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Energy spectrum of a layered system in a strong magnetic field
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We investigate the excitation spectrum of two- and three-layer electron systems in a strong per-
pendicular magnetic field with v=

2 and —,', respectively, in each layer. For layer separation z =0
the dispersion relations co(k) vanish as k for k ~0, as one expects for Goldstone modes. For z & 0,
co(k) behaves as an acoustic mode, vanishing linearly for small k. For large values of k one finds

that the dispersion relations have the form b,(z) —e /~klo, where Io is the magnetic length and x the
dielectric constant of the medium. At kho of order unity, the dispersion relations develop a dip as z
is increased. These become soft modes at certain critical values of z, indicating that the system un-

dergoes a phase transition as the layer spacing is increased.

I. INTRODUCTION

In recent months, there has been some interest in the
behavior of layered two-dimensional electron systems in
the presence of a strong perpendicular magnetic field 8.
In particular, a numerical calculation by Chakraborty
and Pietilainen strongly suggests that a two-layer system
in which each layer has filling factor v =

—,
' [where

v=2mplp, p is the electron density in each layer, and
lo=(irtcleB)' is the magnetic length] will exhibit the
fractional quantized Hall effect (FQHE). In their calcula-
tion, Chakraborty and Pietilainen diagonalize within the
lowest Landau level the Hamiltonian for two layers of
electrons, separated by a distance z=2.0lo. They find
that the excitation spectrum has a form very similar to
that associated with the FQHE in single-layer systems;
in particular, there is a nonvanishing gap between the
ground state and all the excited states of the system.

The purpose of this paper is to study in the strong-
magnetic-field limit the excitation spectrum of two- and
three-layer systems with filling factor v= —,

' and —,', respec-
tively, for layer separations z-lp. We will consider an
idealized model in which electrons in each layer are 5-
function localized in the z direction, move freely in the
x-y plane, and interact only with one another and planes
of uniform neutralizing background charge. Tunneling
between layers is not allowed.

Throughout this paper we will work within the lowest
Landau level, and assume all the electrons to be in the
lowest spin state, which is appropriate in the strong-field
limit. For the remainder of this work we ignore the spin
variables of the electrons. We choose the Landau gauge
A=(O, Bx,0), so that the single-electron wave functions
take the form

P„k(x,y;cr ) =
1/4

j'2 2

X exp[iky —(x +

klieg

)I2l o jy„(o.),
where L is the linear sample dimension, and by imposing
periodic boundary conditions in the y direction, k be-

where ak (bk ) creates an electron in layer 1 (2) with wave
function P, ~z~ k, and

~
u

~

=
~
u

~

=
—,
' guarantees that each

layer is half-filled. This wave function may be written in
the following suggestive form:

1(
=Q (u+ vb„d „)%0,

k

(2)

where %'p = iit, ak ~0) and d k
—=a„. The operators

bkd k create electron-hole pairs, and the wave function
g may then be interpreted as a Bose condensate of exci-
tons in their lowest-energy state. The energy of the
ground state divided by the number of electron-hole pairs
turns out to be exactly the binding energy of a single exci-
ton. This is easily understood: the spatial wave functions
created by the operators bk and d ~—k are identical, so that
the excitons associated with bkd k have a vanishing
charge density at every point in space. There is then no
interaction between di6'erent excitons, and it follows that
all the energy of this state is associated with the binding
energy of the individual electron-hole pairs. "

comes a discrete variable with L/2@i Dpossible values.
The variable a is discrete and labels the layer in which
the electron resides; for a system of n layers, o. has the
values 1,2, . . . , m. The function y„(cr )=1 if cr =n, 0 if
o Wn.

To find the excitation spectrum of this system, we will
calculate "valley" density response functions (defined in
Sec. II) in a self-consistent approximation discussed by
Kallin and Halperin. The poles of the response func-
tions correspond to the excitation energies of the system.
The accuracy of our results is difficult to estimate, be-
cause in our situation there is no small expansion param-
eter (in contrast to the work of Ref. 3.) Nevertheless, our
results for z=0 in the two-layer system agree with past
calculations, " and the dispersion curves co(k) have sensi-
ble features for k1p « 1 and klp»1.

