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Theory of critical first sound near the A, transition of He.
II. Attenuation and dispersion for T ~ Tl„
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The critical dynamics of the superfiuid transition are studied on the basis of a complete stochastic
model that includes both the thermal diffusion and the first-sound mode. A two-loop calculation is
carried out for the sound attenuation and dispersion above and at Tq. Static and dynamic effects
are properly separated. Renormalized field theory is used to describe the critical behavior. It is
shown that the static and dynamic renormalization-group functions of the simpler model E are
closely related to those of the present model. This provides the basis for novel quantitative tests of
the dynamic renormalization-group theory as a function of frequency.

I. INTRODUCTION

In the preceding paper' (hereafter referred to as I) we
have discussed a recently introduced model ' for the
coupled critical dynamics of the thermal-diffusion and
first-sound modes near the superAuid transition in He.
In the present paper we shall use this model in order to
develop a quantitative renormalization-group (RG)
theory of first-sound propagation in homogeneous bulk
He for T ~ T&.

The need for such a theory is quite obvious. We shall
not attempt here to give a detailed account for the merits
and failures of previous theoretical work ' on this sub-
ject (above T&) but rather refer to review articles. '

SuFice it to say that, for various reasons, these theories
cannot be considered as being fully developed and quanti-
tatively reliable. One of the reasons is that the
nonasymptotic properties of the critical behavior' are
not (or not properly) contained in the earlier theories; the
nonasymptotic aspects have turned out to be crucial in
the description of sound propagation. ' Another reason
is that these earlier treatments were not based on the
complete equations of motion including all relevant static
and dynamic couplings. Both types of couplings are in-
dispensable for a satisfactory theory; they are also neces-
sary for a quantitative analysis of experimental results on
critical first sound as will be shown in a subsequent part
of this work. '

A notable exception among the earlier approaches is
the phenomenological theory by Ferrell and Bhattachar-
jee (FB) who correctly identified the leading physical
mechanism of critical sound attenuation in terms of a
frequency-dependent specific heat ' and appropriately
recognized the nonasymptotic nature of the critical fre-
quency dependence, as confirmed by our RG theory.
Their approach, however, does not provide a statistical
foundation for the concept of a frequency-dependent
specific heat. Furthermore the underlying dynamics of
He have been characterized only in terms of one-loop ex-

pressions (rather than in terms of a complete set of
interaction vertices or corresponding equations of

motion), and no general computational prescription for
the sound attenuation and dispersion is available. In the
present paper we shall go beyond the FB approach both
conceptually and quantitatively by (i) treating the cou-
pled sound and heat modes on the basis of a proper
statistical-dynamical model, (ii) deriving two-loop results
for the critical sound attenuation and dispersion by
means of renormalized perturbation theory, and (iii) in-
corporating in a consistent fashion the detailed quantita-
tive knowledge on critical statics and on low-
frequency dynamics. '

In Sec. II the basic thermodynamic quantities (specific
heat, adiabatic and isothermal compressibilities) are
identified in terms of correlation functions of our model.
The statistical-dynamical definitions of the sound velocity
and damping are given in Sec. III on the basis of the dy-
namic structure factor in the limit of small wave num-
bers. In the zero-frequency limit an exact separation be-
tween static and dynamic parts is implied by a
dissipation-Auctuation theorem; the latter serves as an
important guide for the appropriate representation of the
perturbative two-loop results at finite frequencies present-
ed in Sec. IV. This section also includes a discussion of
the zero-frequency limit as well as a comparison with the
one-loop result of FB. In Sec. V the field-theoretic renor-
malization of both static and dynamic quantities is per-
formed. Thereby the connection with the RG functions
of model F (Refs. 34 and 37) is established up to two-loop
order. Section VI contains a brief summary. Details of
the calculations are given in the appendixes.

II. THERMODYNAMICS AND
STATIC CORRELATION FUNCTIONS

It is well known that thermodynamics plays a funda-
mental role in the theory of sound propagation.
Therefore, before developing our dynamic theory in Secs.
III—V, it is necessary to establish the connection between
thermodynamic quantities and the corresponding statisti-
cal quantities of our model. These are the static two-
point correlation functions at wave number k =0, e.g.,
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C =f d x([m (x) —(m )][m (0)—(m )]), 0 0 o p o ~ o—x+x x (2.9)

Q(T p)=A (T p) ln—Z„0) kBT
(2.2)

with

(2.1)
o 0 0 0

and the quantities Cpp Cpp C and C defined simi-
larly. The results are summarized in (2.10)—(2.12) later.
Here and in the following the brackets ( ) denote
averages with the distribution -exp( —H), where H is
given by I (2.79). (Equation numbers preceded by "I"are
those of Ref. 1.)

All thermodynamic quantities can be derived from the
thermodynamic potential' '

We see that the coefticient of the singular contribution
—C& of C~ agrees with that of k&C . [This agreement
is only approximate; see (A 18) in Appendix A.] The ad-
ditional critical contribution —((o o) —

pro) in (2.8), how-
0

ever, is not contained in C . This term has not been
noticed previously' where no attention has been paid
to the difference between C„and Cp and where C has

0
been identified with kBC . This can be justified approx-
imately because of the smallness of the term
-((oo) —oo) (see also the quantitative thermodynamic
analysis of Ahlers '). In the application to bulk proper-
ties we shall ignore this term as well and thus maintain
the previous identification

Z, = D mppp 0 Jp exp —H (2.3) C =kBC (2.10)

For simplicity we assume that kBTlnZ& depends on T
and p only via ro[T,p], i.e., we take the static couplings
as constants. Then we obtain the entropy per unit
volume

Q' '
—,'k Tro& lqol'&, (2.4)

BQ

. '".p

and the mass density

= —Q' ' —
—,'k~T r'o(11('ol & (2.5)

Bp

where the prime and the dot denote 81'BT at constant p
and BID at constant T, respectively. Furthermore we
assume that ro[T,p] depends only linearly on T [see I
(2.30)]. Then the specific heat per unit volume at con-
stant p is given by

8&so & = —T/"( i+ &k T y' CaT 4 B 0

with

o o 2 o
i ppkBT—(C —C C ),

xPpi g
(2.11)

~r=&po& ' &po& =C (k~ T) '(po) (2.12)

0
Nevertheless the more precise identification of C& and
C in terms of C„according to (2.9) and (2.6) should be
kept in mind for the application to finite-size calculations
of the specific heat where the nonequivalence of ther-
modynamic ensembles may be of relevance.

In the same spirit the connection of other thermo-
dynamic quantities with the remaining two-point correla-
tion functions is made in Appendix A. Here we only
present the results for the adiabatic and isothermal
compressibilities and for the constant-volume specific
heat, respectively,

&& po&
a- =(p, )

Cy= d X p X p
C, =C

KT
(2.13)

x[1@,(0)l' —& ly, l'&]& . (2.7)

C =kay —T (&oo) —oo)+kay y C
c)T p

(2.8)

We wish to compare (2.8) with the two-point correlation
function C, which can be expressed in terms of C& as

For the purpose of a comparison with experiments we are
interested in the constant-pressure specific heat per unit
volume C rather than in C„. A corresponding thermo-
dynamic calculation yields approximately (see Appendix ~

A)

Equations (2.10)—(2.13) provide the connection between
the static correlation functions of our model and the
measurable thermodynamic quantities C, ~, xT, C, .
These relations constitute the starting point for the quan-
titative identification of the nonuniversal static parame-
ters. ' Equation (2.11) is related to the thermodynamic
expression for the velocity of first sound, see (4.39) later.
The critical behavior of all quantities (2.10)—(2.13) is re-
lated to that of C& according to I (3.14)—(3.18).

III. DYNAMIC STRUCTURE FACTOR FOR k —+0

A. General form

We start from the dynamic structure factor

S(k, co)= f d x f dt e '"" ""[&po(x,t)po(0, 0))—(po) ]=CD(k, co) . (3.1)
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S(k, co)=b [C (k, co) 2b—C (k, co)

+b C (k co)], (3.2)

where b and b are thermodynamic coefficients given by
I (2.66) and I (2.67). One way of calculating C t)(k, co) is
via the response functions R &(k, co) according to I
(4.20) —(4.24). This will be most efficient for the purpose
of a calculation of the complete structure factor. As we
are interested mainly in the damping and velocity of first
sound we shall use here an alternative way by expressing
the right-hand side of (3.2) in terms of two-point vertex
functions according to I (4.17). This yields S(k, co) in the
form of the ratio

Since, by construction, pQ(x, t) is a linear combination of
0

our model variables mQ(x, t) and pQ(x, t) we obtain C
from I (2.65) as

0

represents the determinant of the 3 X 3 matrix [I (k, co)]
of the vertex functions I &(k, co),

l(k, co) =det[I (k, co)], (3.5)

[r(k,~)]=
r Imm pm

r,
r,—. I;—.

