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Stability of two-dimensional Fermi liquids against pair Auctuations
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Independent pair Auctuations with large total momentum do not cause an instability in a degen-
erate two-dimensional fermi liquid with a weak attractive interaction.

I. INTRODUCTION

Understanding the crossover between cooperative
Bardeen-Cooper-Schrieffer (BCS) pairing and Bose con-
densation of independently bound diatomic molecules has
assumed new importance on account of evidence suggest-
ing that in the new superconductors the pair radius may
be comparable to the mean distance between charge car-
riers. Most attempts to describe this crossover have em-
ployed the BCS mean-field theory, generalized slightly to
allow for the change in the chemical potential due to
pairing away from the weak-coupling limit. ' As em-
phasized by Randeria, Duan, and Shieh, the problem in
two dimensions has the special feature that the existence
of a two-body bound state is a necessary condition for
BCS pairing in a dilute Fermi gas. This led Randeria
et al. to suggest that independently bound pairs might
cause anomalous properties in the normal state above the
BCS transition temperature. Recently Schmitt-Rink,
Varma, and Ruckenstein (SVR) (Ref. 6) proposed tack-
ling this question with a particle-particle t-matrix approx-
imation introduced by Thouless, and previously ern-
ployed by Nozieres and Schmitt-Rink (NS) in their study
of the crossover in three dimensions. The t-matrix ap-
proximation goes beyond the BCS mean-field theory by
including independent (Gaussian) pairing Auctuations in
the normal electron gas.

In the context of this approximation, SVR suggested
that the bound state of the two-particle problem might
manifest itself in the pair susceptibility and t matrix for q
near 2k+. To understand the physical picture behind this
suggestion, consider the two-particle bound-state wave
function in the momentum representation, P(k+q/2,—k+q/2), where 2k is the relative momentum of the
particles and q is the total momentum of the bound state.
For a weak attractive interaction, the bound-state radius

go will be large, and hence the momentum space wave
function g will be localized near the origin in k, with
width b.k = I/g'0. In the many-particle case, if kzgo»1
then the occupied states inside the Fermi surface will
efFectively block the construction of the static (q =0)
bound state, and unless the two-particle binding energy is
comparable to the Fermi energy, the Fermi-liquid ground
state will be stable against the formation of independently
bound pairs (as opposed to Cooper pairs) with small total
momentum.

Alternatively, one can imagine applying a Galilean
transformation to move the bound state outside of the

Fermi surface (q »2kF ); for two isolated particles with a
Galilean invariant interaction the energy of the bound
state is increased by q /4m, while in the many-particle
case the extra cost in free energy is q /4m —2p. For
q ~2kF this free energy cost goes to zero, which might
suggest an instability, but for q

—2k+ ( 1/go the occupied
states inside the Fermi surface can no longer be neglect-
ed, and hence a detailed calculation is needed to deter-
mine whether a weak (relative to the Fermi energy) at-
tractive interaction leads to bound states that destabilize
the Fermi liquid or significantly inAuence its properties.

In the remainder of this paper I examine this question
within the framework suggested by SVR. In Sec. II, I
clarify the formal content of the NS approximation ern-

ployed by SVR. I show that the NS scheme amounts to
calculating the number density to first order in the
particle-particle t-matrix self-energy, and I argue that if
the Quctuation corrections are significant, a better ap-
proach might be to calculate the density from the Green's
function obtained by solving Dyson s equation, which in-
cludes the self-energy to all orders. In Sec. III, I analyze
the pair susceptibility at T =0 for imaginary frequencies
and q=2kF. I conclude that in this limit the nonin-
teracting pair susceptibility is bounded, and hence in
weak coupling the t matrix is also bounded and does not
signal a breakdown of the Fermi liquid picture on ac-
count of true two-particle bound states.