We first discuss our results for the two-layer system.
%'hen z =0 the ground state may be written in the form

g=g (uak+ubk)~0),
k
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A few words about why Eqs. (1) and (2) represent good
ground-state wave functions for the z =0 case are in or-
der. As pointed out by Yoshioka et al. ,

' one can think
of this system as a single layer of spin- —,

' electrons, where
the Zeeman energy is taken to vanish; the layer index in
this case plays the role of spin. If we set u =v = I/i/2,
each factor of ( I/U'2)(ak+bk) in Eq. (1) creates an elec-
tron in the kth Landau orbital with "spin" wave function
( I /V2)(

~
1 ) +

~ 1 ) ). It is then easy to see that Eq. (1) fac-
torizes into a product of wave functions, one involving
only the spatial coordinates and the other only the "spin"
coordinates. The spatial part of the wave function has
the form of a filled Landau level, so that the wave func-
tion vanishes linearly whenever two electron coordinates
are brought together. From this property, it is easy to
show that the spatial part of the wave function is the
same (up to a gauge transformation) as that of the wave
function itj», investigated by Yoshioka et al. Using a
form of it/. . . appropriate for electrons on a sphere, these
authors calculated the overlap of this wave function with
that obtained by numerical diagonalization of the Hamil-
tonian (projected onto the lowest Landau level) for finite-
size systems. For system sizes up to 10 electrons, they
found that the overlap of it/. . . with the exact wave func-
tion was extremely close to unity.

The spatial part of the wave function in Eq. (1) is thus
very close to that of the ground-state wave function for
z =0. The "spin" portion of this wave function, on the
other hand, is not correct; in fact, it has the unfortunate
property that it is not an eigenfunction of the number
operators for "spin"-up or "spin"-down electrons. Stated
diff'erently, Eq. (1) does not have the number of electrons
in each layer as good quantum numbers. However, be-
cause for z=0 the interactions are independent of the
layers in which the electrons reside —i.e., they are "spin"
independent —the energy of this state will be determined
only by the spatial part of the wave function. Thus, we
expect Eq. (1) to give a very good estimate for the
ground-state energy.

The lowest-lying excitations of this system are higher-
energy excitons. Because excitons have no net charge,
these excitations have a well-defined momentum K, in
spite of the presence of a magnetic field. To understand
the nature of these excitations, it is instructive to write
down the wave function for a single exciton:

e
co(k) =

vlo 2

1/2

[1—e ' Io(k I /4)] (3)

where Io is a modified Bessel function. Equation (3) is
plotted in Fig. 1. For klo (&1, a&(k)-k, which is ex-
pected for a system of two identical layers in which
the electron interactions within the layers are the
same as those between layers. For klo))1, we find
co(k)-=(e /Klo)[(m/2)' —1/klo], which is precisely the
form one expects for large-k excitons.

In Fig. 2 we plot the dispersion relations for the two-
layer system with z )0. For large kl 0 we find
co(k)—=b, (z) —e /Kklo, where A(z) is a decreasing func-
tion of z that will be specified in the Appendix. For small
k the dispersion curve rises linearly, with a slope that is
proportional to z for z/10 (& l.

This acoustic behavior of the dispersion relation may
be understood in the following way. For small separa-
tions, we expect the wave function in Eq. (2) to be a good
variational estimate for the ground state. However, be-
cause the attractive interaction between electrons and
holes [(e /Ir)(r +z )

'/ ] is weaker than the electron-
electron interaction within a plane (e /Kr), the con-
densed excitons now have a weak repulsion. In analogy
with the dispersion relation of a standard Bose gas with
weak repulsive interactions, one expects the dispersion
relation to rise linearly at small k. Alternatively, the
linear behavior may be understood by mapping the prob-
lem onto an equivalent spin system; this is discussed in
Sec. III and analyzed in detail in Ref. 5.

