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Theory of critical first sound near the A. transition of He.
I. Model and correlation functions
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A detailed foundation and general discussion are given for a new model that describes the critical
dynamics of He near Tz, including the thermal-diffusion and first-sound modes. All parameters are
identified in terms of thermodynamic and hydrodynamic quantities. The relation between static and
dynamic correlation functions of our model and those of the simpler model F is derived. This pro-
vides the basis for a quantitative theory of critical first sound.

I. INTRODUCTION

The possibility of testing the renormalization-group
theory of bulk dynamic critical phenomena depends cru-
cially on the availability of accurate experimental data.
Most suitable for this purpose are the critical dynamics
of strain-free ffuids (rather than solids), and the most sen-
sitive physical quantities are those transport coefBcients
that develop a divergence as criticality is approached. In
principle this divergence can be studied as a function of
temperature, wave number k, and frequency co. In prac-
tice quantitative comparisons between renormalization-
group studies and experiments on transport coeScients
have been restricted mainly to the temperature depen-
dence at a few values of k and at low (or zero) frequen-
cies. '

The reason for this restriction is of both experimental
and theoretical origin. As far as the k dependence is con-
cerned experimental data exist only over a rather limited
k range due to difficulties related to light- and neutron-
scattering techniques. As far as the m dependence is con-
cerned the study of sound propagation offers the possibil-
ity of probing the entire critical frequency regime, but no
detailed theoretical predictions have been made in the
early stages of the development of the renormalization-
group theory. ' Also more recent renormalization-group
studies on sound propagation in Quids have not been sa-
tisfactory, as will be discussed in a subsequent paper.
On the other hand, a wealth of experimental data on crit-
ical sound attenuation in fluids over an enormous range
of frequencies is available, in particular near the
superfluid transition of He and He- He mixtures. The
main motivation of the present work is to fill the gap on
the theoretical side by extending the renormalization-
group approach to sound propagation in He. Our
theory will be applicable to the entire experimentally ac-
cessible regime and therefore will make possible a test of
the renormalization-group theory as a function of fre
quent.

A phenomenological theory of critical sound attenua-
tion based on a frequency-dependent generalization of the
specific heat has been developed already by Ferrell and
Bhattacharjee (FB). Because of the remarkable success

of this theory in its application to experimental data it is
of interest to clarify to what extent the FB approach can
be justified within a renormalization-group treatment.

A proper statistical-dynamical treatment has been ini-
tiated recently ' where we have introduced stochastic
equations for a complete set of slow variables near the
superfluid transition. They are well suited for a systemat-
ic study of both the thermal-diffusion and first-sound
mode coupled to the critical fluctuations of the order pa-
rameter. "

This paper is devoted to a detailed foundation and gen-
eral discussion of these equations; quantitative applica-
tions above and below T& as well as an analysis of the FB
theory on the basis of our model will be deferred to subse-
quent parts of this work. For a short summary of some
results see Refs. 8 and 9.

In constructing our dynamic model we employ known
concepts of statistical dynamics. " We start from
Poisson-bracket relations' for the slow variables, the
fluctuations of the order parameter, the entropy density,
the mass density, and the momentum density. Invoking
renormalization-group arguments, we eliminate ir-
relevant terms that are present in previous equations of
motion. ' ' The fundamental difference between our
model and the well-known models A —J (Ref. l) is that
our model includes secondary dynamic variables (essen-
tially the pressure and the moment density) whose ffuc-
tuations do not affect the asymptotic critical dynamics of
the order parameter because of the finiteness of the sound
velocity. Nevertheless these secondary variables are of
primary importance in describing the critical behavior of
the first-sound mode itself.

For the purpose of making quantitative predictions of
the nonuniversal critical behavior along the A, line we
identify all static and dynamic parameters in terms of
noncritical thermodynamic and hydrodynamic quantities.
Particular attention will be paid to the connection of our
model with model F introduced previously' for the
description of the thermal-diffusion mode. This will en-
able us to incorporate into our renormalized theory of
the first-sound mode the detailed knowledge on critical
statics ' and low-frequency dynamics, ' in a con-
sistent fashion. Conversely, our model will also permit a
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study of the efFect of the first-sound mode on the
thermal-di8'usion mode above T& and the second-sound
mode below T~.

II. THE MClDKI.

In this section we present the detailed arguments that
lead to the model appropriate for the description of the
critical behavior of both the thermal-diffusion (or
second-sound) mode and the first-sound mode of He near
T&. In particular we derive the connection of various
static and dynamic parameters with thermodynamic and
hydrodynamic quantities, since these identifications are
important for quantitative applications of the model.

From hydrodynamics ' it is known that a complete
set of slow variables consists of the long-wavelength Auc-
tuations of the mass density po(x), the entropy density

I

so(x), the momentum density jo(x), and, near Ti, of the
complex order parameter Po(x), a coarse-grained wave
function of the Bose condensate. ' %'e shall consider
these fluctuations in an equilibrium state of liquid "He in
a given total volume V, at given equilibrium temperature
T, and equilibrium chemical potential per unit mass p,
i.e., with a Auctuating number X of He atoms. This cir-
cumvents the conceptual inconvenience of a Auctuating
total volume, which arises in the equilibrium ensemble at
given pressure I'. ' ' ' For the purpose of a comparison
with experiments we shall of course make contact with
the common thermodynamics in the T-P plane.