(3.6)

I . (k, co)=0,

I (k, co.) =icQy, 'k,
(3.7)

(3.8)

Since jQ enters the equations of motion I (2.75)—(2.79) in a
particularly simple way we have

N (k, co)
S (k, co)=-

[l(k, co)
/

(3.3)
I .—.(k, co) = i —c+oA, y 'k (3.9)

with the numerator

N (k, co)=b (X~p 2b N„—+b N ) . (3.4)
0

The explicit expressions of N t)(k, co) in terms of the vari-
0 0

ous vertex functions I
&

and I
&

can be obtained from I
(4.17). For our purpose it suflices to restrict the discus-
sion to the denominator of (3.3). The quantity L(k, co)

I

as exact (trivial) results. Perturbative expressions of the
remaining vertex functions I &(k, co) are given in Appen-
dix B up to two-loop order.

In order to define the damping coefficient D] and ve-

locity c& of sound we first consider the hydrodynamic
limit k~0 and co —+0 well above T&. Then we know
from ordinary hydrodynamics that S(k, co) has the form

(p0)k'
S(k, co) =2kt) T

ico+Dr(C I—C, )k

( ico+Dzk —)( co +c,k —icoD)k )—
(3.10)

where Dz- is the thermal diffusivity and C /C, is the
thermodynamic specific-heat ratio. It is straightforward
to verify that in the absence of all nonlinear couplings
(uQ, j', y~,g, p~) and for (k, co)—+0 one indeed obtains
the hydrodynamic form (3.10), after substituting the
zeroth-order part of the vertex functions [see (B1) and I
(4.6)] into (3.3). Then the various quantities in (3.10) are
replaced by the zeroth-order expressions

(p )(0)—p
c(0)yc(0) = (ay, ya T),—(ar, Za T )~0 '

~O

D (0) g ~
—i g(

—C(0) )

D'" =i y '+k y

1 1 1
$0+ 3 7)0+KQ {()) (())

Po C, C

(3.11)

(3.12)

(3.13)

(3.14)

(' '
)
—i 2 (ap ya

—
)~1/2 (3.15)

For the relation between our model parameters and the
corresponding thermo-hydrodynamic quantities see I.

Near T& the nonlinear couplings lead to a much more
complicated k and co dependence of S(k, co). In this pa-

per we shall keep only the hydrodynamic k dependence
as given in (3.10) but allow for arbitrary frequencies co.
This is a systematic approximation which is relevant for
the application to first-sound experiments. Thus we shall
focus upon the critical t and co dependence of the
coefficients D, (t, co) and ci(t, co) in (3.10), where t denotes
the relative temperature

t =[T—T~(P)]/T~(P) . (3.16)

The effect due to the finiteness of k in real sound propa-
gation will be discussed elsewhere. Inspection of the gen-
eral k dependence of all vertex functions indicates that
for k —+0, even in the presence of the nonlinear couplings,
the expression (3.3) still exhibits the hydrodynamic k
dependence given in (3.10), now with frequency-
dependent coefficients. This provides the possibility of a
unique definition of Dz-, D&, and c& at finite frequencies.
In particular we have verified that for k~0 the denomi-
nator of (3.3) corresponds to the denominator of (3.10) (at
finite co and in the presence of nonlinear couplings). This
implies that the frequency-dependent generalizations of
the coefficients Dz, D&, and c, can be expressed entirely
in terms of the vertex functions appearing in (3.6), i.e.,
the vertex functions I

&
do not enter our calculation of

D& and c&. This is a nontrivial simplification which will
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not remain vahd below Ti. Then a combined calculation
of both the numerator and the denominator of (3.3), as
we11 as an appropriate rearrangement of perturbative
contributions will be necessary in order to arrive at a con-
sistent definition of D, . This can be inferred from the
corresponding analysis in case of second-sound damp-
ing D2.

Taking the k~0 limit and keeping only the leading
(hydrodynamic) k dependence of the determinant (3.5) we
obtain

X(k, co) =[ ico+—z2(t, co)k ][—co +y (t, co)k

0

to [C( k, co )] according to

[r'(k, ~)]= [c(k,~)]-' . (3.26)

Thus, for co~0, I (4.33) and (3.26) yield the exact result

[r(k, O)]=[I ( —k, O)]'

=
t [L(k)]+[/(k, O)]][C(k)] ', (3.27)

0
where the matrix of transport coefficients [L(k)] is given
by I (4.6) and [C(k)] is the 3X3 matrix of the static
correlation functions

ico—z, (t, co)k ] . (3.17) C ti(k)=5 p+y ytiC~(k) (3.28)

Here y and z,. are comp/ex functions

o o

y(t, co)= — (r. I —.),PJ
(3.18)

0
with a and P representing one of the variables mop
pop„'~, or j~ '~ (we use the notation of I). The ma-
trix elements

z, (t,~)=, (r,—.+r, +r,-r r--. ), (3.19)

zz(t, co) = (I —f —.I f:.') .2 Qk2 mm mJ pm pJ
(3.20)

In (3.18)—(3.20), I
&

stands for 1 &(k, co), and all deriva-
tives are taken at k =0. Obviously the second factor in
(3.17) implies the dispersion relation

co /k =y (t, co) icoz, (t—, co) . (3.21)

The identification of the physical quantities DT(t, co),
Di(t, co), and c&(t,co) follows from the requirement that
l( k, co ) can be represented as

X(k,co)=[ ico+DT(t, c—o)k ][—co +c, (t, co)2k'

icoDi(t, co—)k ] (3.22)

with DT, D&, and c& being real functions of t and cu. This
requirement determines c&, D], and DT uniquely as

ci(t, co) =Re[y (t, co) icoz, (t, co—)],
D, (t, co) = ——Im[y (t, co) icoz, (t, co)—],1

(3.23)

(3.24)

Dz (t, co) =Rez2(t, co) . (3.25)

Equations (3.23)—(3.25) constitute the basic connection
between our theory and the measurable dynamic quanti-
ties c&, D&, and DT, in the small k limit. These relations
should be valid for T~ T& in all orders of the nonlinear
couplings and for arbitrary co [up to a background fre-
quency co& —0(10" Hz)].

$ ~(k, co)=g I
~ (k, co) (3.29)

of the 3X3 matrix [P(k, co)] are determined by the
composite-field vertex functions I ~ which have been in-

troduced in I (4.24) and are specified diagrammatically in
Appendix B. Since g .:—0 [see I (A6)] we have

P,&(k, co) =0 . (3.30)

The significance of relation (3.27) is the separation of the
purely static part [C(k )] ' from the genuine dynamic

parts [L(k)] and [$(k,O)]. For the corresponding sepa-
ration in case of model I' see (4.5) of Ref. 34. Since this
property is an exact nonperturbative result, the structure
of (3.27) serves as an important guide for an appropriate
rearrangement of the expressions for I &(k, co) obtained
within a strict perturbation expansion.

IV. SOUND ATTENUATION AND DISPERSION

Previously ' we have presented the expressions for the
sound attenuation and dispersion only up to one-loop or-
der, with e8'ective parameters taken from the two-loop
model-F Qow equations. While this description is ade-
quate in order to explain the main features, it is neverthe-
less desirable to improve upon the one-loop approxima-
tion. Here we shall proceed to a two-loop calculation of
the velocity and damping within our complete model
equations I (2.75)—(2.79). We shall make use of the limit
cp ~ ~ in the two-loop contributions which appears to be
a reasonable approximation for the application to experi-
mental data. As discussed in I, there exists a close con-
nection between our model and model F in the limit
cp ~ (x) which will greatly facilitate our calculation.

B. Zero-frequency limit

In the zero-frequency limit, an exact inforfnation on
the structure of c&, D], and Dz can be inferred from the
dissipation-fluctuation relation I (4.33). In this relation
the response functions C.a(k ~) appear which constitute

a 3X3 matrix denoted by [C(k,co)]. The corresponding
3 X 3 matrix of vertex function [I (k, co)], (3.6), is related

A. One-loop results

Ordinary diagrammatics with the dynamic functional I
(Al) —(A8) yields the one-loop expressions for I &(k, co)

given in (Bl)—(B5) of Appendix B. According to
(3.18)—(3.20) we need explicit results only up to O(k ).
To this order we find
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[r(k, ~)]= —i ~[1]+[i(k) ]+k'[g, g]P(t, co)

—[L(k)][y,y]F+(t, co) .