In the intermediate region (klo —1), the dispersion
curve develops a dip for separations z-lo, which be-
comes a soft mode [co (k) &0] for z ) 1.21lo. Within our

l.25—

co(k) =E,„(k)—E,„(0),
where E,„(k) is the binding energy of a single exciton
with momentum k. This result was derived by the au-
thors of Ref. 4 using a random-phase-approximation
(RPA) technique; we obtain precisely the same result
with our self-consistent approximation. The dispersion
relation may be written explicitly as

1
K

1/2
EK Cjl 0X ~ bK /2+qdK /2 —

q 0 ' LOO

Physically, this wave function may be pictured as a
bound electron-hole pair, separated by a vector '

(r) =lozXK. From this result, one expects the energy
of the exciton to behave as b, —e /Kilo in the large-K
limit.

To generate an actual excited state of our system, one
needs to eliminate a K=0 exciton from the ground state
and replace it with a higher K exciton. Because of the
neutral nature of the K=0 excitons, the dispersion rela-
tion of these excitations is given to a good approximation
b4

075—

0.50—

0.25

O.O I

7

FEG. 1. Dispersion relation for a two-layer system with z =0.
co is in units of e /a. lo.
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approximations, this indicates that the system undergoes
a phase transition at this separation. .It is possible that
for z & 1.21Ip the new phase will exhibit the gap observed
in the numerical work of Chakraborty and Pietilainen
however, since we cannot calculate the dispersion curve
for larger values of z with this formalism, it is not obvious
that the new state will have an energy gap. Nevertheless,
we emphasize that since that acoustic behavior of the
dispersion at small values of z seems sensible, it is clear
that there must be a phase transition between the "Bose-

condensed exciton" ground state and one that is separat-
ed by a gap from all the excited states.

Our results for the three-layer system are qualitatively
the same as those of the two-layer system, and are de-
scribed in detail in Sec. III. Vfe study the specific situa-
tion in which the middle layer is equidistant from the two
outer layers. One finds two excitation modes within the
lowest Landau level, which we denote as co,(k) and coz(k).
For both modes, co;(k)-k for z =0, and co;(k)-k for
z)0 when k —+0. The large-k dependence of co;(k) is
given by b, (z) e /~k—lo, as expected for excitonic modes.
Finally, for z =0.92lp and 1.51lp ct)

&
and co2, respectively,

develop soft modes near klp = 1.2, indicating that the sys-
tem undergoes a phase transition as the layer spacing in-
creases.

This article is organized as follows. In Sec. II we de-
scribe the approximations used to find the two- and
three-layer dispersion curves. In Sec. III, we present our
results, and conclude with a summary in Sec. IV. The
Appendix outlines some of the details of the calculation
for the two-layer system.

QO
0

0.6—

2 3 4 5 6

II. I'QRMAI. ISM

The Hamiltonian for a system of X layers of electrons
in a strong perpendicular magnetic Geld may be written
as

H;„,= g g gF (s p, —pz)
o1,cr2P1,P2 s&0 Xa,a a, a

1 1 2 2 2 2 1

0.2—

QQ Wll I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 1

0 l 2 3 4 5 6 7

where o.„o.2 label the layers, and a creates an electron
with wave function (t . As is appropriate in the strong-
magnetic-field limit, we ignore coupling to higher Landau
levels. The s =0 terms are excluded from the sum be-
cause of the interaction with the uniform neutralizing
background charge. The interaction matrix elements
F (s, p, —

pz ) are given by
—

q 10/2F..(q„p, —pz)=, Xe ' U. .(q)
q

)J2
X iq&(P1

—
P2 )10Xe (5)

0.5—

04

0.3

0.2

O, I

0,00 2 5 4 5 6 7

FIG. 2. Dispersion relations for a two-layer system with (a)
z=0.5lo, (b}z=1.0lo, and (c}z=1.210. co is in units of e /xlo.

where U (q) = (2m e /q )e ' ' is the two-dimensional

Fourier transform of the Coulomb interaction between
electrons in layer o.