A. Static probability distribution

After integrating over the short-wavelength Auctua-
tions of the microscopic variables, the partition function
can be written as a functional integral

Z(T,p, V)= fD[po, so, go, jo]exp —f d x Q,gx)/ksT
V

(2.1)

with the effective local potential

Q,s(x)=Q,a(Po(x), so(x) Po(x) Vgo(x) jo(x)) . (2.2)

In (2.1) and (2.2) the variables have only long-wavelength
Auctuations. The corresponding probability distribution
1s

io [po, so, bio,jo]=Z 'exp —f ddx Q,s(x)/ks T
V

(2.3)

logical reference values po=po( T,p), so =so( T,p), and

Eo =Eo(po so 0 0 0)

with go=0 and jo=0 may be interpreted as equilibrium
values of noninteracting finite subsystems and can be
determined approximately from experimental data of He
well above Ti„. The energy density Eo(x) serves as a local
potential whose derivatives yield the local temperature

To(x ) =BEo(x ) /Bso(x )

T

io-exp —f d"x EQ(x)/ksT (2.4)

This can be identified with the probability distribution
constructed within the usual theory of thermodynamic
fluctuations. ' Starting from the probability distribution
for small subsystems of a given volume, and at given T
and p, and summing over these subsystems one arrives at
the probability distribution for the total system

Bso po

BEO
To T

dPo 'o

and chemical potential

po(x) =aEo(x)/apo(x) .

Their reference values

(2.7)

with

b Q(x) =bEo(x) —pbpo(x) —Tbso(x),

where

b,Eo (x):Eo(x ) Eo, — —

bpo(x) =po(x) po-
bso(x):—so(x) —so

(2.5)

(so&=— (2 8)

coincide with the global equilibrium parameters T and p.
Since Eo is a smooth function of so and po, the latter can
be considered as smooth analytic functions of T and p
(even if the thermodynamic limit V~oo is eventually
taken for the total system). They must be distinguished
from the full equilibrium values

Eo (x ) =Eo (po( x ),so (x ), Po( x ), Vgo( x ), jo(x ) ) (2.6)

denote local fluctuations of the energy, mass, and entropy
densities. An interaction between subsystems is taken
into account only via the Vgo dependence of the energy
density

to be calculated from the thermodynamic potential

k~T
Q(T,p) = — lnZ, (2.9)

i.e., from the distribution (2.3). The connection between
(2.3) and (2.5) is made by

which includes the local kinetic energy. The phenomeno- Q,gx) =Q' '(T,p)+b.Q(x) (2.10)
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with a smooth "background" part O' '. From Ep(x),
(2.6), we define the normal velocity

variables instead of jo and i)'jp. Froin (2.11), (2.15), (2.17),
and (2.18) we find

v„p(x) =BEo(x)/Bjo(x)

and the superQuid momentum density

m~ dEo(x) dEo(x)
j,o(x)= i qo«) - —yo(x)*

ave, avq,*
(2.11)

tel 4 Pl 4
&.o= &ka T

~ Pov 4o 4o
—V0o+2i I%pl'jp . (2.19)

2A

Thus the right-hand side (rhs) of (2.17) can be written in
terms ofj no=j o j o and 4o as

r

with 2mB being Planck's constant and m4 being the mass
of a "He atom. From Galilean invariance it follows that

0= jso+pOUnO jsO jno &

&'Po

apart from irrelevant terms of 0( I@pl lvgol ) and

(2.20)

which defines the normal momentum density j„o=pov„o.
The superQuid velocity is given by

V(pp(x ), (2.13)

=H~+H, +H
B T

(2.14)

H~= ,'«, Iq, l'+ ,'-Ivypl'+i —pl&pl",

H„=-,'6', '(»o)'+2X p. '»o~S o+X p
'(~S o)']

(2.15)

where go(x) is the phase of

fo(x ) = I go(x ) I exp [igo(x ) ] .

We exPand b, Sl(x) with resPect to jp, fp V1/lp EPp,
As&, and obtain &' —1 ~ 2H =

—,y j„o. (2.21)

These different formulations of 8~ will be taken up in the
discussion of the equations of motion later.

All parameters of H& and 8, can be expressed as
derivatives of the energy density

ep[pp(x ) sp(x ) I Pp(x ) I ]—:Ep(pp(x ) sp(x) gp(x) 0 0)

o(q„,ly, I'(q,vq,* y,*vy—,)) .

In (2.20) there exists no correction term of the type
j„o(goVgp —

gp Vgp), therefore the Gaussian term -j„p
of (2.20) pmvides a more appmpriate description of the
normal part of the kinetic energy density than the Gauss-
ian Part -jp of (2.17). The suPerffuid Part —,'P, ou, p/kiiT
of the two-Quid kinetic energy density is approximately
described by —,'Ivgpl in (2.15). If the irrelevant
correction in (2.20) is dropped we obtain

+(f' »p+f'&~po)I'Pol
2

o kB TI4
H, =-,'X, jo 1+, I@pl

PO

ibo3o(fpV 0o Po V 4o)

(2.16)

(2.17)

o

+j kB TP0& ~0
2'()

(2.18)

apart from higher-order terms. As seen from the Ivfol
term in (2.15), we have used the orderyarameter field in
the standard normalization, Po(x) =cofo(x); we shall not
need an explicit specification of the normalization con-
stant co. From the two-Quid model' ' * and from
Galilean invariance, the coefficients in (2.17) can be
identified as

2
l'O

0

BPO' =-:a-
PO

y, =kBT

r

y =kBT

deo[1 o ~o IPoI']

r) eo[po~~o~I@oI ]
~I@pl'

BPO
Ys

so
—1

eO

8 2

—1
eO

taken atPp sp and go=0. We have

$0=0

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

In H& and H, we have retained only terms that are
relevant in the renormalization-group (RG) sense,
whereas in H, (2.17), the last two terms are irrelevant in
the RG sense and will be dropped in the Anal formulation
of the model. Nevertheless it is useful to discuss these
terms as they represent leading contributions to the ki-
netic energy density —,'pnovno of the normal part of the
two-ffuid kinetic energy density (divided by k~ T) and will
play an important role in the calculation of the critical
shear viscosity. An alternative representation of 8'
is obtained by considering j„p and gp as the fundamental

y, =kBT
Po~so

P
0

S

()So

aPO
(2.27)

Bso
+S +PS

0
(2.28)

with ep =ep [po, sp,0]. By elementary thermodynamic
transformations one obtains from (2.25) and (2.26)
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) 'Yp 1 Po
0 a

Xp Xps (2.29)

where the derivatives are taken along a path ro=const.
Relations equivalent to (2.27)-(2.29) have been derived
already by Onuki on the basis of Pippard-Buckingham-
Fairbank relations.