(4.1) [I (k, co)]= —ice[1]+I [L(k)]+k [$,$]P(t, co) J

X I[1]+[y,y]F+(t, co)I ' . (4.5)

and

2 2

P(t, co) =
I ()d p (p +ro) (p +r() —iOD)

(4.2)

F+ (t , co)=.4
p p + I'() p + 7"p I Qp

with

(4.3)

Here [1] denotes the 3 X 3 unit matrix and [k,y]
represents a 3X3 matrix with elements x y&. For the
components P and y of g and y see I (A6). The
frequency-dependent parts of (4.1) are

For a corresponding rearrangement of perturbative re-
sults of I at co=0 up to two-loop order see Ref. 34.
For co =0 the expression in the last curly brackets of (4.5)
is indeed identical with the static correlation function
(3.28) at k =0, in accord with the general structure (3.27).
Comparison with the form I (3.2) yields

C~(k =0)=F+(t,O)=4 f (p +r()) +O(uo), (4.6)
p

in agreement with statics in one-loop order [see (A9) and
(A10) of Ref. 29 for n =2]. We note that the parameter
c~ (which is proportional to the background sound veloci-

ty) appears only in [L(k)] but not in the one-loop part of
(4.5).

A more convenient representation of the inverse matrix
in (4.5) is

and

0()=
2I ()

r()=Rer(), f —=(2') d p .
p

(4.4)
[[I]+[y,y]F+[t,~)I '=[1]—[y y]&(t ~»
where

F+(t, co)
X(t, co) =

1+y F+(t, co)

(4.7)

(4.8)

Now we invoke the exact relation (3.27) which dictates
that for co=0 the purely static part in the last term of
(4.1) must appear in the denominator Therefo. re it is ob-
vious that (4.1), although being a correct result of a strict
perturbative expansion, should be rewritten in the par-
tially "resummed" form

with

2 —o 2 2
'Y 'Vm Xm+XpXp .

In terms of X(t,co) the relevant matrix elements of (4.5)
read

I (k, co)=ico—.y„'k[1—y y X(t,co)], (4.10)

I —.(k, co) = ice,ky ~j —X(t,co), (4.11)

I (k, co)=k [L y„'—(L y +A, y y )X(t co][1+/ P„L ' P(t co)],

I (k, co)= ico+k [Ap—y '
(Aqy q+L—oypy )X(t,co)][1+gq Aq 'P(t, co)] .

(4.12)

(4.13)

0 0

We skip the analogous expressions for I and I
We call attention to the fact that the frequency depen-

dence of the various vertex functions is entirely contained
in the two functions P(t, co) and X(t, co) This simplify. ing
feature is a consequence of the k —+0 limit whereas at
finite k also mixed terms —y g& with a different frequen-

cy dependence would arise as seen from the one-loop re-
sult (82)—(85). For example there exists an 0 ( k )

correction to the expression in the square brackets of
(4.10) of the form

0

(Q) 1
~P+P=c] 1— 11—

1+fi F+ (t, co)
(4.15)

0

ty, in contrast to the purely static quantities y . X(t,O) or
y F+(t 0).

Substitution of (4.10)—(4.13) into (3.18) and (3.19)
yields

y(t, co)=cI ' [1—y y X(t, co)]

k ,g, r,"
I Dd p (p +rD iQ()) (p +—r())

(4.14)
z, (t, co) =D', '+Az, (t, co) (4.16)

which even at co=0 represents a genuine dynamic quanti- with D I
' and cI ' given by (3.14) and (3.15), and
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bz, (t, co)=[A y ' —(k j' +Loy y )X(t,co)]

X [1+/ k ' P(t co)]

[Lo—y p
' —(Lay ~+A y y )X(t,co)]

X[1+/ g Lu ' P(t, co)] . (4.17)

c((t,co)z=c(( '
I l —y' j Re[X(t,co)]I

+co 1m[a,z((t, co)] (4.18)

and

D&(t, co) =D(( '+cI '
y z j' 1m[X(t, co)/co]

+Re[bz, (t, co)] . (4.19)

An analogous expression for the thermal difFusivity D„
can be easily derived from (3.23) and (4.5).

The results (4.15)—(4.17) and (4.8) have been presented
already in Ref. 2, where (the renormalized counterparts
of) X(t, co) and F+ (t, co) have been denoted by X(t, co) and
6+ ( t, co), respectively. An equivalent formulation is
given by the dispersion relation (3(21) which after substi-
tution of (4.15) reads

co Ik =c(( ' [1—
yp jpX(t, co')] icoz((—t, co) . (4.20)

If we drop z, and use (4.8), this result is obviously identi-
cal in structure with (19a) and (20) of Ref. 47.

From (3.23) and (3.24) we obtain the result for the sound
velocity and damping in one-loop order

B. Two-loop result
0

The perturbation contributions to I &(k, co) start to de-

pend explicitly on cp in two-loop order via internal prop-
agators as discussed in Appendix B. We shall confine
ourselves to the limit cp —+ ~, which turns out to be well
behaved, as expected from the general discussion in Sec.
IVC of I. The corresponding integral expressions for
I &(k, co) are given in (812)—(816). For the calculation
of C(, D„and Dr we need these results only to O(k ),
which can be obtained by a straightforward (but lengthy)
expansion around k =0.

In the following we focus upon c, and D, . As noted in
Ref. 2 and as will be shown in quantitative detail in the
subsequent part of this work, the contribution of the
function y (t, co), (3.18), is by several orders of magnitude
more important than that of z, (t, co), (3.19), in the t and co

range of interest. We shall therefore restrict the presen-
tation of explicit two-loop results only to the vertex func-
tions I —.(k, co) [for I . (k, co) see the exact result (3.8)].

PJ ' JP
The perturbative expression of I —.(k, co) to O(k) is

PJ
given in (821). Again we invoke the exact result (3.27)
and argue along the lines of Sec. IV A earlier that a rear-
rangement also of the two-loop terms is necessary. Un-
like the one-loop approximation, the two-loop approxi-
mation [with contributions up to O(y~)] provides the
possibility of a nontrivial check for the consistency of this
rearrangement at finite co. Our results indeed verify this
point explicitly for I —.(k, co) up to two-loop order. The

PJ 0
important consequence is that the structure of I —., as

PJ
given by (4.10) and (4.8), remains unaltered and that the
two-loop contributions can be absorbed completely in the

0
single function F+ ( t, co ) The tw. o-loop result for
F+ (t, co) reads

2
1 1—64u p

1~2 ~1 l +p ~1

0 1 1F+(t,co)=4 . —64uo
t ( m. ,(m. , —iQO) t( m. ,(~, iQo)— m1

—iQP

+8 . p1, p2,

leap

+C.C.
P( P2 F2 t ((

0
~

where TT, =—p, +ra, n2= p2+ro. The fu—nction Q is given by

(4.21)

0

Q(p( p2 iQO) = Vp Vp Vp+
(p„p2, (QO) rT((sr~ —(Qo) m2(m, —(Qo)

23'm wp

7T 17T2
(4.22)

where

and

X ( p (,pp, l Qo ) —w () 7T ( +w p 'TT2

+ ( p(+ p2 } 2i Qow 0— (4.23)

In the last term of (4.21), + c.c. means that the same
function Q must be added with uo, uo, wo, wo, replaced by
v p, v p, w p, w p, resPectively, but with the sign of i Qp left
unaltered.

The first and the third term on the right-hand side of
(4.21) can be combined as

r~
Wp= =Wp+lWp & Wp =Wp lWp (4.25)

with

uo=y wo ——g A, ', uo =y wo +—P A, ', (424)
I F71 rT1

—imp
+O(uo) (4.26)



10 862 J. PANKERT AND V. DOHM

1
NI =p i +To+ 16QO

p2 p2+ro
(4.27) COa'(t, to)=, [D, (t, co) —D') '] .

2c) (t, to)
(4.36)

Thus the third term in (4.21) can be considered as being a
perturbation contribution to ro of purely static origin. In
the renormalized version of the theory the last term in
(4.27) corresponds to the 0 (u) correction to g, where g
is the correlation length. An extension of this interpreta-
tion beyond two-loop order essentially corresponds to re-
placing the upper order-parameter propagator in diagram
(1) in Fig. 1 of Ref. 34 by a "dressed" propagator, in anal-
ogy to Fig. 1 of Nelson. This point will be taken up in
the subsequent part of this work ' and will lead to an im-
proved treatment of the RG flow parameter l (t, to) deter-
mined previously by Eq. (17) of Ref. 2 [where r (l) should
be replaced by g ].

Because of Uo+Uo =2ym~o we have

(4.28)

therefore at co=0 (4.21) is reduced to the static specific-
heat function

F+(t 0) 4J2(ro) —64uo[2J, (ro)J3("o)+J2("o) ]

(4.29)

with

We conjecture that, for k —+0, the structure of the veloci-
ty dispersion and of the attenuation, (4.31) and (4.32),
remains valid in all orders of perturbation theory, i.e., we
expect that the higher-loop contributions to the frequen-
cy dependence can be absorbed completely in the two
functions F+(t, co) and P(t, co). Note, again, that a more
complicated structure arises at finite k as seen already
within the one-loop approximation, [see (4.14)].