&
and layer o.z, and z is the dis-

I 2

tance between these layers. For electrons in the same lay-
er, z =0.

1 2

%'e will first describe the calculation for the
two-layer system. It is convenient to define Fi =F&&
=F22 F2 =F12 Fzl »d the operators ~~ =( I/
&2)(a tz +a zz ), pz = ( I /&2)(a 1

—a zt). We add a small
symmetry-breaking term to the Hamiltonian so that

Hint +~sB, where

Hss=h X(K&k —ak~k) . (6)
k

In the absence of interactions (H;„,=0), the ground state
is just P= +k ak ~0). The parameter h will be set to zero
at the end of the calculation. To find the dispersion rela-
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tion of this system, we use the formalism developed by
Kallin and Halperin. The calculation closely follows
their work because one can map our problem directly
onto that associated with a single-layer system with spin
—,'; in this case, ak creates spin-down electrons, pk creates
spin-up electrons, and the Zeeman splitting is given by
2h. The only complication that arises in this mapping is
that the interaction is spin dependent. We emphasize
that this "spin" picture is unrelated to the real spins of
the electrons; these are taken to be polarized by the mag-
netic field. Closely related mappings between valley and
spin degrees of freedom have been used to investigate the
properties of both two- ' and three-dimensional mul-
tivalley systems in strong magnetic fields. To proceed, we
define the "valley-density" operator

—
q Io /4+iq„q /0/2+ikq I

p q, t = e
SI,$2 k

Xc, k(t)(2S), , c, k+q (t),

However, these functions have no poles when we consider
excitations within the lowest Landau level. The excita-
tions associated with these functions are higher in energy
than the one we will calculate by an amount of order fico„
where co, =eB /mc is the cyclotron frequency.

The diagrammatic expansion by which one calculates
g+(q, tc) is described in detail in Ref. 3. One writes the
response function in terms of a vertex function
I „—„(q„q~;

ken�)

via the relation

p (k, )=g g (q, p~ '"'2S —
~q, )

p, v ql, q2

dc'�)

X G+ co+QPi 6 coi
2%

X I"+—,(q „q~;keg),

where S+ =(1/& 2)( S+i S), ~qzU) =aq ~0) if v= 1,
P" ~0) if v=2, and the Green's functions are given by

0 1

1 0

1S =—
V

0 —i

1S =—
2

1 0
0 —1

Defining valley raising and lowering operators

where c, k(t)=e' 'c, „(0)e ' 'are Heisenberg operators,

c, k (0)=ak if s, = 1, Pk if s, =2, and the components of
S are the usual Pauli spin matrices:

co —X —( —1)"h +i q)P P

The quantities X„are self-energies that are determined
self-consistently, g =0 for p=1 and q„=0+ for p=2.
The diagrammatic representations of the self-energy and
the vertex function are presented in Fig. 3(a). We note
that this expansion does not include bubble diagrams of
the form shown in Fig. 3(b); in the work of Kallin and
Halperin, this approximation was justified because each
particle-hole bubble has an energy denominator Ae, asso-
ciated with it, and thus makes a negligible contribution in
the strong-field limit. In our situation there is no such
gap, so we are on less sure footing in using this approxi-
mation. A fully-self-consistent calculation of the vertex

p (q, t ) = [p„(q—, t )+ip (q, t )],
we can study the valley-density reponse functions

g+(q, co)= i f dt e—' '([p (q, t), p
—

( —q, O)]) .
0

(9)

r
/

/

Z — cd

k, QJ + ktcU

The poles of this function represent neutral excitations of
the system. In the valley picture they may be thought of
as valley-density waves, and in the spin picture one would
interpret them as spin-density waves.