All parameters (2.23)—(2.26) are smooth functions of T
and p. In ro[T,p, ] we shall keep only a linear tempera-
ture dependence around the transition temperature
TA[j ]

rp[T P]=rp [j4]+ap[P](T TA[P]),

where

(2.30)

P= —Q(T p) . (2.31)

This can be considered as an implicit relation for
p=j4(T, P). In a comparison of our model with experi-
ments at given T and P we may therefore substitute
j4=p, (T,P) and consider all static parameters as smooth
functions of T and P. In particular the transition temper-
ature TA(P) at given P can be defined as the solution of
T =AT [pA(T AP}]. Correspondingly we may turn from
the temperature variable T —TA[p] to the usual variable
T —TA(P) by means of well known thermodynamic rela-
tions. Hence we eventually take ro as a function of T
and P, linearized around TA(P),

T —TA(P)
ro( T& P)= roc (P)+a p(P) (2.32)

ao[p]=2y (BPo/BT)„+2f', (dso/BT)„) 0 .

At given T and p, with the total system at rest, the equi-
librium pressure P =P ( T, IJ, ) is given by

sial. ' ' This controversy, however, does not touch on
the derivation of our model equations. In order to indi-
cate clearly the basis of our model we start from the
well-known general form of stochastic equations of
motion for the slow variables'

+ V;+0;(t),8 ~ij BH
(2.34)

where H is defined by Eq. (2.33) and where y; (t)
represent the spatial Fourier components of po(x, t),
so(x, t), pp(x, t), and jo(x, t). The Gaussian Langevin
forces satisfy

(2.35)

with the symmetric matrix k; =kj;. The reversible part

Qlj dH

j ~f ~fj
(2.36)

contains the antisymmetric matrix Q;j = —Q;, which is
determined by Poisson brackets. The nonvanishing Pois-
son brackets between po(x), sp(x), and the components
jkp(x) of jo(x) read'

I Jko(x»j;o(y) I
=j;o(x}Vk5(x y)+Jko(y}V 5(x y}

(2.37)

I jo(x» j o(y) I =j o(x)V5(x —y»
[jo(x),so(y) I =so(x)V5(x —y),

(2.38)

(2.39)

with V and Vk acting on x only. Nonvanishing Poisson
brackets exist also between jp, po, and the phase yo(x) of
the order parameter'

instead of (2.30},with

ap(P) = TA(P)(Bro/BT) j, )0 .

I jo(x),yo(y}J = —5(x —y)Vyo(x),

Ipp(x), yp(y) I
= —5(x y)m4/fi . —

(2.40)

(2.41)

Within the linear approximation (2.32), it is justi-
fied to linearize (2.31) around TA [j4] and hence to
neglect the singular (but higher-order} contribution
—(T —TA[j4]) in this context. This amounts to re-
placing Q by Q' ' in (2.31).

In summary we have the static probability distribution
w —exp( H /kjj T) with—

+f ddx(8~+8, +8 ), (2.33}
a vo"'

kjjT kjjT v

where 8&, 8' „and 8 are given by (2.15), (2.16), and
(2.17) or (2.21).

These relations determine the reversible parts V;, (2.36),
except for additional nondissipative terms related to the
time dependence of ~gp~. Since exact Poisson bracket re-
lations with respect to ~gp~ are not known we argue on
the basis of the equations of motion for interacting Bose
systems ' that a nondissipative contribution to
8

~ l//p ~
/Bt must exist which in the noninteracting case

represents the kinetic energy term of the Schrodinger
equation. This contribution corresponds to the model F
term -I 0' discussed previously. Incuding this term the
reversible parts of the equations of motion as derived
from (2.36)-(2.41) become

B. Equations of motion

The physical basis for constructi:ng the appropriate
equations of motion for the fluctuating variables above
T„ is provided by the hydrodynamic equations of
superfluid He. Although essential parts of these equa-
tions have been known for a long time' the detailed in-
terpretation of some terms is to some extent controver-

~Po . m4 5H, 5H
dt fi '

5$o

Bso 5H
et "

5jp

W'0 m4 5H 5H
2

ro' 5H
Bt fi '5po 5j, ' k~T 51(;

'

5H—V no5.
30

(2.42}

(2.43}

(2.44)
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30 5H
V

5II

5H . 5H
JkoV . +Vk Jo 5.

k Jko Jko

5y»
(2.45)

where, at this stage, H contains 8J in the form (2.17}. If
one substitutes EQ(x}, in the original form of Eq. (2.5),
into H, it can be seen that Eqs. (2.42) —(2.45) are
equivalent to the reversible parts of the hydrodynamic
equations derived by Khalatnikov and Lebedev' except
for two minor diff'erences: (i) The first term of Eq. (2.42)
becomes

ay, r," 5H .m. 5
2l » i go-at k~T 5itp» fi '5P, ' (2.46)

Po . m4 5H, 5H
at

'
R P 5' '

5''o
5H-PoV 5.jo

(2.47)

so 5H
(2.48)

(2.49)

i (m 4 I—A) [po(x, t) p]go—,
whereas in the corresponding Eq. (28}of Ref. 17 the term
-p is missing. This is equivalent to a different, p-
dependent, gauge factor exp( ipm4t—ifi) for the order
parameter used in Ref. 17. (ii) In Eqs. (2.42) and (2.45)
we have not included the nondissipative terms -g'i and
-g4 of Eqs. (27} and (28) of Ref. 17 since they are ir-
relevant in the RG sense. In the notation of Khalatnikov
and Lebedev, I o' in (2.42) corresponds to —,

' gi'.
Equations (2.42) —(2.45) still contain irrelevant terms.

From a closer inspection of the various contributions it
can be seen (as far as the leading critical behavior is con-
cerned} that these equations may be reduced to

density

Sp = —V(spv„p)at (2.51)

as, 58,= —ks TspVt &j.o
' (2.53)

which leads to improved agreement with (2.50) and (2.51)
after substituting 8 in the form (2.21). In any case, at
our level of treating the critical behavior of correlation
functions these differences between the jp or j„o formula-
tions are unimportant (but they come into play when the
theory is matched with the noncritical background be-
havior) and therefore we shall not make a further distinc-
tion between jo and j„oin the following.

