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A detailed foundation and general discussion are given for a new model that describes the critical
dynamics of “He near T, including the thermal-diffusion and first-sound modes. All parameters are
identified in terms of thermodynamic and hydrodynamic quantities. The relation between static and
dynamic correlation functions of our model and those of the simpler model F is derived. This pro-
vides the basis for a quantitative theory of critical first sound.

I. INTRODUCTION

The possibility of testing the renormalization-group
theory of bulk dynamic critical phenomena depends cru-
cially on the availability of accurate experimental data.
Most suitable for this purpose are the critical dynamics
of strain-free fluids (rather than solids), and the most sen-
sitive physical quantities are those transport coefficients
that develop a divergence as criticality is approached. In
principle this divergence can be studied as a function of
temperature, wave number k, and frequency w. In prac-
tice quantitative comparisons between renormalization-
group studies and experiments on transport coefficients
have been restricted mainly to the temperature depen-
dence at a few values of k and at low (or zero) frequen-
cies.! ™4 '

The reason for this restriction is of both experimental
and theoretical origin. As far as the k dependence is con-
cerned experimental data exist only over a rather limited
k range due to difficulties related to light- and neutron-
scattering techniques. As far as the w dependence is con-
cerned the study of sound propagation offers the possibil-
ity of probing the entire critical frequency regime, but no
detailed theoretical predictions have been made in the
early stages of the development of the renormalization-
group theory.! Also more recent renormalization-group
studies on sound propagation in fluids® have not been sa-
tisfactory, as will be discussed in a subsequent paper.®
On the other hand, a wealth of experimental data on crit-
ical sound attenuation in fluids over an enormous range
of frequencies is available, in particular near the
superfluid transition of “He and *He-*He mixtures. The
main motivation of the present work is to fill the gap on
the theoretical side by extending the renormalization-
group approach to sound propagation in “He. Our
theory will be applicable to the entire experimentally ac-
cessible regime and therefore will make possible a test of
the renormalization-group theory as a function of fre-
quency.

A phenomenological theory of critical sound attenua-
tion based on a frequency-dependent generalization of the
specific heat has been developed already by Ferrell and
Bhattacharjee (FB).” Because of the remarkable success
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of this theory in its application to experimental data it is
of interest to clarify to what extent the FB approach can
be justified within a renormalization-group treatment.

A proper statistical-dynamical treatment has been ini-
tiated recently® !© where we have introduced stochastic
equations for a complete set of slow variables near the
superfluid transition. They are well suited for a systemat-
ic study of both the thermal-diffusion and first-sound
mode coupled to the critical fluctuations of the order pa-
rameter.!!

This paper is devoted to a detailed foundation and gen-
eral discussion of these equations; quantitative applica-
tions above and below T, as well as an analysis of the FB
theory on the basis of our model will be deferred to subse-
quent parts of this work. For a short summary of some
results see Refs. 8 and 9.

In constructing our dynamic model we employ known
concepts of statistical dynamics.’'> We start from
Poisson-bracket relations!® for the slow variables, the
fluctuations of the order parameter, the entropy density,
the mass density, and the momentum density. Invoking
renormalization-group arguments, we eliminate ir-
relevant terms that are present in previous equations of
motion.*”!° The fundamental difference between our
model and the well-known models 4 -J (Ref. 1) is that
our model includes secondary dynamic variables (essen-
tially the pressure and the moment density) whose fluc-
tuations do not affect the asymptotic critical dynamics of
the order parameter because of the finiteness of the sound
velocity. Nevertheless these secondary variables are of
primary importance in describing the critical behavior of
the first-sound mode itself.

For the purpose of making quantitative predictions of
the nonuniversal critical behavior along the A line® we
identify all static and dynamic parameters in terms of
noncritical thermodynamic and hydrodynamic quantities.
Particular attention will be paid to the connection of our
model with model F introduced previously?® for the
description of the thermal-diffusion mode. This will en-
able us to incorporate into our renormalized theory® of
the first-sound mode the detailed knowledge on critical
statics?"?? and low-frequency dynamics,»?*~2¢ in a con-
sistent fashion. Conversely, our model will also permit a
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study of the effect of the first-sound mode on the
thermal-diffusion mode above T, and the second-sound
mode below T,

II. THE MODEL

In this section we present the detailed arguments that
lead to the model® appropriate for the description of the
critical behavior of both the thermal-diffusion (or
second-sound) mode and the first-sound mode of *He near
T,. In particular we derive the connection of various
static and dynamic parameters with thermodynamic and
hydrodynamic quantities, since these identifications are
important for quantitative applications of the model.

From hydrodynamics?”?® it is known that a complete
set of slow variables consists of the long-wavelength fluc-
tuations of the mass density py(x), the entropy density

J

Z(T, )= [ Dlposo,Bodolexp [~ [ d Quplx)/kp T

with the effective local potential
Qe x) = Qg po(Xx),50(x), Po(x), Vo x), ol x)) . (2.2)

In (2.1) and (2.2) the variables have only long-wavelength
fluctuations. The corresponding probability distribution
is

0 (P00, Bordo] =2 ~lexp [~ [ dx Quplx)/ks T

(2.3)

This can be identified with the probability distribution
constructed within the usual theory of thermodynamic
fluctuations.®! Starting from the probability distribution
for small subsystems of a given volume, and at given T
and u, and summing over these subsystems one arrives at
the probability distribution for the total system

w~exp [~ [ d% AQ(x)/ky T 2.4)
with

AQ(x)=AEy(x)—plApyx)—TAsy(x) , (2.5)
where

AE (x)=Ey(x)—E, ,

Apo(x)=po(x)—py »