C. Zero-frequency limit

c, (t, O) =do+So[1+y C~]
2 0

Co C
0 0 O 0

X~ Cppcmm Cmp

(4.37)

(4.38)

It is worthwhile to summarize our results explicitly in
the zero-frequency limit. This limit is of conceptual
interest as one expects on general grounds' that
thermodynamic-hydrodynamic relations should remain
valid for o)~0 even near criticality. From (4.31), I
(3.14), I (3.17), and (2.11) we obtain

J„(r()) = 1

(p +r())"
(4.30)

BP = &Po) a
Po

(4.39)

Equation (4.29) agrees with the two-loop expression for
the specific-heat function C&(k =0) as given in (A10) of
Ref. 29, again in accord with the exact relation (3.27).

In summary, in terms of F+ ( t, co ) given by
(4.21)—(4.25), we obtain the (square of the) sound velocity
and the damping coefficient as

c((t, co) = Ao+80Re . +coIm[hz)(t, to)]
1

1+y F+ (t, co)

Thus we have established the usual relation [compare
(3.15)] between the sound velocity ci and the adiabatic
compressibility ~ within our complete stochastic
model —including the critical temperature dependence of
these quantities (for o)~0, k~0, co~ oo). Quantitative
results for c, near the k line are planned to be given in
paper III of this work.

The zero-frequency expression for the sound damping
D( is obtained from (4.32) as

and

(4.31) c(0"y2~ aF (t,~)
D((t, O) =D') '+bz((t, O)—

(1+y C~) 21 od(iQ0)

where

and

g2 =c(0) (1 p
2 g yp 2) (4.33)

(0) 2~ yo 2 (4.34)

Instead of D, we shall also consider the attenuation
coefficient

Q)a(t, to) =
3 D, (t, co)

2c, (t, co)
(4.35)

and its critical contribution

D((t, to)=D(( ) — Im . +Re[hz)(t, o))],
1+y F+(t, co)

(4.32)

(4.40)

with the derivative taken at co=0. A discussion of the
critical temperature dependence of the last two terms in
(4.40) will be deferred to a planned paper III of this work.

Here we only note that the last term -y~/I 0, al-
though small, does not vanish in the noncritical region
well above T& where it can be absorbed in a redefinition
of the background value go of the bulk viscosity in Eq.
(3.14). (There is no contribution to the shear viscosity
within our model. ) This term arises from the existence of
a coupling y between the fluctuations of the order pa-
rameter and of the pressure. Within ordinary hydro-
dynamics above T)„(where the order-parameter Iluctua-
tions are not included explicitly in the hydrodynamic
equations) the last term in (4.40) can be interpreted as a
relaxational contribution to the bulk viscosity of a Quid
with internal degrees of freedom. ' In the present case
the order-parameter Auctuations represent such internal
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degrees of freedom. ' Thus, in the zero-frequency lim-
it, the last term in (4.40) is in accord with the general hy-
drodynamic relation [see Sec. 77 of Ref. 38; compare Eq.
(3.14)] between D, and the viscosities —even close to T&,
where this term develops a critical temperature depen-
dence. For realistic finite frequencies the dominant criti-
cal contribution to D, emerges just from this term rather
than from Az, or from other critical contributions to the
viscosities.

D. Comparison ~ith Ferrell and Bhattacharjee

a'c, /co= cz.ImC—(t, to)„B', (4.41)

with cz being a thermodynamic quantity. So far FB have
specified C(t, co)i;B explicitly, in case of He, only by the
one-loop expression [see (2.8) of Ref. 24]

1C(t, to)„B=c +B
i (p +g )(p +g its/2B~)—

(4.42)

supplemented by a background term B [see (12) of Ref.
22], where g is the correlation length and c some con-
stant. Equations (4.41) and (4.42) are to be compared
with (4.32) and (4.3). Using the obvious correspondence
ro ——"g and I o="B& we see that our theory confirms ex-
plicitly the starting point of the FB approach in one-loop
order for k —+0. The correspondence between the two
theories is

C(t, to)„s="constX[1+y F+(t,ai)] . (4.43)

We have shown by explicit computation in Sec. IV B ear-
lier that the structure of the right-hand side (rhs) of (4A3)
remains valid at least up to two-loop order. It is prob-
ably valid to all orders. Thus our theory provides a gen-
eral statistical definition and computational prescription
for C(t, co)„B in terms of the vertex function I —.(t, ai) in

PJ
the framework of our complete stochastic model accord-
ing to (4.43), (4.8), and (4.10), i.e.,

F+(t, to) = X(t, to)

1 —y X(t, to)

with

(4 44)

0
~ 1X(t, to) = lim lim

k —+Op ~oo y2y0 P

I —.(k, co)
PJ

lC0+ p

(4.45)

The physical interpretation of C(t, co)&B as a frequency-
dependent specific heat is justified by the fact that for

In the following we compare the form of (4.31) and
(4.32) with the result of the phenomenological approach
by Ferrell and Bhattacharjee (FB). First we note
that FB neglect the small contribution Az& which is relat-
ed to the thermal conductivity. According to Ref. 22 and
to (2.1) of Ref. 24 FB describe the critical part (4.36) of
the attenuation per wavelength, a'c, /co, in terms of a
frequency-dependent specific heat C (t, to)„B,

0 0
~

0to~0 we have F+(t, O) =C& as an exact relation [for C&
see (2.7)]. We note, however, that the characterization of
C(t, co)&B as a frequency-dependent generalization of the
constant pre-ssure specific heat C„(Refs. 22 and 24) is
inaccurate. As seen from (2.7)—(2.10) this interpretation
would be correct only if y o in (4.13) were replaced by

The difference -y y F+(t, co) yields a small
but finite deviation from the FB interpretation.

An alternative representation of the rhs of (4.43) can be
given in terms of the response function R&(k, to) defined
in I (4.27). We start from the general form I (4.3) and I
(4.7) for the matrix of two-point correlation functions.
Inverting this relation and comparing with the expression
I (4.16) for the two-point vertex functi6ris we obtain the
relation

X(k, co) = —M(k, to)II(k, co)M(k, a~) . (4.46)

For the present purpose we are interested only in the ma-
trix element X —. which constitutes the perturbation part

0 PJ 0
of I —.. From (4.10) we see that, for k~0, X —. does not

PJ PJ
have external vertices proportional to the dynamic cou-
plings g . For this reason and for simplicity we drop

0
those dynamic couplings in H ' that enter through the
last terms of the composite fields P„and P„, I
(4.9)—(4.12). ' In the limit co~ ~ and k ~0 we then ob-
tain from (4.46) an expression for X —. in terms of R&,PJ
which, according to (4.10), can be expressed as a relation
between X(k, co) and R &(k, co). This relation reads

R ~(k, co)
X(t,ai) = lim

o 1+A(k, co)R~(k, co)

with

(4.47)

y k k
A(k, co)=y y +

lCO+Amg m k
(4.48)

After substitution into (4.44) and (4.43) this leads to the
correspondence

with

A(k, co) = ~~T m Xm

l CO+ A.m g m k
(4.50)

For to=0 we recover from (4.49) and I (4.31) the static re-
lation C„B=const(1+"y C&), as expected. For co%0 the
result (4.49) differs from that in the simpler case of the
liquid-gas critical point where, up to a constant,
C„B—8 =" R &. This difference originates fromm the
different role played by the order parameter. In He it is
a separate quantity coupled to the heat and sound modes
by two static couplings y and y, whereas in ordinary
liquid-gas systems there exists only one static coupling

C(T,co)„B="const

R~(k, co)
X lim lim 1+y

o~o ~ 1+A(k, to)R~(k, co),
(4.49)
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between the heat variable (order parameter) and the pres-
sure Auctuations.

We note that at finite k the possibility of interpreting
the critical attenuation in terms of a frequency-dependent
specific heat is not at all obvious. As indicated by the ex-
istence of nonstatic contributions even at co =0 [see
(4.14)] a more general examination of the dynamic struc-
ture factor at finite k seems necessary in order to properly
define k-dependent corrections to D, and c1.

We conclude this section with some general comments.
We consider the phenomenological dynamic-scaling ap-
proach by FB based on the idea of a frequency-dependent
specific heat ' as an important achievement which
provides considerable insight into the leading physical
mechanism of critical sound attenuation and dispersion.
On the other hand, we find definite disadvantages in this
approach as far as the actual computation of the critical t
and cu dependence is concerned. We mention the follow-
ing points.

(i) Critical statics: Our theory of first sound is devised
such that the complete previous knowledge on static
properties can be readily exploited. This includes
the results of the Borel resummation method applied to
the nonasymptotic region which is particularly relevant
at higher pressure. The static treatment by FB (Ref. 23)
is restricted only to a qualitative or empirical description.

(ii) Critical dynamics: The dynamic RG theory pro-
vides a proper treatment of both static (dissipative) and
dynamic (reversible) couplings. This is not possible
within a mode-coupling approach of the type used previ-
ously by FB. A more definite qualification does not
seem possible at the present time since in none of the pre-
vious publications have FB specified the underlying equa-
tions of motion for sound propagation in He.