Next we turn to the dissipative terms. We take into ac-
count

r,'
at ksT 5f

aso KO 2 5HV2
at T 5sp

'

(2.54)

(2.55)

and (with summation over k)Jio, 5H
=(Co ,'rio)5;, VkV——5.

(dissipative terms are neglected here). Part of these
shortcomings can be avoided by employing the variable
j„p instead of jp. Using (2.19) one can show that the
difference between jo and j„o produces only irrelevant
contributions and that the equations of motions for
( 'IPO Pp sp j p) can be simPly obtained from
(2.46)—(2.49) by the formal substitution jo—+j„o. Then
(2.47) and (2.48) become

apo m4= —tkaT ('AV fo PoV —Po) kit TP—OVat 2' 5).o
(2.52)

Po
p

= —Vj (2.50)

by the first term of (2.47), which would otherwise be can-
celed by the bp contributions arising from the last term in
(2.17). A similar defect appears in (2.48), which should
be compared with the continuity equation for the entropy

It should be kept in mind that the approximations
po=pp and so=so on the rhs of (2.47)—(2.49) will imply
correspondingly approximate results, e.g., (pp) =pp in
the prefactor of the dynamic structure factor and
(so ) =so in the expression for the second-sound velocity
which should be corrected in a more refined theory.

H contains 8 in the form (2.17) without the (ir-
relevant) Po dependent terms. The omission of these
terms, as dictated by relevance arguments, implies that
(2.47) differs from the correct continuity equation

5H 5H
+rioVk V . +Vk

Jko Jio
(2.56)

in agreement with previous equations, ' ' apart from ir-
relevant terms. The kinetic coefficients rp Kp gp and gp
are real positive quantities and represent noncritical con-
tributions to the relaxation coefficient of the order pa-
rameter, to the thermal conductivity, and to the bulk and
shear viscosities, respectively, well away from T&. In the
notation of Khalatnikov and Lebedev' they correspond
to —,'gI, T$6, $5, and g7, respectively.

Inspection of the terms related to jo or j„p shows that
the equations for the transverse components of jp are
decoupled from the remaining equations. This implies
that the transverse viscosity modes do not affect the lead-
ing critical dynamics of the thermal-diffusion and first-
sound modes. Therefore we shall consider only the longi-
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ago 2ro 5H m4 5H
Bt k T5@; A '5p,

5po .m4 5H 5H
at ='~ 5H

PoV—53o

(2.57)

.(2.58)

tudinal component of Eqs. (2.49) and (2.56).
In summary, on the basis of (2.46)-(2.56} we arrive at

the following set of equations

(at jo=O, Vfo=O)

Po(x, t) = —eo(x, t)+ Tso(x, t) +ppo(x, t),
o= —eo+ Tso+ppo+P .

(2.68)

(2.69)

The physical meaning of the variable po(x, t) is seen by
comparison with the fiuctuation

KPo(x t) =Po(x t) Po

»o "o
V2 5H 5H

dt T 5so 5jo

3o J V2 5H 5H 5H
V . —poV —soV

dt ks T 5jo 5Po 5so

where

I =I"+t I"'

(2.59)

(2.60)

(2.61)

Expanding po with respect to EPo, hero, ~go~, we find

po(x, t) =EPo(x, t)+O((EPo), bP ohio o(ho o), igoj ),
(2.70)

which justifies to interpret po(x, t) as a pressure variable.
An alternative choice of the variable mo(x, t) would be

the linear combination of so and po

and m o(x, t)=ks '[so(x, t) —o opo(x, t) ] . (2.71)

k =ks T(go+ ', rto ) . — (2.62)

These equations, together with H introduced in Sec. II A,
constitute the basis of our dynamic model.

C. Model equations

mo(x, t)=ks 'pod, oo(x, t),
where

(2.63)

0 o(x, t ) =so(x, t)/po(x, t) (2.64)

with cro=so/Po. Then the requirements (3) and (1) deter-
mine po(x, t) uniquely as

po(x, t) =b [po(x, t) —Po]+b mo(x, t), (2.65)

In the final formulation of our model we shall use, in-
stead of so and po, more convenient variables mo(x) and
po(x), which will be introduced in accord with the fol-
lowing requirements: (1) The static fluctuations of mo
and po should be independent within the Gaussian ap-
proximation, with mo =0 and po =0; (2) the time depen-
dence of mo(x, t} and po(x, t) should be adapted to the
separate modes of linearized hydrodynamics; (3) the mass
density variable po(x, t) po should b—e a linear combina-
tion of mo(x, t) and po(x, t) in order to simplify the calcu-
lation of the dynamic structure factor. These require-
ments do not yet determine mo(x, t) and po(x, t) uniquely.

As a simple choice we take m o(x, t) to be proportional
to the fluctuation

choo=

oo(x, t) oo of the ent—ropy per
unit mass,

This choice would imply slightly modified thermodynam-
ic derivatives in the definition of the static parameters
(2.66), (2.67), and (2.83}-(2.86}, but would lead to the
same form of the equations of motion since the di6'erence
between mo and mo shows up only in higher-order con-
tributions that are irrelevant in the RG sense. Similarly
b,qo =qo(x, t) —

qo would be a possible choice where

qo(x, t) =eo(x t) hopo(x t) (2.72)

and

8mo i 1»o so BPo=k~ 'po
at s P'

p, at p2 at
(2.73)

Po, Poso Po i Po o8»
gt Po Po

(2.74)

hence it is straightforward to rewrite our equations of
motion (2.57)—(2.60} in terms of mo and po. Thereby we
may set po=po and so =so in the coefficients of (2.73) and
(2.74). Including stochastic forces, we arrive at our mod-
el equations in the final form

is the heat variable of Kadanoff and Martin. (ho
denotes the enthalpy per unit mass. ) Because of

bqo —mo-O(ro~go~, mo (bpo) )

the form of the equations of motion would again be the
same.