j

II. THE t-MATRIX APPROXIMATION
AND THE NS SCHEME

The particle-particle t-matrix, or ladder diagram, ap-
proximation for the thermodynamic potential of a normal
Fermi liquid was first studied by Thouless, who showed
that for a separable electron-electron interaction with
matrix elements

(k+q/2, —k+q/2~ V~k'+q/2, —k'+q/2)
= —gU(k)*U (k'), (1)

the contribution to the thermodynamic potential from
the sum of all particle-particle ladder diagrams evaluated
with noninteracting Green's functions is given (for free
electrons in two dimensions) by

QL = T g 2 I in[1 gQD(q, co )]+gQ0(q, co ) I
dq

(2~)
(2)

where the free-electron "pair susceptibility" Qo(q, co ) is
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Qo(q rv ) = T y f "",lv(k)l'Go(k+q/2, e.+~ )Go( —k+q/2, E„)(2~)

2 tanh(gk+z&z/2T)+tanh(gk &&2/2T)
v(k)

(2n ) 2(gk+qn+ gq qn
—t tom )

(3a)

and g'&=El, —p is the single-electron energy measured
from the chemical potential. The particle-particle t ma-
trix in the ladder approximation is —g times the inverse
of the argument of the logarithm in Eq. (2). An
equivalent representation of this contribution to the free
energy is given by Gaussian Auctuations of the pair field
in a functional integral representation of the partition
function, as was first pointed out by Langer. The BCS
pairing instability corresponds to a singularity of the
q =0, ~ =0 term in QL, and the terms with q &&kF,
co =0 were shown by Thouless to yield a Auctuation
specific heat proportional to (T —T, )

'~ in three dimen-
sions, which we now recognize as the expected result for
Gaussian Auctuations.

Equations (2) and (3a) can also form the basis of a fully
I

I

renormalized conserving approximation for the free ener-
gy and Green's function. ' If the functional @[6] is
defined by

@[6]=T g f Iln[1 —gQ(q, co )]+gQ(q, co ) I,dg
(2m )

with

Q(q, ~ )=Tgf, lv(k)l'6(k+q/2, E„+co )
(2m )'

XG( —k+q/2, E„),
then the corresponding self-consistent approximation for
the free energy is given by the functional

Q[X,G]= 2TQ f— exp(iE„g)[X(k, s„)6(k,e„)+in[—60(k, s„) +X(k, e„)]]+4&[6]
(2m )

(6)

evaluated at its stationary point with respect to variations
of both G and X. At this stationary point G, X, and N
are related by

sum, and to evaluate the derivative

—BQL /Bp= —8&[60]/Bp

6 (k, s„)= [60(k,E„) ' —X(k, E„)]

X(k, s„)= —,'M&[G]/56 (k, E„) .

(7)

(8)

by first differentiating @ with respect to 60 using Eq. (8),
and then differentiating Go with respect to p. The result
is

SVR have suggested that at temperatures above the BCS
transition temperature the presence of true bound pairs
in the normal Fermi liquid might be apparent in contri-
butions to the number density from pair fluctuations with
q =2k+. The electron density as a function of T and p is
given in terms of the thermodynamic potential by

n (T,p)=no+2T g f 60(k, s„)Xo(k,s„)60(k,c,„),dk
(2~)

where Xo(k, E„) is the particle-particle t-matrix self-
energy, evaluated with the free-particle Green's function,

n (T,p) = —BQ/Bp, Xo(k, E„)= —,
' &&[GO]/56O(k, e„) . (12)

and if one calculates n (T,p) from Q[X, G] and exploits
the stationary properties of this functional, one immedi-
ately obtains the expected result,