We note that one can also study within this formalism
the valley-density response function

y, (q, co)= i f dt—e'"'([p, (q, t), p, ( —q, O)]) (b)

q2&v

q, v

or the full density response function

(q, co) = i f dt —e'"'([pF(q, t ), pF( —q, O)] ),
where

—
q Io/4+iq„q I 20/i +kq! 0pFq, t = e

k

Xe' '(akak+q +p pk+kq )e
3'

FIG. 3. (a) Approximation scheme used to calculate the self-
energy and the vertex function. (b) Some diagrams not included
in the approximation.
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function including particle-hole bubb1es is quite dificult,
and most probably would give qualitatively similar re-
sults. We thus stay within the approximations defined by
Fig. 3(a).

To evaluate the reponse functions, we write the in-
teraction Hamiltonian in the form

H.i=-,' X 2 V...,...,Viuaa4)
I ' 2 ~1'~2
3s 4 P35P4

&i = —X Vi, i„i(p pi I 2 pi) .
~& ~2

(14)

Finally, the response functions y —(k, co) may be written
in the form

y-(k, co)=+M„„(k)D„,(co)l „+—(k, co),

The self-energies X„needed to evaluate Dz, (co) are given
by

where

Vsis2s&ss(P1J 27374) Vs&s&s3ss(P2 P3& P4 P2)

~~.
, +...,+.,

V sis2s3s(sP2 J 3~ P4 P2 ) F1(P2 J 3» I 4 P2 )

+F2(p2 —p3, p4 —p2) (1 la)

if sz =s3 and s
&
=s4,

V
/ sgss3s(sP2 p3~ P4 I 2) i(P2 P3& P4 P2)

so that the poles of the response functions coincide with
those of the vertex functions. Our results for the two-
layer problem are discussed in Sec. III.

For the three-layer problem, the formalism outlined
above is essentially the same. We define the operators
ak =(ak, pk, yk ) by the transformation ak = tak, wheret

the components of ak=(a, k, a2k, a3k) create an electron
in layers 1, 2, or 3. The transformation matrix t is chosen
to be

1 1 1

—F2(p2 —p3, p4 —p2) (lib) and we take for the symmetry-breaking Hamiltonian

XDk, (co)I k,(k, to), (12)

if si =s2&s3=s4 or si =s3%s2=s4, and V,'. . . van-

ishes for all other combinations of s &,s2, . . . , s4.
In terms of these coeScients, the vertex function

satisfies the equation

I „—,(k, co) =[M„—,(k, co)]'

+i+ [V„",',k(k) —V„',q,(k)]

HSB ~X ( Vk7 k ~k~k ) .
k

In the absence of interactions, the ground state is unique-
ly given by g= iIk ak ~0). We again look at the valley-
density response functions g—(k, co), which are deter-
mined by Eqs. (7)—(9) with one modification: the Pauli
spin matrices in Eq. (7) must be replaced by their three-
dimensional versions,

0 1 0
where

I „—,(k, co)5~ k 5k ~q

1S =
X

1S =—
2

1 0 1

0 1 0

0 —i 0
i 0 —i
0 i

dc'�(

Dk, (co)= Gk(co+co, )G,(co, ),
2m

M„—,(k)5i, „5„

X e 5„+„,2q5„—,, ~q&uiu~e
P I .P2

q

ik l2

P

ik l2

P

(13a)

(13b)

1 0 0
1S =—0 0 0
2

0 0 —1

The vertex function for this case may be calculated using
Eqs. (11) and (12)—(14); one only need remember that the
indices now run from 1 to 3 instead of from 1 to 2. The
coeKcients V. . . , (p,p2p 3p4 ) in Eq. (11) are not

specified by (1 la) and (1 lb) in this case. They may be cal-
culated by substituting ak = t ak into Eq. (4), and reading
ofF the resulting coefficients; this is tedious but manage-
able because not all of the coe%cients are needed to find
the poles of the vertex function. The relevant matrix ele-
ments associated with these coefficients will be presented
in Sec. III.
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III. RESULTS

A. Two-layer system

For the two-1ayer case, the dispersion relation for sepa-
ration z is

e3(k) =
[ [a(z) —2P,"'(k) ]

X [a (z ) —2P ', "(k ) -+ 2P ',
"