From the definitions (2.63) and (2.65) we obtain

where

BPo

Po
(2.66)

8 5H . 5H . 5Hgo= 2I o +if fo ig~Po
—+8&,t 5fo 5mo ~ 5po

(2.75}

b
k~

Po BcTo pp

(2.67)

Here Po is the reference value of a local pressure variable (2.76)
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po=LOV2 +k V2 +2/ Im gp
y &0 (2.91)

—cpV . -+8r,5H
0 (2.77)

in agreement with Onuki.
The only independent kinetic coefficient in Eqs. (2.76)

and (2.77) is

8 . g 25H 5H+8
Bt 5]p 5pp

(2.78)

H= Jd"x[—,'(~()i@pl +lV@pl +y 'mp

+X po+X ]o)

+ "pl@pl +(f' mo+f' po}lfol
—h mp —

hippo] . (2.79)

(In Eq. (3) of Ref. 8 the dynamic coupling Gz should read
p. )

The Gaussian Langevin forces have the nonvanishing
correlations with

=kB T~o
Po 1

BP, v, C,"'
j.

( (p)
p

—1
oka

whereas Lo and fi are determined by

Lo =k~k~

and

=-2 aT '
kp —p pkg Kp

~PO ao

(2.92)

(2.93)

(2.94)

(8&(x, t)8&(x', t') & =4r;5(x —x'}5(t—t ),
( 81( x, t) 8k( x', t')) = —2kkV 5(x x')5—(t t'), —

(2.80)

(2.81)

0 PPT
+m

B

0

g =kBTpp

BO'p

BT
—1

Po

BPO vo

(2.83)

(2.84)

where k stands for m, p, or j, and

(8 (x, t)8~(x', t')) = —2LOV 5(x —x')5(t t') . —(2.82)

From Eqs. (2.15), (2, 16), (2.25), (2.26), (2.65), and (2.66)
we obtain the static parameters

Bop
dT Po

C'"=T
P

OCT p

dT ~o
(2.95)

m4
0 = „ aoT, (2.96)

These relations are consistent with the absence of a kinet-
ic coefficient in the continuity equation (2.50) for pp. Cor-
respondingly the Langevin forces 8 and L9 are not in-
dependent of one another.

Equations (2.75)—(2.79} have a gauge-invariance prop-
erty analogous to that of model F. The signs in Eqs.
(2.75)—(2.78) are chosen such that all dynamic couplings
I p', g, g, and co are positive. With the exception of
I p, they can be expressed in terms of static quantities
according to

Brp

Op Po

kB

2pp 8

'dro

yp 2
BPO 00

(2.85)

(2.86)

BPOm4
kit T

aPO
r

dPO
CO =PO — kii

BPO

0
T=+p (2.98)

ao dpo1+, (2.97)
po ~po ra

0 0 0 0
'pp = rp 2y m h y —

2yp Ape

=0,
h =0.

(2.87)

(2.88)

(2.89)

0
yp

B PO
ym

BOO

QPO ro
(2.90}

Since both rp and o.o are monotonic-increasing functions
of T, we conclude from (2.85)

[Although h and h vanish, we have included formally
the terms h mp and h pp in (2.79},since they may serve
to perform a constant shift of the mo and pp variables
such that all tadpole diagrams vanish. ] According to
Eqs. (2.83) and (2.84), y and y are noncritical contribu-
tions to the constant-pressure speci6c heat per unit
volume (divided by kii) and to the inverse adiabatic
compressibility (divided by ksP, respectively. From
(2.85) and (2.86) we obtain

These relations will be used in the quantitative ap lica-
tion to the attenuation and dispersion of first sound. For
cp =0 our model is appropriate for the study of the criti-
cal statics and low-frequency dynamics of He- He mix-
tures if the variable pp is reinterpreted as the He concen-
tration. In this case, however, k, Lo, and k are in-
dependent kinetic coefficients. The connection of our
model with model F (Ref. 20) will be discussed in Secs.
III and IV.

III. STATIC CORRELATION FUNCTIONS

In this Section. we discuss the structure of the static
two-point correlation functions,

C &(k)= J d"x e '""[(ao(x)PO(0))—(ao)(PO)],
V

(3.1)
0

with ap and Pp being one of the variables mop ' or
pop '~2. Here the brackets ( ) denote averages with
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the distribution -exp-H, where H is given by (2.79), with
the couPlings Qp, y, and yp. Since mp and Po enter H
only up to the second order we have the exact relations

C p(k)=5 p+ j' ypC~(k), (3.2)

with y~ and y& being ymp m or ypp p, and

&g(k)= f d'x e '
[& l@o(x}l'l@o«}l'&—

& Idol'&']

(3.3)

Thus no(x) has only Gaussian fiuctuations, while qo(x) is
coupled to the order parameter through (3.6). This im-
plies

(3.13)

and

C q(k)=1+yoC~(k) . (3.14)
0 ~ 0
C & can be expressed in terms of C via the matrix rela-
tion

The average in (3.3) can be performed with the statistical
weight —exp( H&)—, with the usual Ginzburg-Landau
Hamiltonian

0 ] 0

X m Cmm

(X X

(XX}
0 0

Xp 'Cpp

Hy= x &Pp p +
2 p +Qp p

where

(3.4)

Qp —Qp —yp,
0 2 0 2

yp y m+m +ypXp

(3.5)

(3.6)

+ 1/2

0
y0 ~ 1/2 (3.7)

For a similar discussion see Onuki. %'e introduce new
variables n o(x ) and qo(x ) defined by

—1/2
gp moX m=R(yo ) ~ i/2np poX

(3.8)

We shall show that the critical behavior of C &(k) is most
easily analyzed in terms of the couplings Qo, yp, and the
dimensionless ratio

r

C 0
=R (yo} 0 1 R(yo) . (3.15)

(In (3.15)—(3.18) the coefficients X and X are given ex-
plicitly, i.e., C =

& momo &
—

& mo &, etc.)