The other approach is to approximate G by Go in the
self-consistent result for n ( T,p) given by Eqs. (7), (8), and
(10). In this case one finds

n (T,p) =2T g G(k, e„)exp(iE„g),
dk

(2m. )'
(10) n(T, p)=2T+ f exp(is„g)

dk
(2m )

with 6 given by Eq. (7).
If 6 and X are not calculated self-consistently, then

one obtains two difFerent results for n (T,p), depending
on whether G is replaced by 60 in Q[X,G] before or after
differentiating with respect to p. Nozieres and Schmitt-
Rink approximate the fluctuation correction to the densi-
ty by —BQL/Bp, which is equivalent to approximating
Q[X, G] by Q[0, 60] before difFerentiating. In practice,
NS replace the frequency sum in QL by the standard con-
tour integral representation, and deform the contour to
lie along the real axis before differentiating (numerically)
with respect to p. An alternative (but formally
equivalent) procedure is to retain the explicit frequency

X[60 '(k, e„)—Xo(k, s„)] (13)

Equations (11) and (13) differ because QL is not a con-
serving approximation, as pointed out long ago by
Baym. ' In fact, the NS result is just Eq. (13) expanded
to first order in the self-energy Xo. The two approxima-
tion are equivalent when the self-energy corrections are
small, but if the corrections are not small, Eq. (13) might
yield a sensible result when the NS approach does not.
Physically, Eq. (13) sums all repeated scatterings of an
electron by independent pair fluctuations, but omits ver-
tex corrections and interactions between fluctuations. NS
of course omit the latter, but they also miss all the repeat-
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ed scatterings by independent fluctuations. Whatever the
merit of (13) relative to (11), it is clear from the latter that
the NS scheme is only meaningful when it yields small
corrections to the unperturbed density or chemical poten-
tial.

III. THE t MATRIX FOR q =2k~

The properties of the particle-particle t matrix and the
free energy in the ladder-diagram approximation are
governed by the pair susceptibility Qo(q, co ), given by
Eq. (3). In particular, an unconditional breakdown of

I

adiabatic continuity with the noninteracting electron gas
requires that Qo diverge as a function of at least one of its
arguments, the classic case being the BCS instability,
which appears as a ln( T) singularity in Qo(0, 0).

To study the possibility of anomalous behavior near
q =2kF it will sufFice to approximate the "form factor"
U (k) by a simple cutolf for Ek )e„with s, -kz/2m. The
precise form of the cutoff is unimportant, because the
possible anomalies of interest here are cutoff independent.
Since the free-electron density of states in two dimensions
is a constant, No=m/2n, with this choice for u (k), Eq.
(3) simplifies to

2~ d$ & tanh(gk+q/2/2T)+tanh(gk q/2/2T)
Qo(q, co ) =No dsk

0 27T 0 2(gk+q/2+/k —q/2 l&~ )

with cos(P) =k.q. With the free-electron dispersion relation, the denominator becomes

kk+q/2+0k —q/2 t~m 2(ek+kq/2 ~m /2) ~

while standard identities applied to the numerator yield

tanh(gk+ /l/2T)+ tanh(gk /2/2T) =2 tanh[(sk+ g /2)/T]/[ cosh[kq cos(p)/2mT]sech[(sk+g /z)/T]+ I ] .

(14)

(15)

(16)

(No/2)ln(gq/z —iso /2)tanh(gq/2/2T), (17)

which one might be tempted to identify as the singular
part of the pair susceptibility.

I will show that this identification is incorrect, and that
Qo(q, co ) is bounded for all co and all T when qAO. I
first observe that nonanalytic behavior of Qo(q, co~ ) asso-
ciated with the vanishing of the denominator of (14) can
only occur for ar =0. Furthermore, from (15) and (16) it
is obvious that the integrand of (14) is always positive for
co =0, and hence

Equation (15) alone suggests that Qo(q, co ) might have
logarithmic singularities for co =0 associated with the '

vanishing of this denominator, and integrating (14) by
parts does yield a singular contribution to the integrated
part,