( k ) —2P,'"(k ) ]}
'"

The definitions of b, (z) and F"(k) a. s well as some details
of the calculation of Eq. (16) are presented in the Appen-
dix. We plot co(k) for several values of z in Figs. 1 and 2.
For small values of k we find that ei( k) = Aklo +C(klo ),
with

1/2 1/2
8 zh(z) +
«o lo

For z /lo « I the coe%cient 3 is, to lowest order in z,

e ' 3/Yr z

~lo 4 lo

For z & 0 the dispersion relation vanishes linearly with
klo for klo « 1, and the slope of co( k) varies linearly with
z for small separations. This behavior is similar to that of
the acoustic-plasmon mode of a two-layer system in the
absence of a magnetic field; in the latter case, however,
the acoustic mode is damped by the particle-hole excita-
tions if z is too small, and does not persist down to zero
separation. In our situation, the electron-hole excitations
are replaced by excitations to higher Landau levels. The
coupling of these excitations to the linear mode vanishes
in the strong-field limit, so that the linear behavior of
co( k) remains for all z )0.

For z =0 the coefficient of the linear term vanishes, so
that ei(k)-k . The general behavior of co(k) at small k
has been discussed previously, ' and may be understood
in the following way. For z =0 the Hamiltonian H;„, is
invariant under transformations of the form az ~ Ua&,
where U is a 2 X 2 unitary matrix with unit determinant
[i.e., a representation of SU(2)], and az = ( az, /3& ). The
specific choice of ground state +i ai ~

0 ) is a broken-
symmetry state, and one expects a Goldstone mode, i.e., a
collective excitation with dispersion relation co( k ) —k
for small k.

For z )0 there is a symmetry-breaking term added to
the interaction Hamiltonian. If z is small one may think
of this term as a small perturbation. It is then possible to
map the problem onto an equivalent spin system, for
which there are known results that show that the disper-
sion relation rises linearly at small wave vectors. Alter-
natively, one may recall the Bose-condenstate interpreta-
tion" of the ground-state wave function for z =0 dis-
cussed in the Introduction. %'e then think of the pertur-
bation as a weak repulsion between the condensed exci-

tons, so that one expects co(k) to have a linear behavior
for small k.

For large values of k, one finds I', " "(k )

—(e /2~)( 1/kl o ), F,' '(k) —e ', so that
2

co(k) —A(z)—
~I lo

As discussed in the Introduction, this is exactly the form
one expects for magnetic excitons: the quantity b, (z)
represents the binding energy of an individual electron-
hole pair in the ground state, and the term —e /~kl o
comes from the Coulomb attraction between these parti-
cles when they are separated by a distance kl o.

At intermediate values of k (klo —1 ), the dispersion re-
lation develops a dip when z ) 1 .0. For values of
z )z, —:1.21lo this dip becomes a soft mode (ei & 0) near
klo —1 .2. We interpret this as indicating that the system
undergoes a phase transition when z is increased past z, .
Based on the numerical work of Chakraborty and
Pietilainen, it is tempting to interpret this as a transition
to a state that has an energy gap; however, we caution
the reader that, in the absence of more information about
the state into which the system develops for z &z„we
cannot be sure that such an interpretation would be
correct. The results reported in Ref. 1 are for z =2.Olo,
in a system of eight electrons. If we assume that the ener-
gy gap exhibited there persists in the limit of infinite par-
ticle number, then it is clear that a phase transition must
take place between z =0 and z =2.Olo, since the acoustic
behavior of the "valley" mode at small separations seems
qualitatively correct. However, one cannot immediately
rule out, based on our study, the possibility of intermedi-
ate phases in the interval 1.21lo &z & 2.01o (e.g., charge-
or valley-density waves).

Finally, we note that the dispersion relation can be
written explicitly for z =0 as

I /2

[1—e ' Io(k lo/4)], (17)co( k) =

Fi2(s, pi p2) —Ez](s, pi —p2)

(18)

F13(s, Pl P2) —F31(s, Pi P3):F3(s, Pi P2), —

which is in precise agreement with the results of Ref. 4.