After substitution of (3.14) and (3.9), Eq. (3.15) clearly
exhibits the separation between the simple algebraic

2 ~ 0
dePendence on yp and yp and the Qp dePendence via C&.
The crucial point of the representation (3.15) is that the
ratio and the matrix R(yo) constitute noncritical quanti-
ties (even in the renormalized theory, see Ref. 6) deter-
mined by the thermodynamic derivative (2.90) parallel to
the A, line. Consequently the static critical behavior of
C ~ is reduced to that of a single model-F-type correla-
tion function C . Their asymptotic and nonasymptotic
critical properties at k =0 are well known. '

For completeness we mention the invariance of the
0

trace and determinant of the matrix (C &) under the or-
thogonal transformation (3.15),

with the orthogonal matrix

1 yo
R(yo )=( 1+yo2 )

1/2

Xo
(3.9)

0 0 ] 0 0 ) 0

Cqq + 1 =&m Cmm +&p Cpp
0 0 i 0 i 0 0 0

Cqq =X m Xp ( Cmm Cpp
—C mp ) .

(3.16)

(3.17}

h

b„
=R(yo) 1/2

pXp

Rewriting H in terms of np and qp yields

K=H +f d~x( —,'no2+ —,'X, 'jo —k„no)
V

with the model-F-type Hamiltonian '

H, =f d"x(-,'"oI@o/2+-,'/V@ol2+uol@ol'

+ 2tIo+roeo ~col' bqtio }—
where

(3.10)

(3.11)

(3.12)

The relations derived above can be applied to the static
structure factor

(3.18)C (k)=b [C (k)+2b C (k)+b C (k)]

[compare (2.65)] and, in the limit k~0, to various ther-
modynamic quantities (see Ref. 6).

IV. DYNAMIC CORRELATION FUNCTIONS ABOVE Tg

Because of the complexity of our model it is
worthwhile first to discuss the general formalism and to
defer explicit calculations to subsequent parts of this
work. The main application will be the calculation of dy-
namic correlation functions

C &(k, to)= fd"x f dt e ' ""&[ao(x,t) —&ao&][Po(0,0)—&Po&]& (4.1)

with ao and po being one of the hydrodynamic variables
moX ', poX p

' or joX J
' . These correlation func-

tions suSce to determine the dynamic structure factor
according to (3.18). For T) T2, mixed two-point corre-

I

lation functions between go (or Po) and the variables mo,
pp, and jp vanish because of gauge symmetry. The aver-
age in (4.1) will be performed with the statistical weight
-expJ, where J is the dynamic functional ' that is
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equivalent to the I.angevin equations (2.75)-(2.79). It is
given explicitly in Appendix A. The definition of
response functions C &(k, co) is analogous to (4.1) with ao

0 0
denoting one of the response fields tnoX '~z, poX '~z, or

i/2

A. General form

We shall use the matrix notation

In the spirit of perturbation theory we split 8 as

C(k, co)=6(k,a))+ Y(k, a)), (4.3)
0

where F represents the contribution due to the nonlinear
couplings uo, y, y~, g, and g . The zeroth-order part
0 is well known from linearized hydrodynamics of ordi-
nary Quids and is given by

G(k, c0)= —M '( —k, —co) (4.4)

[C~&(k,co)] [Ca&(k, co)]

[C &(k, to)] 0 (4.2)

with

0
—[L(k)]

ice —[L(k—)]t
[2k(k) ]

(4.5)

where [C &] and C are 3 X 3 and 6 X 6 matrices, respec-
tively. From (4.1) we have

Cp (k, co)=C p(
—k, —co)=C'p(k, co) .

and

'k

[L(k)]= Lo(x x~) ' 'k'

0

L.(x.x, } '"k'-

tc(oX,X, ) '"k

0

ico(Xt, XJ )
' k (4.6)

0 [C (k, y)]

[0„„(k,y)] [8„„(k,to)]
(4.8)

O

Here C„represent correlation functions whose de6nition
is analogous to (4.1}but with p, and v denoting one of the
composite 6elds

In (4.5) [k(k)] denotes a 3X3 matrix that is identical
with (4.6} for co=0, i.e., [k(k)] is purely dissipative,
whereas the matrix elements -icok of [L(k)] reflect the
two propagating sound modes. The transverse viscosity
modes have been omitted. In Appendix A it is shown
that the perturbation part of (4.3}can be written as

Y(k, co) =G(k, co)II(k, co)G(k, co) (4.7)

with

In conclusion, according to (4.3}—(4.8) the problem of
calculating C & is transferred to the calculation of C„„
and C„„. As seen from (4.9)—(4.14) the composite fields

do not involve the hydrodynamic variables mo, po, jo,
&no po aild )p. Iil 'this respect the structure of (4.3) and
(4.7) is parallel to the representation of the static correla-
tion functions C & in terms of the static four-point
order-parameter correlation function 8&, compare (3.2)
and (3.15) of Sec. III and (2.10) of Ref. 21. The advan-
tage of this representation is that it exhibits the structure
of the correlation functions as far as the leading depen-
dence on the nonlinear coupling constants y, y, g
is concerned.

For the purpose of explicit perturbation calculations it
is convenient to introduce the matrix of two-point vertex
functions

s.(x,t)=x-'"[(k y +L,y, )v'lgol'

+g Im(gov $0)],
g, (x, t) =x,-' '[(L,y. +k, y, )v'ly, l'

—g, lm(ito V'40)]

(x, t) = .x "c—,y, v l
+' .

(4.9)

(4.10)

(4.11)

I ( k, co }=C( —k, —co )

0 [rap(k, co)]

[I ~(k, co)] [I ~(k, co)]
(4.15)

which in zeroth order coiricides with —M(k, co), (4.5),
thus

(x, t)=2X'i Re[ —(y I'+ —g X ')ggb ], (4.12)

p(»t}=2Xp"Re[ (ypro 2 tpXI ')0—ohio]— (4.13)

0
Similarly C and 0 „are response functions where p, V

denote the composite Selds

r(k, ~)=—M(k, ~)—~(k, ~} . (4.16)

The contribution X is given by all one-particle irreducible
diagrams with two external (truncated) legs. According
to (4.2) and (4.15) the 3X3 matrix of correlation func-
tions 6 & can be expressed as

[c.,(k, ~)]=—[r.z(k, ~)]-'[r,z(k, ~)][f.,(k,~)]-' .