(Ek+Cq/2) sF& uc (ac+kq/2)/sF

5=( /2/E„, a= ~q cos(P)/k„~,

y =~m/2sF

in terms of which the pair susceptibility becomes

(19)

l

This still leaves open the possibility of a singularity of
Qo(q, O) for gq/2

—+0 at T =0; in this limit the singularity
of (17) is of the form sgn(x)ln( ~x

~
). The T =0 limit of the

occupation factor given by Eq. (16) is easily seen to be

2 sgn(8k+ g'q/l )e( ~sk+ g'q/l ~

—~kq cos(P)/2m
~ ), (18)

and in this case the energy integrations in Eq. (14) can be
carried out analytically. To simplify notation, I intro-
duce dimensionless variables,

IQo(q ~ )I (QO(q 0),
as first pointed out by Thouless. Therefore it is sufhcient
to consider Qo(q, O). For T )0 the singularity of (17)
occurs for

g /~~0 (q~2k~),
and is of the form

Qo(q, co ) =(No/2) J I(5,a,y),
0 2&

sgn(u)e[g (u)]I 5,a,y= du
s u ly

with

g (u) = ~u~
—a(u —5)'/

(20)

(21)

(g / /2T)ln((g' /z~) .

But whenever

isk+g, /, i «T,
the factor

The integrals in (21) are elementary, and the only chal-
lenge is keeping track of the limits of integration and sign
changes implied by the numerator. In particular, one
needs to know the zeros of g(u), the argument of the e
function. These zeros occur at either

tanh[( sk+ g'q/~ ) /T]

in (16) cancels the potentially troublesome denominator,
so that there can be no singularity of Qo(q, O) in this lim-
it, not even one as mild as the x ln(~x~ ) implied by (17).

u+=(a /2)[1+(1—45/a )' ]

u =(a /2)[1 —(1 —45/a )'/ ],

(23)

(24)
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and the appropriate root (if any) can easily be identified
graphically. In the limit of interest, 5—+0, these roots
behave as

ImI(5, a,y) = tan '(u, /y) —tan '(5/y)

+e(a —45)[tan '( u /y)

u+ ~a =[q cos(P)/kF]

u -5~0 .

First consider the case 5 & 0 (q & 2kF ). In this case,

I(5,a,y) =I'+'(5, a,y) —I' '(5, a,y),

(25a)

(25b)

(26)

—tan '(u+ /y)] . (35)

At first sight it appears that for y =0 Eq. (34) will lead to
a singularity in Qo(q, O) of the form log(g /z), consistent
with Eq. (17) for g /z &0, but there is actually no diver-
gence, because u -5 for 5—+0. After combining the
divergent parts of both terms in (34), what remains of the
divergence is

and

I(+)(5 ) f d [g
0 u ly

(27)
e(25' —a)ln(5), (36)

and hence for this contribution the integration over P in
Eq. (20) for Qo(q, O) is restricted to

I' '(5, a,y)= f du
6 u ly

To evaluate I'+'(5, a,y), observe that

g(0)= —a 5 '/ &0,

(28) ~cos(P)~ &(8m'/2)' /q . (37)

For 5—+0+ this condition is satisfied for P=m. /2 and
iti=3vr/2, and each neighborhood makes the same contri-
bution to Qo(q, O). For p=m/2, in terms of the angle 8
defined by P= zr/2+8, condition (37) becomes simply

u +yReI'+'(5, a,y) =
—,'ln

u+ +y
(29)

and that g ( u ) changes sign at u + . Thus the effective
lower limit of the integral is u+, and one has

(+0/~)(kqlz/EF ) ln(kq/2/EF ) (38)

and hence for 6~0+ the potentially divergent part of
Qo(q, O) is

ImI~+'(5, a,y) =tan '(u, /y) —tan '(u+ /y) . (30)

These are both well behaved for all y when 5~0—.At
the lower limit of integration in I' '(5, a,y), g(5)= ~5~

&0, and hence g (u) must change sign between the limits
of integration, ' the appropriate root must be u, which
thus becomes the effective upper limit of the integral, so
that

u +y
ReI' '(5, a y) =

—,'ln z z$2+y 2

ImI' '(5, a,y) =tan '(u /y) —tan '(5/y) .