(iii) Explicit results: We have presented the two-loop
expressions for the sound velocity and damping in a
framework which permits the incorporation of the two-
loop model-F fiow equations ' (see also Sec. V follow-
ing. ) Information of equivalent accuracy is not available
in the FB approach.

(iv) Corrections due to finite k and co.. Our complete
stochastic model provides the possibility of calculating
corrections due to the finite values of k and co in real
sound propagation.

A quantitative evaluation of the two-loop integrals in
(4.21) and a comparison with FB are planned to be car-
ried out in paper III of this work after we have presented
the field-theoretic renormalization-group treatment of the
critical behavior in the subsequent section.

V. STATIC AND DYNAMIC
RKNORMALIZATIONS

The main purpose of this section is (1) to derive alge-
braic relations between the static renormalizations of the
Hamiltonian I (2.79) and those of model F, 9 and (2) to
show that also the dynamic renormalizations of the equa-
tions of motions I (2.72) —(2.78) are related to those of
model F (Ref. 34) provided that the limit co —+ oo has been
performed.

We shall use the minimal renormalization scheme as

it permits to perform the static and dynamic renormaliza-
tions separately and because detailed knowledge of the
renormalization-group functions of model F is available
within this renormalization scheme.

A. Static renormalizations

First we remind the reader of the standard renormal-
izations related to the Landau-Ginzburg-Wilson Hamil-
tonian H&, I (3.4). The multiplicative renormalizations
are introduced as

q
—z —i/2 q

r =Z„'(ro ro, ), —

Q =p Z~ ZqAdQO

(5.1)

(5.2)

(5.3)

where we require

Z(o) —Z(o) —
1 g (0)—g (0)—0m p ~ I p

(5.6)

in the lowest order of renormalized perturbation theory.
Further requirements will be imposed upon A and A

below. Substituting (5.5) and (5.4) into I (3.1) and I (3.2)
yields the renormalized correlation functions

C &(k) = f d "xe ' "[(a(x)P(0)) —(a) (P) ] (5.7)

in the form

C =Z '+ A +y (C~ —A),

C =Z '+ A~+y~(C~ —A),

C.,= A Z /'+ A, Z. '/'+y. -y, (C~ A), —

(5.8)

(5.9)

(5.10)

provided that we define the renormalized couplings by

Z
—1/2 g y ~1/2

—e/2 A 1/2~ —1
I ~d ~r g Z —1/2 o 1/2

Xp p p ypyp

(5.1 1)

A cancellation of all pole terms in (5.8), (5.9), and (5.10) is
obviously possible by requiring

Z '+ A =1+y A (u), (5.12)

with a=4 —d. p is a reference wave number, and Ad a
convenient geometric factor. Furthermore an additive
renormalization function A ( u ) is necessary for the renor-
malization of C&, I (3.3),

C~=p'Ad 'Z„C~+ A (u),
where A (u) contains only pole terms and C& is finite for
e—+0. Next we introduce the renormalizations of the
complete Hamiltonian I (2.79). (The purely Gaussian
field jo(x) will be omitted in this subsection. ) We shall
verify that an appropriate introduction of renormalized
fields m and p is provided by the relation

m(x) Z '" A m, (x)j
p(x) A Z ' ' po(x)j
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Z '+ A =1+y A (u),
A Z "+A,Z '"-=y.y, A(u).

This implies

C =1+y C~,
C =1+y Cg,

Cmp
=

ym yp Cy .

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

g =Z go
—1'

Cq =Z C

y = '~'Z 'Z Z'~'A '~2y
r

where

Zq '=1+y A (u),
Z —Z Z,Z4.

From I (3.6), (5.11),and (5.12) we find

(5.18)

(5.19)

(5.20)

(5.21)

(5.22)

Finally we introduce the renormalizations related to the
complete Hamiltonian H, I (2.79), in the simplified repre-
sentation I (3.11). We shall need only

(&a„+P„a„+Pa +g„ra„g)C—=0.
The structure of the RG functions is

p„(u, e) =(pB„u)o= —eu +p(u),

g„(u) =(pB„lnz„')o,

gq(u, y )=(pB„lnzq ')0=4y 8(u),
Pr(y, u, e) = (pB„y )0= —,

' y( —e+2(„+g ) .

(5.31)

(5.32)

(5.33)

(5.34)

(5.35)

These functions are now known to very good accuracy,
and the function F+ is known in two-loop order. The
formal solution of the RG equation reads

functions C & provides a basic simplification in that the
algebraic dependence on y described by R (y) and R (y)
remains independent of temperature. The critical temper-
ature dependence is entirely contained in C or C& and
can be taken from Ref. 29 as will be summarized in the
following.

C has the structure

Cqq(u y r p)=1+y F+[u r/p 2] (5.30)

and satisfies the RG equation

'Y 'Y + 'Y
p (5.23)

dl'
Cqq

=
I 1+y(l) F+[u (1),r(l)lp i ) ]exp f gqq I'

(5.36)

Cqq mm +
pp Cmm Cpp Cmp (5 24) where the effective parameters are determined by

which are the renormalized versions of I (3.16) and I
(3.17).

The three relations (5.12)—(5.14) do not yet determine
the four renormalization factors Z,Z, A, A, uniquely
[in terms of y, y, A (u)] and therefore allow for a sim-
plifying choice of A or A . We shall make the sym-
metric choice

and

i du ( I ) i d y( l )

dl "' dl

r(l)=r(l)exp f g„
I

" l'

(5.37)

(5.38)

A =A with nonuniversal initial values u(1), y(1), and

As an important consequence we find from (5.11)—(5.14)

y x'" y
0 o 1/2

ym+m ym
(5.26)

1
R (yo) =R (y) =(1+y ) (5.27)

thus no renormalization factor needs to be introduced for
this dimensionless ratio of bare parameters. The same
property follows for the orthogonal matrix I (3.9)

r(1)=r =a(P)t+O(t ) .

y (&)=(1+y') 'i'y(l),

y~(l) =(1+y ') 'i'y(l), (5.39)

In dynamics we shall also need the effective static cou-
plings y (l) and y~(l) separately. Instead of introducing
the corresponding RG fiow equations we use (5.23) and
(5.26) to obtain

which describes the relation between C & and C accord-
ing to

with y(l) determined by (5.37). For completeness we also
define the renormalized parameters

r

Cmm Cmp Cqq 0
R0 1

(5.28)
1 =2 'Tp, u —p 2~ ZqAd up (5.40)

with

C =1+y C@ . (5.29)

The representation (5.28) of the renormalized correlation

An application of the results of this subsection to He-
He mixtures and an extension to more than two secon-

dary variables is straightforward. For a somewhat
different treatment, restricted to asymptotic static critical
properties, see also Onuki.
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B. Dynamic renormalizations

The dynamic renormalizations are most easily per-
formed after an orthogonal transformation of the dynam-
ic functional I (Al) —(A8) analogous to that of the Hamil-
tonian in Sec. III of (I). We include jo(x, t) and jo(x, t) in
this transformation since they are dynamically coupled to
pp(x t) and po(x, t) via the matrix of transport coefficients
I (4.6) [see also (5.47) later]. Thus we use (5.27) as a sub-
matrix of the orthogonal 3 X 3 matrix

can be introduced by separate multiplicative renormaliza-
tions (rather than via a matrix of Z factors), see (5.18).
This has the following simplifying consequences for the
dynamic renormalizations:

(i) Since (5.49) has no pole terms, the matrix of Z fac-
tors that renormalize qo, no, and jo must be the inverse of
the corresponding matrix of Z factors that renormalize

qo, no, and jo. Since the latter matrix is diagonal, the
former matrix is diagonal as well. Hence we may intro-
duce the separately renormalized response fields

cosy sing 0
[R (yo)]=[R (y)]= —sing cosy 0

0 0 1

where

cosy = (1+y o ) '~, sing =yo(1+y 0 )

(5.41)

(5.42)

q=Z q, n =Zn n, j—Z

with

Z =Z ' Z =Z '=1 Z=Z '=1.
q q ~ n n ~ j j

This implies

(5.50)

(5.51)

with yo=y given by (5.26). In the notation of Appendix
A of (I) we introduce the transformed fields

qo(x, t)

r Z 1/2 r —.Z 1/2
qn qj

(5.52)

[R ]ao(x, t) =a'(x, t)—: no(x, t)

qo(x, t)

[R]ao(x, t) =a'(x, t) no(x, t)

jo(x, t)y'

the transformed couplings

(5.43)

(5.44)

jn

where the renormalized vertex functions I &(k, co) on the
right-hand side of (5.52) are considered as functions of
the renormalized static and dynamic parameters (the
latter will be defined later).