-=0
J (4.14) (4.17)
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For the application to the dynamic structure factor it is
more convenient to rewrite the matrix elements of (4.17)
as

N p(k, co)
C p(k, to)=— w~ere

0=—ImR (k, co),
CO

Cy(k, co)= f1 x f dt e ' " "(3Ly(x, t) &

(4.25)

where l(k, co ) is the determinant of the 3 X 3 matrix
[1. ~(k, ~)]. and

tt ~(x, t) = Iy,(x, t)I'Iy, (o,o) I' —& Idol'&' (4.26)

B. Fluctuation-dissipation relations

We shall apply well-known fluctuation-dissipation rela-
tions in order to express the correlation functions (4.1) in
terms of response functions. One relation reads

R p(x x', t t')—=— 0(t—t') —C p(x x', t —t'), —

R~(k, co)= —fd"x f dt e '"" ""8(t) (l~(x, t) & .d

(4.27)
0

From a dissipation-Auctuation theorem applied to R& a
relation corresponding to (4.22) can be obtained. It reads

R,(k, ~)=fd'x f'dt e '" ""&lgo(x, t)l'~o(0, 0) &

(4.28}
(4.19)

with
0

where R p(x x', t——t') describes the hnear response of
(ao(x, t) & to an external field hp(x', t'} coupled linearly
to Po(x', t') via the additive term

—f d "x'h p(x', t')Po(x', t')

in the Hamiltonian (2.79). In terms of Fourier transforms
(4.19) becomes

C p(k, cu)= . [R~ (p kco) Rp ( —k, ——to)] . (4.20)
LCO

Note that in the present model

R p(k, co)WRp (k, co)

due to the reversible couplings P, gz. Therefore
C p( k, co ) is complex for aAP, whereas

%O(x, t) = I 0/0(x, t)1Tto(x, t)*+I 0/0(x, t) po(x, t) . (4.29)

The connection with the static correlation functions (3.1)
and (3.3) is given by the sum rules

C p(k)=(2m) ' f dc@ C p(k, a))=R p(k, o),

C~(k)=(2m) ' f dc@ C~(k, ci))=R~(k, o), (4.31)

thus, according to (3.2),

C p(k)=5~p+y ypRg(k, o) . (4.32)
0

Therefore one may regard the response function R&(k, co)

as a k and co dependent generalization of the specific heat.
This will be further discussed in Ref. 6. In the limit
co~0 we obtain from (4.30), (4.22), and (4.24)

C (k, co) =C (k, —co) =—ImR (k, co)
CO

(4.21) C p(k)=C (k, o)[L p(k)+2/pl ~(k, o)] . (4.33)

R p(k, co)=C (k, co)Lrp(k)+2gpC ~(k, co), (4.22)

where summation over y is implied. The matri elements

Lrp(k} are given in (4.6). In the last term the index P
stands for the composite field

$0(x, t) =1m[$0(x, t)$0(x, t)*], (4.23}
0

~
0

which arises from the terms -mph p in J&, (A 3). C
&

can
be decomposed as

C &(k, co)=C (k, co)I' &(k, co), (4.24)

where again summation over y is implied. The vertex
functions I &(k, co) will be specified diagrammatically in

Ref. 6.
For the application in Ref. 6 we shall also consider

is real. A further relation can be given in terms of
0

response functions C~ (k, co) that describe the linear
response of (ao& to an external force added to the equa-' —1/2tion of motion for y =mop ', pop '~, j~J

'~ (Refs.
43, 44, and 47). In the present model we obtain

C. Relation to model F

It is obvious that our model equations (2.75)—(2.79)
contain model F (Ref. 20) as a special case. In a formal
fashion this is seen by dropping po and jo or by setting

g~ =y~ =Lo =0. A more physical way to describe the re-
lation to model F is the following.

The basic time scale of the propagating modes is set by
the inverse frequency [co(y.y ) '~2k] ', where

co(pj's~)
' is essentially the velocity of sound. This

time scale is short corn ared to the characteristic time
0

scale of heat diffusion, ( y 'k ) ', for all wave num-
bers k well below the cutofI' A-10 cm '. The crucial
point is that the sound velocity remains infinite at T&, as
noted previously. Therefore the sound modes can be
considered as fast modes even at T&, which in the limit of
small k do not inAuence the asymptotic critical behavior
of the heat mode. The efFect of the sound modes consists
essentially of a modification of the background values of
the couplings and the transport coefficients appearing in
model I. Our model is an appropriate basis for proving
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the correctness of these qualitative remarks.
Here we do not attempt to provide such a proof but

confine ourselves to specifying the relation between mod-
el F and our model in the limit co~~.' '" According to
Eqs. (4.3) and (4.7), the effect of the critical fluctuations
on the correlation functions (4.1) is described by the
quantity II defined in Eq. (4.8). As noted after Eq. (4.14),
II does not explicitly involve the hydrodynamic variables,
except via the couplings to gp and Pp in the statistical
weight expJ of the averages ( ). A simple way of el-
iminating the sound modes consists of a partial average in

0 0

C„and C over the variables po, po, jo, jo, and then
performing the limit co —+ ~. These steps can be carried
out explicitly (see Appendix B). In this limit pp, Pp, jp,
and jo become nonhydrodynamic fast variables. This
procedure leaves the resulting effective dynamic function-
al J,s. free of hydrodynamic singularities (which would
otherwise arise if the integration is carried out at finite
cp). The reduced functional J,ir depends only on the slow
model F variables mp, mp and gp, gp, iTp, gp. As shown
in Appendix B, J,it has indeed the structure of model F
(with h =0)

J,s.= f dt f d x( A, m—pV mp+I pgpQp
—mp[(i3, —k j' 'V )mp —g Im(ppV fp)]

—Ref/ p[B, +I (prp V +4uplqpl'+2y mp)]Pp —ig gpPp(mph '+ j' i/pl ))) . (4.34)

0
Here P~, A~, and L p have dropped out because of cp ~ ap,
whereas y has been absorbed in the effective four-point
coupling

0 2
QP QO & /pe (4.35)

V. OUTLOOK

The main result of this paper is the derivation of the
model equations (2.75)—(2.79), which we believe are ap-
propriate for the description of the critical thermal-
diffusion and first-sound modes in the vicinity of the k
transition in He. This opens the possibility of treating a
number of problems:

(1) Our principal aim is to provide a systematic and
quantitative renormalization-group analysis of the sound
mode. This will be the subject of subsequent papers.

