the two-roton
binding energy under the assumption of the large values
of u~ ~'s. In Figs. 4 and 6 the values of u0 and u2 at zero
pressure obtained by BPZ (Ref. 20) are depicted by
crosses.

Next we discuss the observability of the three-roton
bound states in Raman scattering. Actually, to discuss
the Raman spectrum taking account of three-roton
bound states (and two-roton bound states with a scatter-
ing roton) we should study the full three-body problem,
in other words, the inhomogeneous Faddeev equation; '

what we have done is simply equivalent to solving the
homogeneous Faddeev equation. Unfortunately we have
not been able to formulate it in a transparent way as in
the two-excitation case. " We should thus content our-
selves with qualitative discussions, but they are sufhcient
for the present purpose.

First, as mentioned in the Introduction, three-
excitation states are also involved in Raman scattering;
there should be a direct coupling between a photon and
three-excitation states and that between two- and three-

excitation states, even if they might be small. In princi-
ple the three-roton bound states are also observable in
Raman scattering.

What symmetry do the observable three-roton states
have then, l=O, 1, 2, or . . . ? Since a photon has a spin
1, the conservation of the angular momentum leads to
1=l +1; we have treated the electromagnetic field with
the dipole approximation because the wavelength of the
incident light is much longer than the atomic scale. We
see that l is either 0, 1, or 2. Since the parity conserva-
tion excludes I= 1 states, however, we have l=0 (s-wave)
and 1=2 (d wave) states as the final states of Raman
scattering.

At the same time we should note that the three-roton
bound states cannot be observed as sharp peaks, but in-
stead as broad resonances. In addition to the coupling
between three-roton states and two-excitation (phonon)
states already mentioned, that between three-roton and
three-phonon states, etc. give a width to the three-roton
bound states; we have discarded those couplings so far.
Furthermore, it is probable that the two broad peaks cor-
responding to the s- and d-wave resonances are merged
into one depending on the experimental resolution and
the temperature.

Taking account of the above circumstances we expect
that the three-roton bound states (resonances) will be ob-
served at most as a broad and not so large peak below the
cusp (or inflection with infinite derivative) at F. =3ho.
Note that, however, once their existence is unambiguous-
ly confirmed, it will be manifest evidence that the roton-
roton interaction for K =go is attractive and further al-
low us to estimate the strength of the attractive interac-
tion.

Looking at the experimental data by Ohbayashi
et al. ,

' we note that there seems to appear a broad
hump below E =3ho. Needless to say, however, it is still
premature to draw any conclusion on the existence of the
three-roton resonances at the present stage, and it is
hoped that further experiments will provide us with more
information.

It is worth mentioning that the three-roton resonances
can also be observed in a neutron scattering experiment.
Since the situation is rather different from Raman
scattering, e.g., the total momentum of the produced ex-
citations is nonzero in neutron scattering, we give no fur-
ther discussion on the subject, but it may deserve further
investigation.

Lastly we mention the effects of the terms of order
(hp, /po) neglected so far. Allowing for those terms we
see that in (1) odd-m terms also contribute. At the same
time 6'

~ with odd m and/or m' does not vanish, so that
in Eq. (13) there also appears F,(p)'s with odd m', they
couple only among themselves, but not with F ~ (p)'s
with even m '

~ We can then expect that three rotons are
also bound in odd-m ' states, that is, for a given l another
bound state(s) characterized by odd projection m' of l
onto the body-fixed z axis may appear. However, those
binding energies would be much smaller than those of
even-m' states discussed here, because u

~ ~

with odd m is
smaller by an order of (bp, /po) than those with even m
after all.
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Three-roton states with even m' will also be affected.
By relaxing the restriction 5(ij) =2m/3 we can take ac-
count of the vibrational motion in momentum space in
addition to the rotational one discussed so far. It may be
interesting to study the vibrational effects, but they will
not be so relevant.

IV. EFFECTS OF
FOUR- AND FIVE-EXCiTATION STATES

In this section we give a brief discussion on effects of
four- and five-excitation states on the Raman spectrum;
this subject is quite disconnected from the discussions so
far. The appearance of cusps or inAections with infinite
derivatives at E =E3, E3 =360, 260+5, , ho+2K„or
3A&, directly results from the analytic behavior of the
free-three-excitation propagator around E =E3, it has a
term proportional to ~E E3~' —both above and below

E3 9, 32

In regard to four-excitation states, we see that at
E E4 E4 4~0 3~O+~& 2~o+2A& ~0+3~i and 4
the free-four-excitation propagator has a term propor-
tional to (E E4)ln~E—E4~. This —term results in the
appearance only of inflections with infinite derivatives,
but never cusps, in the Raman spectrum. Similar argu-
ment leads to the conclusion that at E =56o there ap-
pears no structure; only the second derivative diverges.

These results contradict the suggestion by Ohbayashi
et al. ' In the previously mentioned argument we have
assumed the four- and five-excitation vertices to be slowly

varying around E =E3 and E4. This assumption is not
so justifiable because we have taken no account of the
two- and three-excitation (roton) bound states. Taking
full account of those states we might see that more dis-
tinct structures would appear at (or near) E =E3 and E4.
We feel that not only theoretical but also experimental
efforts may be required to clarify the situation.

V. SUMMARY

With an appropriate form (I) for the attractive roton-
roton interaction we have solved the three-roton
Schrodinger equation to find that three-roton bound
states are formed in the s- and d-wave channels and nu-
merically obtained the relation between the three-roton
binding energies and the strength of the attractive in-
teraction. We have found that for both s- and d-wave
states the three-roton binding energies of around 1 K fol-
low from assuming the large values of the strength of the
attractive interaction, e.g. , those obtained by BPZ. On
the other hand, if we can determine the binding energies
from experiment such as Raman scattering, we can
directly estimate the strength of the attractive interac-
tion.
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