(ii) As a consequence of a Ward identity the renor-
malizations of g and g„are of purely static nature. Be-
cause of y„—=0 [see (5.45)], separate multiplicative renor-
malizations

0
(5.45)

(5.46)

—e/2 g 1/2Z —1g

—e/2 g 1/2z —1g
gn P d g„&n

are sufhcient where

(5.53)

(5.54)

0

and the matrix of transformed transport coefticients

L L „ iPk.
[R][L(k)][R] '=[L'(k)]= L„L„„ ic„k

ifkic„k L, .

(5.47)

Z =Z1/2 Z =Z1/2=1 .
g q g„n (5.55)

(5.57)

The dynamic renormalizations of the order-parameter
response field Po(x, t) and of the complex kinetic
coefficient I 0, I (2.61), are introduced as

(5.56)

Correspondingly the matrix of vertex functions (3.6) is
transformed as

where both Z& and Zz are complex. They are deter-
mined as usual by requiring that the pole terms of the re-
normalized vertex function

[R][I (k, co)][R] '=[r'(k, co)] . (5.48)
I —,(k, co) =(Z~Z~)'i I —,(k, a)) (5.58)

Due to the conservation property of the variables mo, po,
and jo, all perturbation contributions to (5.48) vanish for
k —+0. Therefore we have simply

(5.49)

Within statics, the basic simplification achieved by this
transformation consists in the decoupling of qo, no, and
jo, which implies that the renormalized fields q, n, and j

vanish. In the limit co~ ~ this vertex function becomes
identical with that of model F, as shown in Sec. IV C of I.
Consequently, for co —+ ~, both Z&. and Zz can be calcu-
lated within model F and are known explicitly up to two-
loop order.

Finally we have to renormalize the matrix elements of
(5.47). For this purpose we have computed the various

vertex functions I &(k, co) at co=0 and to leading order in
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k. In Appendix B it is shown (up to two-loop order) that
for co —+ ~ the matrix of these vertex functions can be
written as

[r'(k, o) ]= I [i(k) ]+k'[g, y [P(t,o)+o (ik', k') }

X I[1]+[r' f ]P, (t, o)}-', (5.59)

2
Zqgq

[g g ]=8 Ad Zq

0

Zq gqg 0
2

gn 0

0 0

(5.60)

1 0 0
[y, j']=p'Ad 'ZrZ~ Zq 'y 0 0 0

0 0 0
(5.61)

and

where p+(t, o) is given by (4.29). The function P(t, o) is
given in (B31) up to two-loop order and is identical with
the corresponding model F function calculated previous-
ly. The next step is to transform (5.59) into the matrix

0

[I '(k, o)] according to (5.48) and then to express the
latter matrix in terms of renormalized vertex functions by
means of (5.52). Thereby the bare transformed parame-
ters must be expressed in terms of renormalized ones ac-
cording to

the rhs of (5.52) are canceled determines the Z factors in
(5.62) uniquely as

and

Z =Z-'" Z =Z-»2=1
c q ~ e„n (5.63)

Z 1

Z..'=Z. ('+gqP ~Lqq'

Z~ '=Z'~2(1+g g„P/Lq„),

Z„„'= 1+g„P/L, „.

(5.64)

(5.65)

(5.66)

(5.67)

The dimensionless function P contains only pole terms
and is identical with the corresponding renormalization
function that determines Z& of model F. The two-loop

P1

expression for P is given in (B31).
The remaining steps are a standard application of the

field-theoretic renormalization-group formalism. The
various renormalized vertex functions on the right-hand
side of (5.52) can be considered as a function of the renor-
malized parameters u, y, y, r, g, g„, cq, c„,I, L & (with
a,p=n, q) and of the reference wave number p. These
vertex functions satisfy the RG equation

Zqq Lqq ZI Lqn

[L'(k)]= ZL 'L„q Z„„'L„„

iz, 'c k iz, 'c„k
n

lzq cq k
q

~Z, 'c„k
n

ZJJ-'LJ

(5.62)

l.a„+y g.aa.+y p, a, +-,'g. +-,'g,-'r,-=O (5.68)

with i =u, y and o. =r, gqp gnp cqy cnp I y L~p and
a,p=n, q The .RG functions g, p=cT, a, p, are defined
as usual

with L „=L„.In (5.62) we have already anticipated the
symmetric form of the renormalization of the symmetric
bare matrix [L'(k)] as implied by the symmetric form of
(5.60) and (5.61). The requirement that all pole terms of

I

kp=(Vd„lnZp ')0 (5.69)

where Z denotes the corresponding Z factor. The for-
mal solution of (5.68) is

dI'
I &(i, o,p, k, cu)=I &(i(l), o(l),pl, k, co)exp —,'(g +(~) (5.70)

with the e6'ective parameters

o.(l) =cr(1)exp I g
dr'

(5.71)

tions in (5.72) all Z factors drop out, thus we obtain

y (t, co)= — (r. r . +r. r —.)„
a

(5.73)

and o(1)=o, where cr stands for the various parameters
indicated above [for i (l), see (5.37)].

An application to the sound attenuation and dispersion
is straightforward. We start from the bare vertex func-
tions in (3.18) which are transformed according to (5.48).
This yields, instead of (3.18),

The final step is to substitute (5.70) into (5.73) for each
vertex function I &. Again all exponential factors drop
out [because there is no Z factor in (5.73)]. This means
that y (t, cu) is simply given by the rhs of (5.73) where all
I — are considered as a function of the eQectiue parame-aP
ters; thus it suffices to substitute

y(t, co)= — (I . I —. +I .„I —. )kjq qJ J«nJ (5.72) I —. =I —.(i(l), o (l),pl, k, cu), (5.74)

Next we express the right-hand side of (5.72) in terms of
the renormalized vertex function I p according to (5.52).
Because of the special combination of the vertex func-

and similarly for I . , I .„,and I —.. Analogous steps can
Jg J« nj

'

be performed to express zi(t, cu), (3.19), in terms of the
corresponding vertex functions. It turns out that also for
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with

¹

z, (t, ~)=, r, —.+
M,—.

(5.75)

(5.76)

z, all Z factors (and exponential factors) drop out. The
result reads

These results will lead to detailed quantitative predictions
for the sound attenuation 'and dispersion for all pressures
along the k line and over many decades of frequencies
without new adjustments of parameters. '

APPENDIX A: STATICS

We start from the distribution I (2.4) with I
(2.14)—(2.17). Since bpo and Aso appear in 8, only up to
second order the following exact relations hold:

and

(5.77)
with

& po) =po —~, & Idol'&,

&so & =so —~, & lqol'&,

(A 1)

(A2)

where all I
&

are considered as functions of the effective
parameters [see (5.74)]. For completeness we also present
the result for z2(t, co), (3.20), in the form

z2(t, co)= —z, (t, co)+ (I +I' +I .-. )k 0 . (5.78)
a

gk2 qg nn jj k=0 '

a,

where

0
Vp=X
VS

(A3)

A quantitative application of these expressions to He re-
quires an identification of the initial values i(1) and o(l)
of the various parameters and an appropriate choice of
the flow parameter l (t, co) Thes. e points are deferred to a
planned paper III of this work.

VI. SUMMARY

X

. 0

+S
0

+PS

0

+PS
0

Xp

Comparison with (2.4) and (2.5) yields

p = —( an"' /ap)„s, = (an"'—/a7')„

and

(A4)

(A5)

On the basis of a new stochastic model for the critical
dynamics of He we have presented a systematic field-
theoretic treatment of the critical behavior of first sound.
Our theory is applicable to the entire critical region
above and at T& and to the complete frequency range
that is experimentally accessible.

The connection between measurable thermodynamic
quantities and static correlation functions of our model
has been established in (2.6)—(2.13), which can serve as
the starting point for the quantitative identification of the
nonuniversal static parameters. The definitions (3.23)
and (3.24) for the sound velocity c, and damping D, and
the corresponding definition of the attenuation coefficient
a (4.35) are based on the dynamic structure factor for
k~O. A two-loop calculation has been carried out for
the vertex function that determines the dominant critical
contribution to c& and D&. Exact results derived from
dissipation-fluctuation theorems have been employed in
order to properly separate static from dynamic contribu-
tions. Extensive use has been made of the relation be-
tween our model and model F. The results for c&, D&,
and a are given in (4.31), (4.32), and (4.35) in terms of un-
renormalized quantities. A precise statistical-dynamical
definition of the phenomenological frequency-dependent
specific heat introduced by Ferrell and Bhattacharjee
has been presented in (4.43)—(4.45) and in (4.49). The
static and dynamic renormalizations of the various model
parameters have been carried out in Sec. V. The final re-
sults for ci and D& in terms of renormalized parameters
are obtained from (3.23) and (3.24) together with (5.73)
and (5.75) after multiple substitutions of the various
transformations and explicit computational expressions.

a = 2kBTrp, a, = —
—,'k Tr' (A6)

Furthermore,
0 0

0 0

C, C„

2
ap apas

=X+C~ 2a, a a,
(A7)

Alternatively we obtain from (2.2) —(2.5)

(k, z.)-'c„=—n=(a(p, &/ap, ),
= —i"'+-,'k rr'C

4 B 0

(k, 7.)-'c„=—n =(a(p, ) /aT)„
0= —0' '+ —,'kBTrpr OC~,

(k, 7.)-'C„=—n"=(a&s, &/aT)„

= —n"'"+-,'k V.r'C
4 B 0

(A8)

(A9)

(A10)

(Al 1)

a
aT (A12)

Accordingly we obtain

—n= p(an/aP) =p(ap—/aP):—v p (A13)

In the following equations (Al 1)—(A19) we use the abbre-
viation p—:(po& and cr—:(oo) =(so&/&po) (not to be
confused with renormalized quantities) and turn to ther-
modynamic derivatives with respect to P instead of p.
From dp= —0 dT+p 'dP we have
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Bp
aT

Bpp Brp Brp

BT BT BP

BOp
C /T=pp

P

—(cr —cro)
~Po

BT p
2

Brp+ —,'k~ T C~T p

—(II' —~ii) = —(aII/aT), =(ap/aT), ,

—(0" —2crQ'+cr 0)=—(aQ'IaT)p+cr(aQIaT)p

=p(acr/aT)~—:C~ /T .