(2) A study of the relation between our complete model
and model F enables us to investigate the effects of the
sound mode on the heat mode above Tz and the second-
sound mode below T&. This may be of relevance in the
context of a previous controversy that is still un-
resolved. In addition the unexpectedly large background

I

This connection with model F will be exploited in the
subsequent paper.

On the other hand the preceding discussion clearly
shows that there must exist corrections to model F calcu-
lations due to the finiteness of the sound velocity. These
corrections will affect the precritical dynamic behavior
and may be of relevance in a quantitative comparison of
second-sound damping with experiments. A systematic
study of such corrections to model F can be carried out
on the basis of our model.

APPENDIX A

In this Appendix we work with the dynamic functional
J (Refs. 41 —44) that is equivalent to the Langevin equa-
tions (2.75)—(2.79). The functional reads

J=J +J~,
where

(Al)

J =fdxfdt — M
2 CXO CXO

O'O

aO

so

SO
(A2)

and

value of the transport coefficient I p' (Refs. 25 and 37)
could be modified if the sound mode is correctly included
in the analysis.

(3) The complete light-scattering spectrum can be cal-
culated. As noted recently this will provide the basis for
a dynamic calculation of the Landau-Placzek ratio, which
seems necessary in view of the discrepancy between
light-scattering experiments ' and static renormaliza-
tion-group calculations at finite k (Refs. 3, 26, and 52).

(4) Our model constitutes the appropriate basis for an
analysis of the approximations and the range of validity
of the phenomenological approach by Ferrell and Bhatta-
charjee.

(5) From a purely formal point of view, our model con-
tains (for the case cp =0) the model-F-type generalization
of the Siggia-Nelson model for He- He mixtures.
Therefore part of the results of the present and subse-
quent papers are directly applicable to the statics and
low-frequency dynamics of He- He mixtures.

J&=f d x f dt Re(I pgp@p fp[d, +I p(rp —V—+4upl@pl )]gp+Pp[ig h ig yl1ipl —]gp],
with the three-component vectors

(A3)

aO=

—1/2
moxm

CZO

1/2mox m

p i'"
1/2

(A4)
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Sp=
m

sp=

1/2

1/2

0

0

sm
0

sp
0
%J

0

0 X
—0,x, '"

0

0h=
h X'"

~1/2
P

0

(AS)

(A6)

-a, -[L]

and the 6X 6 matrix M and 3 X 3 matrix [L], respectively

0 ( —8, —[L])
[2k]

(A7)

'V

[L]= L.(X.—X, )
'"V'-

)
—1/2V2

g ~
—1y2

co(XiX~ )
' V

co(XJX~ )
' V (A8)

The components of (A5) are given in (4.9)—(4.14). In (A7)
the differential operator (

—8, —[L ] ) is the adjoint
operator of (—8, —[L ]), i.e., it acts on the vector on its
left. [k] in (A7) is given by (A8) with co —=0.

Since the fields ap, ap enter J only up to second order,
some exact relations can be derived by an appropriate
shift of the variables. We need these relations in order to
derive (4.7)—(4.14). In terms of the six-component vec-
tors

I

(,q„T„&=0, (A12)

fd"x fdt e '" ""(qo,(x, t)qo~(0, 0) }
= —M,. '(k, co)'= —M," '( —k, —co) . (A13)

In (A13) M(k, to) is the Fourier transform of (A7), as
given in (4.5) and (4.6). From (Al 1)—(A13) one obtains
(4.3)—(4.14).

APPENDIX 8

p

Equation (A2) can be rewritten as

J = f d x f dt( —,'q~qo &~ToMTo) .

This implies

&q, &=0,

(A9)

(A 10)

(A11)

In this Appendix we derive the model-F dynamic func-
tional from the complete functional J, (Al), by integrat-
ing over the pressure and momentum fields pp, pp, jp, jp,
and passing to the limit co~ao. We consider only the
case h =h =0.The functional J can be split as

J=J~+J +J„,
with J& given in (A3), and

J =fd"x fdtI [ moAV—mo —
m, o(B, —X X 'V )mo

+m, [v'(y k +y, Lo)lfol 20 (Pov g —@v g*)]—
mo[y I os@—'o+y I'o4o0o+ 2k X '(4A'o —Polo)]I

J =fd"x f dt ,'(y~Aoyo x~—Ao 'xo) . —
(B2)

(B3)

Here xp and yp denote four-component vectors

(Loy +X y~)v lgol gpIm(gov go)+Lov (X—'mo —2mo)

c,y vip, l'

—Re[(y I o 0 X )4o4o]+LoV mox, '

0

(B4)
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yo=

Po

jo
Po

+Wo 'x, . (85)

The 4 X4 matrices A o and A o
' have the form

P B
0 & —0

0
B—1 (86)

where P and 8 represent the 2 X 2 matrices

0

0
—22 V

B=
J

—a, +k,y,-'V'
0

coX

0

coy, 'V

—i), +kjy J
'V (87)

The functional integration over po, jo, po, jo in the distribution -expJ is equivalent to the integration over yo. Thus the
first term on the rhs of (83) does not contribute to the correlation and response functions in II, Eq. (4.8). In the limit
co~ oo the second part of (83) reads

lim I = Jd"x J dt y Idol IRe[(y„y~l o
——g~)Pgko j—LoV~trtoI . (88)

This leads to the model-F functional (4.34).
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