B. Three layers

For the three-layer case, Eq. (12) reduces to a 4 X4 ma-
trix equation involving I I 2, I 2„I I 3, I » . A full solution
of these equations is dificult to achieve analytically for
general layer spacings. Fortunately, for the case of equal
spacing between adjacent layers, (z, 2 =z33 =z, z» =2z ),
they can be separated into two independent 2 X 2 matrix
equations. In the representation of the interaction Ham-
iltonian shown in Eq. (4), one writes for this situation
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where the functions F (s, p, —p2) are defined in Eq.
I 2

(5). Following the prescription outlined in Sec. II, the
dispersion relations associated with this Hamiltonian
take the form

co;(k)= I[AX —U (k)] —[U; (k)] I'~

where i =1,2 for the two modes,

b X= ', [2F—2"(0)+F3"(0)],
U' = '[F "—'(k)+ —'F "'(k)+ "F(3"(—k)1 3 1 3 2 3

F (2)(k)+ cF (2)(k) (F (2)(k)]

U" = '[F "'(—k) ——'F ',"(k)+ 'F "'(k—)1 3 1 3 2 3

—F ("(k)+-'F "'(k) —-)F '"(k)]

U2 = ,'[F ',"(k—)+2F2 '(k) F( '(k—)+F(3 '(k)],
U = '[F ', "(k—)

—F ',"(k)—F (2)(k)+F "'(k)],
and the quantities F "'(k) for j=1,2 are defined in Eq.
(A4). The matrix elements F"'(k) for j =3 have the
same form as for j =2, except one has to replace z with
2z in Eqs. (A4b) and (A4d).

The dispersion relations co((k) and co2(k) are plotted in
Figs. 4 and 5, respectively. We note that these excita-

tions may be interpreted as valley waves, and that there
must be two excitation modes within the lowest Landau
level because there are two orthogonal valleys above the
one occupied in the (noninteracting) ground state
gk ak~0). The qualitative features of these curves are
similar to those found in the preceding section. As in the
two-layer case, co, (k) cck for z=O, and co;(k) cck for
z )0 for small values of k. For large values of k one has
co;(k)-h(z) —e /~klo, where here b(z):—bX. Finally,
for z/lo-1 both modes have a dip in co;(k) near klo —1;
these become soft modes for z &0.92lp for i =1 and
z &1.51lp for i =2. As in the two-layer case, this indi-
cates that the system undergoes a phase transition. Such
a transition is expected, because in the limit z —+ ~ the
system is equivalent to three uncoupled layers with v= —,'.
In that situation the system exhibits the FICHE, and has a
gap over the entire energy spectrum, rather than the be-
havior co(k) —+0, as k~O typical of these systems with
z « lp. However, as in the two-layer case, one cannot
rule out the possibility that intermediate phases exist be-
tween z =0.92lp and z = ~ based on our calculation.

IV. CONCLUSIONS

We have studied the dispersion relation for two- and
three-layer electron systems with v= —,

' and —,', respective-
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FICr. 4. Dispersion relation co&(k) for the three-layer system: (a) z=0.0, (b) z=0.51p, (c) z=0.8lp and (d) z =0.9lp. ~, is in units
of e'/sclp.



1094 H. A. FERTIG

I.25— (0) 0.6—

I.o0

0.4

050
0.2

0.25

O.OO

kg

)

4 5 0.0 ) )» I

0.4— (c)
0.25—

0.5
0.20—

0.2
O.I5—

(d
Q.IQ—

O. I

0.05—

0.0

kg

I

4 5
0.00 I I I I I I I I I I I I I I I I I I I I I I

I 2 5 4 5

FIG. 5. Dispersion relation co2(k) for the three-layer system: (a) z =0.0, (b) z =0.5IO, (c) z =1.0lo, and (d) z =1.5lo. co2 is in units
of e /~la.