Finally we substitute (2.2). This leads to

~Po Brp
PKT — +—pkg T Cq

(A14}

(A15)

(A16)

(A17)

(A18)

p+—:(p+ —,'k) +ro, p =(p —,'k—) +ro . (85}

To leading order in k, (Bl) and (82) yield (4.1)—(4.5).
In two-loop order, four types of diagrams contribute to

X
&

as shown in Fig. 1 of Ref. 34. (Again we have elim-

inated tadpole diagrams. ) In the present context the
dashed lines represent the various response and correla-
tion propagators related to all secondary fields mp, pp, jp,
mp, pp, jp. The expressions for these propagators are

0
identical with the matrix elements of 6 defined in I
(4.4) —(4.6). Clearly, a complete two-loop calculation
would be extremely lengthy. A basic simplification
arises, however, in the limit cp —+~ in which the only
nonvanishing propagators of the secondary fields are
those of model F,

6 (k co)=( ico+A—g'k . ) '+O(co ') (86)

a(k, p) =[L(k)]y+ig(p k),
with y and g given in I (A6). In (82) we have used the
abbreviation

(A18) yields (2.8) if the approximation (a/aT)~
=(a/aT)p is made and the relations I (2.83) and I (2.85)

0
are used. Finally we give the result for the adiabatic
compressibility

and

G (k, co)=2k k
~

—ico+X y 'k
~

+O(co ') .

(87)
Pa

af
=(ksT) '(C —C C '

) In addition we have to keep the leading part of the propa-
gators

=ksTPoy (C —C C '
) .

In the last equation we have used I (2.65).

(A19)
L, k'

G (k, co)= —. ( ico+A, y '—k ) '+O(co ) (88)
lcpk

APPENDIX B: DYNAMIC PERTURBATION
CALCULATION

In this Appendix we derive perturbative expressions
for the two-point vertex functions I &(k, co) appearing in
the matrix (3.6), as well as for the composite-field vertex
function I

&
(k, co) defined by I (4.22) —(4.24). Ordinary

dynamic perturbation theory with the dynamic function-
al I (Al) —(A8) yields

I &(k, co) = i co5 &+L p(k—) X&(k,co), — (81)
0 0

where L &(k) are the matrix elements of [L(k)] given in
I (4.6). The self-energies X &(k, co) consist of the sum of
all one-particle irreducible diagrams with two external
(truncated) legs ceo and f30. The one-loop contribution to
0
X &reads

4b *a&(k,p)

~ p-(r,'p++r~ ——i~)
4b a&(k, p)*

p (I Op++ rop ico)—

and

6 —.(k, co) = . +O(co )
Xp

ic k
(89)

because they appear in combination with the coupling—icoy k associated with the joV(golito ) vertex. The mo
field couples to the order parameter in the same way as in
model F, whereas the mp field has an additional coupling

0 O

-Loy„. Since the (internal) propagators 6 and 6 —.

correspond to topologically equivalent lines they appear,
after multiplication with the appropriate couplings, only
in the form of the sum

(y A. +y Lo)k G +( —icoy k)6 —.=y A, k 6
(810)

Thus the net effect of 6 —. is to cancel the coupling yp.
The propagator 6 —. is most conveniently incorporated in

pJ
the diagrammatic treatment by the formal replacement

where b and a are the components of the three-
component vectors

0

6 —.(k, co)~ .
o gp pk

icpk —)~+pk
(811)

b= roy —
2 k,

with the auxiliary parameter p for which the limit p —+ ~
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is taken in the final integral expressions. The remaining
diagrammatics is parallel to that carried out previously
for model I. ' The corresponding two-loop contribu-
tions to X &(k, co) will be denoted by D'&(k, co), where
v=1, 2, 3,4 refers to the corresponding type (v) of dia-
grams. %'e shall use the notation

p,+—:(p1+ —,'k) +~(), p, —:(p, —
—,'k} +r0,

P2 =(P2+ k) +ro P2 =(P2 k} +r0

P12 =(Pl+P2+ pk) +r0& P12 =(Pl+P2 2k) +r0
The analytic expressions for D '

& can be written as

16a&(k, p2)D'&(kco)= f f B' '(p„p2k ice) +c c
~1 &2 I op2 +I gp2 le

(812)

where +c.c. means that the same expression must be added with all parameters replaced by the complex conjugate pa-
rameters, but with the sign of iso left unaltered. The integrands B' '(p1, P2, k, iso) can be considered as components of
the three-component vectors 8' '(p„p2, k, ice) In. the limit c0~ ~ they are given by

4uob* 1+
(P»1+F0)P2 r P2 +rp2 —~ P2

(813}

8(2)=

b

P12(r P12+rP2+~ P1 '~) P2 P2

2b4 2b4+
p, (r*p,++rp, —i~) p, p,+

(3) (f'f )b ( f'b' )

p,+, (p,+ )' p,+, (r*p, +rp, —im) p, p,+
+

I pp +I p2 leo

y b'

(814)

(815)

and

g(4)— b b* b*s ~+2+
P2 P12(r P2 +rP12+~IP1 '01) P12+rP12

bQ (y b') + (y b)

p (r p +rp i01) p p

/2be
+

P2 (r*p12+rp2 +~ P1 —i~)(r"p»+rp12 —i~)

Vm

(816)

In (813)—(816) we have used the abbreviations

—r ~ +1/2 1y +
—1/2 (817)

i /4 and —the external vertex b* by +i /4 For ex.ample
in one-loop order we have, according to (82),

a&(k, p}
I p (k, ro)= i-

s p (I 0p++I 0p
—iso)

b =2t u ——(g y),

—I /2 ~ o 1/2
~m ~m+m & 7m 3 rn+m

(818)

(819)

ap(k, p)*

p (I 0P++r0p —iso)
(820)

and have dropped, for simplicity, the index 0 of I 0 and
r,*. Comparison with (2)—(5) of Ref. 55 shows that the
external model-F vertex (connected with the external m
leg) has been replaced in (813)—(816) simply by b or b',
whereas the appropriate modification of the internal ver-
tices has required a more detailed inspection of the indi-
vidual two-loop diagrams [three of type (1), two of type
(2), seven of type (3), and four of type (4)].

The composite-field vertex function I
&

(k, co) can be
O Py

defined diagrammatically by X &(k, co) with the additional
prescription that the external vertex b is replaced by

and the two-loop contributions are obtained in a similar
fashion from D' '.

From (Bl)—(85) and (812)—(819) we derive the leading
expression for I —.(k, co) in the limit k ~0. A straightfor-

PJ
ward calculation yields

4&2

r,—.(k, )=—, k 1 —f '' —D( )
,(,—i 00)

(821)

with the two-loop contribution
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D(oi)= —16yzyz[4uo —(y r )]
1

~i A, (A, —in, )

1 1 1 1

~i ft, ~~ ft,(ft, —i.n, ) ft, ft, —in,

+8@'y,(r,')-' f f&z 2
—i no

(822)

where

Ai:p i +'ro& ft2 pz +'ro (823)

0
Finally we derive the expression for I &(k, O) given in

(5.59). To leading order in k and for co=0 we obtain
from (81)—(85) and (812)—(819),

and no—:co/2I o. The function Q is given in (4.22). The
omission of tadpole diagrams is equivalent to a special
choice of the parameter ~z according to

[I (k, O)]= [L(k)]—4[L(k)][y,y]J2(ro)

1ro=ro —4(y y)
PP +ro

(824)
+, [4'k][J2(~o) roJ3(ro)]k

I od

(D(1)+D(2)+D(3)+D(4)) (825)
apart from higher-order terms, compare (A7) of Ref. 29.
Thus in the two-loop terms (822) it is consistent to re-
place ro by ro. In the one-loop term of (821) we substi-
tute (824) and expand with respect to (y.y). One can
verify that the resulting expression for I -: can indeed be

pj
rewritten in the form (4.10), (4.8), (4.21). At co=0 this
was to be expected on the basis of (3.27). At co&0 this is
a nontrivial feature which was not obvious a priori; it will
not remain valid at finite k.