(31)

(32)

I(5,ay)= f du
6 u —iy

(33)

Now at the lower limit g(5)=5) 0, and g(u) is clearly
also positive for large u. If a &45, then g(u) remains
positive for all u )5, while if a )45, then g (u) is nega-
tive between u and u+, and this interval must be re-
moved from the range of integration. Hence the energy
integrations yield

u, +y u +y
ReI (5,a,y) =—,

' ln +B(a —45)ln
5 +y u+ +y

(34)

These are also well behaved for all y when 6—+0—,as is
evident from the limiting form of u given in Eq. (25b).

Finally, consider the case 6 )0. Then u & 0
throughout the range of integration, and the energy in-
tegral is simply

Thus Qo(q, co ) is bounded for q =2kF.
There is a simple physical picture behind the contribu-

tion to Qo(q, O) given by Eq. (38). Consider the two mo-
menta q/2+k and q/2 —k for q approaching the Fermi
surface from above. Except when k q=0, for any fixed
k )0, as q~2kF either q/2+k or q/2 —k will pass
through the Fermi surface, and thus be blocked from par-
ticipating in a bound state. For a given q )2k+, the
directions of k for which neither q/2+k nor q/2 —k ever
(no matter what the length of k) intersects the Fermi sur-
face all lie within a wedge whose angular width is given
precisely by Eq. (37). For q~2kF the momenta within
this wedge give singular contributions to Qo(q, O) propor-
tional to In(gq/2/EF ), but the angular width of the wedge
vanishes like (g /2/eF )'/ to give, finally, the weak singu-
larity in Eq. (38).

Calculating Qo(q, O) for q ~2kF is thus a subtle
matter, and requires a careful treatment of the angular
integrals in Eq. (14). A numerical integration can easily
give spurious results, as can an approximate treatment of
the angular dependence of the integrand. For example, if
one were to replace gk+q/2 and gk q/z by Ek+g /z in the
numerator of Eq. (14), this would be equivalent to assum-
ing that k-q=0 always, while this is actually the one
point in the P integral where the occupation factors never
enter to block the singularity. The result of this seerning-
ly innocuous approximation is thus to replace Eq. (38) by
an unmodified In(gq/2/EF) singularity, as can be seen for-
mally by noting that this amounts to assuming that for all
P, I(5,a,y) is given by Eq. (34) with a =0.

These results do not suggest that bound pairs with
q &2kF lead to anomalous properties of a degenerate
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Fermi liquid with a weak attractive interaction. In par-
ticular, there is no weak-coupling instability of the nor-
mal Fermi liquid at or near T =0 due to pair Auctuations
with q )2kF. These fluctuations will of course contrib-
ute to the low-temperature thermodynamic properties at
some order in T, but this does not indicate a breakdown
of Fermi liquid theory unless the Auctuation contribu-
tions enter at the same or lower order in T as do the
quasiparticle contributions. The situation here is not ob-
viously different than for particle-hole excitations such as
zero sound in a neutral liquid or incoherent spin fluctua-
tions. I hope to return to the delicate problem of the
leading corrections to thermodynamic properties due to
large-q pair fluctuations in a subsequent paper. I also em-
phasize that the calculations reported here are relevant to
the weak-coupling limit, and have no direct bearing on
the crossover between BCS pairing and true Bose conden-
sation when the pair binding energy becomes comparable
to the Fermi energy.

After the original version of this paper was submitted,
SVR showed that the co=0 pair susceptibility is not only
bounded, but analytic, for all qXO. " Their result is fully
consistent with the calculations and conclusions reported
here. In par'ticular, after evaluating the remaining (ex-
plicitly nondivergent) contributions to the susceptibility
from Eq. (34), I find the same result as SVR, up to cutoff-
dependent terms, which are treated consistently in my
calculation.
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