ly, in the strong-magnetic-field limit. The qualitative
features of the excitation spectra have the forms expect-
ed ' for multivalley semiconductor systems for small klo.
For large kl 0 the spectra have a form that clearly indi-
cates the excitonic nature of the excited states. For z -lo
we found that the dispersion relations develop a dip
around kl 0 —1. These become soft modes when
z & 1.21lo for the two-layer system, and z, & 0.92lo,
zz ) 1.51lo for the three-layer system. This indicates that
the system undergoes a phase transition as the layer spac-
ing is increased through these critical separations.
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APPENDIX: DISPERSION RELATION
FOR TWO LAYERS

For the two-layer case, Eq. (12) reduces to a 2X2 ma-
trix equation for I"

&z and I z&, which turn out to be the

only nonzero elements of F &,. Solving for these vertex
functions, one finds that they have poles at frequencies

co(k) =
I [bX—V Iqq)(k)+ V IqIq(k)]

X [b X—V ~", ,~(k)+ V ~, ~, (k) ]
—[V",,

' (k) —V'„' (k)]

X [ V 22l1(k) V 2211(k)] I
' (A 1)

where AX=Xz —X&, and we have set h =0. The matrix
elements V„'z,„(k) are evaluated as follows. From Eqs.
(5) and the discussion following it, we recall that the
functions F; (q, p, —pz ) are given by

2~2 i ( — )I

(A2)

where u, (q)= e2/q, uz(q)=(2)re /q)e '), z is the dis-
tance between layers, and we have replaced the sum in (5)
by an integral. Substituting Eq. (A2) into Eqs. (1 la) and
(lib), one can evaluate the matrix elements from the re-
sulting coefficients using Eq. (13). The results are
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V(12)21(k) =V 2(1')12(k) =F {1 )(k)+F 2(')(k),

1212(k) U 2121 k V 1122(k

= v,",'„(k)
—F (i)(k) F (i)(k)

(A3)
where Jo and Io are Bessel functions. Substituting Eqs.
(A3) and (A4) into Eq. (Al), one finds after some algebra

a)(k ) = I [b,X—2F 2"(k ) ]

X [~&—2F '"(k)+2F "'(k)—2F,'"(k)]) ' ' .

(A5)
wherei =1,2, and

1/2 —k 212/4

L

(A4a)

The self-energy diff'erence AX=Xz —X, is easily found by
substituting Eqs. (A3) and (A4) into Eq. (14):

F2 (k)= I dqe ' e ' Jo(kqlo),

e 2 k 212/F' '(k)= e
2~kl o

(A4b)

(A4c)

=2F ',"(0)

e 7T

trio 2

1 /2
z /2(20 Z

e 'erfc
2lo

(A6)

P (2) e k lo/2 —kz2 22

2)rkl ()

(A4d)

where erfc is the complementary error function. From its
definition, one may show that b.(z) is a decreasing func-
tion of z.

T. Chakraborty and P. Pietilainen, Phys. Rev. Lett. 59, 2784
(1984); D. Yoshioka, A. H. MacDonald, and S. M. Girvin,
Phys. Rev. B 39, 1932 (1989).

2For a review, see The Quantum Hal/ E+ect, edited by R. E.
Prange and S. M. Girvin (Springer-Verlag, New York, 1987).

C. Kallin and B. I. Halperin, Phys. Rev. 8 30, 5655 (1984).
4D. Paquet, T. M. Rice, and K. Ueda, Phys. Rev. 8 3Z, 5208

(1985);T. M. Rice, D. Paquet, and K. Ueda, Helv. Phys. Acta

58, 410 (1985).
5M. Rasolt, B. I. Halperin, and D. Vanderbilt, Phys. Rev. Lett.

57, 126 (1986).
M. Rasolt, F. Perrot, and A. H. MacDonald, Phys. Rev. Lett.

55, 433 (1985).
~Z. Tcsanovic and B. I. Halperin, Phys. Rev. B 36, 4888 (1987).
8S. Das Sarma and A. Madhukar, Phys. Rev. B 23, 805 (1981).