D.'~)(k, o) =D.'~+O(k', k') . (826)

The expressions for D' ' read (for simplicity we drop the
index 0 in the fallowing)

with J„defined in (4.30). The elements D'J of the ma-
trices D' ' are the k~0 parts of the matrix elements
(812) according to

D "=—128u[L(k)][y, y]JiJ3+, [g,g]Ji(J3 —rJ4)k2, (827)

D' '= —64u[y, y]J2k +, (y g)[g, y]J2(J2 —rJ3)k (828)

D' '+D' '= 32r [y, y]J,J3k —,r [g,g]J, (J3—rJ4)k — [g,g]Re[b~(J2, rJ3 &)]k-
m

+ 16r'[y r]J2 — (r g)[g r]J2(J —rJ3) k'— 4b b*

(I') A, d
[g,g]I2Re[(1+ui)Jz, PJ2 2]—Jzj—k

(829)
Equations (825)—(829) are the generalizations of (A14) and (A21) —(A26) of Ref. 34. After using the same algebra it can
be shown that [I (k, O)] can be written in the form (5.59) with

0 96uo 8P(t, O)=, [J (r2) oro J3(ro)]—,—J& (r )o[ J(3r )oro J4(ro )]+ — Re[b (J rJ )]—I od I 'd (I")~X d

4b b'
+ I2Re[(1+ufo)J2, roJ2 2]—J2—

I .(I o)~X d (830)

0
This function P is identical with the corresponding func-
tion of model F and therefore yields model-F pole terms.
The latter determine the Z factors (5.65)—(5.67) and are
contained in the quantity [compare (810) of Ref. 34]

P= —-- ——
2E'

1 1 D
~g2 1 +

L

(831)

where G and D are given by (3.24) and (3.25) of Ref. 34.

*Present address: Philips Forschungslaboratorium Aachen,
Weisshausstrasse, D-5100 Aachen.

J. Pankert and V. Dohm, Phys. Rev. B 40, 10 842 (1989).
J. Pankert and V. Dohrn, Europhys. Lett. 2, 775 (1986).
J. Pankert and V. Dohm, Jpn. J. Appl. Phys. 26, Suppl. 26-3,

51 (1987).

4V. L. Ginzburg, Dok. Akad. Nauk SSSR I.OS, 240 (1955).
5A. P. Levanyuk, Zh. Eskp. Teor. Fiz. 49, 1304 (1965) [Sov.

Phys. —JETP 22, 901 (1966)].
L. P. Kadanoff and J. Swift, Ann. Phys. (N.Y.) SO, 312 (1968).

7K. Kawasaki, Phys. Lett. 31A, 165 {1970).
D. Staufter and V. K. Wong, J. Low Temp. Phys. 2, 599 (1970).



10 872 J. PANKERT AND V. DOHM

9H. Ueyama, Prog. Theor. Phys. 45, 25 (1971).
D. Kroll, as quoted in R. Carey, Ch. Buchal, and F. Pobell,
Phys. Rev. 8 16, 3133 (1977).
K. Tozaki and A. Ikushima, Phys. Lett. 59A, 458 (1977).
W. F. Vinen, J. Phys. C 12, L671 (1979}.
K. Miyake, Prog. Theor. Phys. 66, 713 (1981).
P. C. Hohenberg, in Critical Phenomena, Proceedings of the
International School of Physics "Enrico Fermi, " Course LI,
Varenna, 1971, edited by M. S. Green (Academic, New York,
1971),p. 285.

~5V. L. Ginzburg and A. A. Sobyanin, Usp. Fiz. Nauk 120, 153
(1976) [Sov. Phys. Usp. 19, 773 (1976)].

~ K. Kawasaki, in Phase Transitions and Critical Phenomena,
edited by C. Domb and M. S. Green (Academic, New York,
1976},Vol. 5a.

P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys. 49, 435
(1977).
P. C. Hohenberg, Physica 109&1108,1436 (1982).
V. Dohm, J. Low Temp. Phys. 69, 51 (1987).
V. Dohm and R. Folk, Physica 109&1108,1549 (1982); in Ad-

uances in Solid State Physics (Festkorperprobleme), edited by
P. Grosse (Vieweg, Braunschweig, 1982), Vol. 22, p. 1.

2~J. Pankert and V. Dohm (unpublished).
R. A. Ferrell and J. K. Bhattacharjee, Phys. Rev. Lett. 44, 403
(1980).

2 R. A. Ferrell and J. K. Bhattacharjee, Phys. Rev. 8 25, 3168
(1982).

2"R. A. Ferrell, B. Mirhashem, and J. K. Bhattacharjee, Phys.
Rev. 8 35, 4662 (1987).
K. H. Herzfeld and T. A. Litovitz, Absorption and Dispersion
of Ultrasonic Waves (Academic, New York, 1959).
R. A. Ferrell and J. K. Bhattacharjee, Phys. Rev. A 31, 1788
(1985), and references therein.

V. Dohm, Phys. Rev. Lett. 53, 1379 (1984); 53, 2520 (1984); in
Proceedings of the Seventeenth International Conference on
I.om Temperature Physics, edited by U. Eckern, A. Schmid,
W. Weber, and H. Wiihl (North-Holland, Amsterdam, 1984),
p. 953.

2sV. Dohm, in Applications of Field Theory to Statistical
Mechanics, edited by L. Garrido (Springer, Berlin, 1985), p.
263.

~ V. Dohm, Z. Phys. 8 60, 61 (1985).
R. Schloms and V. Dohm, Europhys. Lett. 3, 413 (1987);
Nucl. Phys. 8326 (1989).

B. I. Halperin, P. C. Hohenberg, and E. D. Siggia, Phys. Rev.
8 13, 1299 (1976);21, 2044 (1980).

3 C. De Dominicis and L. Peliti, Phys. Rev. 8 18, 353 (1978).
V. Dohm, Z. Phys. 8 31, 327 (1978);33, 79 (1979)~

V. Dohm, Z. Phys. 8 61, 193 (1985).
35W. Y. Tam and G. Ahlers, Phys. Rev. 8 33, 183 (1986); 37,

7898 (1988).
J. Eggers, Diplomarbeit, Technische Hochschule Aachen,
1987 (unpublished).

V. Dohm (unpublished).
L. D. Landau and I. M. Lifschitz, Fluid Mechanics (Per-
gamon, London, 1959).
L. D. Landau and I. M. Lifschitz, Statistical Physics (Per-
gamon, Oxford, 1980).
V. L. Ginzburg and A. A. Sobyanin, in Superconductivity, Su-
perdiamagnetism, Superfluidity, edited by V. L. Ginzburg
(Mir, Moscow, 1987); Jpn. J. Appl. Phys. 26, Suppl. 26-3,
1785 (1987).

G. Ahlers, Phys. Rev. A 8, 530 (1973).
42W. Huhn and V. Dohm, Phys. Rev. Lett. 61, 1368 (1988).

E. Eisenriegler and R. Tomaschitz, Phys. Rev. 8 35, 4876
(1987).

44See, e.g. , M. J. Stephen, in The Physics of Liquid and Solid
Helium, edited by K. H. Bennemann and J. B. Ketterson (Wi-
ley, New York, 1976), Vol. I, Chap. 4.

4~L. P. Kadanoff and P. C. Martin, Ann. Phys. (N.Y.) 24, 419
(1963).

4 V. Dohm and R. Folk, Z. Phys. 8 41, 251 (1981).
47R. Dengler and F. Schwabl, Europhys. Lett. 4, 1233 (1987).

D. R. Nelson, Phys. Rev. 8 14, 1123 (1976).
We wish to thank P. C. Hohenberg for a stimulating discus-
sion on this point.
M. Fixman, J. Chem. Phys. 36, 1961 (1962).

5 The effect of these terms on the relations (4.47)—(4.50) should
be investigated in a more complete analysis which is beyond
the scope of the present discussion. In any case the coupling

g~ should drop out in the limit co —+ oo.
R. A. Ferrell and J. K. Bhattacharjee, Phys. Rev. 8 28, 121
(1983);J. Low Temp. Phys. 36, 165 (1979).
D. J. Amit, Field Theory, the Renormalization Group and Crit-
ical Phenomena (McGraw-Hill, New York, 1978).
A. Onuki, J. Low Temp. Phys. 53, 1 (1983).

ssV. Dohm, Z. Phys. B 73, 417 (1988). In the last sentence, ge
should read gr.