Asg(x)=s¢(x)—5,
denote local fluctuations of the energy, mass, and entropy
densities. An interaction between subsystems is taken

into account only via the Vfﬁ\o dependence of the energy
density

Eo(x)=Eo(po(x),50(x), Bl x), Viig(x), jo(x))

which includes the local kinetic energy. The phenomeno-

(2.6)
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so(x), the momentum density jo(x), and, near T, of the
complex order parameter Jo(x), a coarse-grained wave
function of the Bose condensate.?®3® We shall consider
these fluctuations in an equilibrium state of liquid “He in
a given total volume V¥, at given equilibrium temperature
T, and equilibrium chemical potential per unit mass u,
i.e., with a fluctuating number N of *He atoms. This cir-
cumvents the conceptual inconvenience of a fluctuating
total volume, which arises in the equilibrium ensemble at
given pressure P.1%3! For the purpose of a comparison
with experiments we shall of course make contact with
the common thermodynamics in the 7-P plane.

A. Static probability distribution

After integrating over the short-wavelength fluctua-
tions of the microscopic variables, the partition function
can be written as a functional integral

(2.1)

|
logical reference values gy =po( T, 1), 5o =5,(T,u), and

Eo=E,(py50,0,0,0)

with $0=0 and j,=0 may be interpreted as equilibrium
values of noninteracting finite subsystems and can be
determined approximately from experimental data of *He
well above T',. The energy density E,(x) serves as a local
potential whose derivatives yield the local temperature

To(x)=0Ey(x)/3s¢(x)
and chemical potential
Lo(x)=0E(x)/3py(x) .
Their reference values
oE,

a5,

3E,
9po

:T():T s
Po

=Ro=p 2.7)

5o

coincide with the global equilibrium parameters T and p.
Since E is a smooth function of 5, and p,, the latter can
be considered as smooth analytic functions of 7 and u
(even if the thermodynamic limit V— o is eventually
taken for the total system). They must be distinguished
from the full equilibrium values

aQ aQ
(so)=—|== 1|, (po)=—|=—> (2.8)
oT u au |,
to be calculated from the thermodynamic potential
WUT,pu)=— % InZ , (2.9)

i.e., from the distribution (2.3). The connection between
(2.3) and (2.5) is made by

Q.lx)=QONT,u)+ AQ(x) (2.10)
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with a smooth “background” part Q©.
(2.6), we define the normal velocity

Vo(X)=3E(x) /djo(x)

From E,(x),

and the superfluid momentum density

0Ey(x) . OEy(x)

o~ " Yolx =
Vg, T AV

. My A
Jso(X)=i—= |1y(x

#

(2.11)

with 277 being Planck’s constant and m, being the mass
of a *He atom. From Galilean invariance it follows that

Jo=IJsoTPoVro=Js0t Jno » 2.12)
which defines the normal momentum density j,o=pgV ,0-
The superfluid velocity is given by

vso(x):;%V(po(x) , (2.13)

where @y(x) is the phase of

Po(x)=|Po(x)expligy(x)] .

We expand AQ(x) with respect to j, Por V‘(/JJ\O, Apy,
Asg, and obtain

AQ

T =f,+8,+1;, (2.14)
where
A, =1rolto >+ LIV + 9o * (2.15)

A, =1x 7 (AsoP+2x 53 AsoApo+X ' (Apo)?]

+(P5As0+7,8p0) %)% (2.16)
N o 4. kBTmﬁ
Hi=4x;'i ’1+"%_:—|¢0|2}

—ibojo YoV — 8 Vibo) 2.17)

apart from higher-order terms. As seen from the |Vi),|?
term in (2.15), we have used the order-parameter field in
the standard normalization, ¥4(x)=2¢y1(x); we shall not
need an explicit specification of the normalization con-
stant ¢,. From the two-fluid model'®?”?® and from
Galilean invariance, the coefficients in (2.17) can be
identified as

my
27ip,

X;=ksTphy bo= (2.18)

In ﬁ,/, and A ps We have retained only terms that are
relevant in the renormalization-group (RG) sense,
whereas in B ;» (2.17), the last two terms are irrelevant in
the RG sense and will be dropped in the final formulation
of the model. Nevertheless it is useful to discuss these
terms as they represent leading contributions to the ki-
netic energy density 1p,o2, of the normal part of the
two-fluid kinetic energy density (divided by kg 7) and will
play an important role in the calculation of the critical
shear viscosity.*>?® An alternative representation of A,
is obtained by considering j,o and ¥, as the fundamental
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variables instead of j, and v,. From (2.11), (2.15), (2.17),
and (2.18) we find

jro=iky Tt {¢OV¢3—¢SV¢O+21'—"’—41¢01210 (2.19)
K — .
2#h #p,

Thus the right-hand side (rhs) of (2.17) can be written in
terms of j,o= jo— js0 and ¥ as

k 2
1———[¢l? ] ,
Po
apart from irrelevant terms of O(|4,]?|V,|?) and

O ol Yo (VY — Y5 Vo)) .

In (2.20) there exists no correction term of the type
Jno(¥oVY§ —¥§ Vi), therefore the Gaussian term ~ j2,
of (2.20) provides a more appropriate description of the
normal part of the kinetic energy density than the Gauss-
ian part ~ jj of (2.17). The superfluid part 1p,w2 /kyT
of the two-fluid kinetic energy density is approximately
described by 1|V4yl? in (2.15). If the irrelevant |y,|?
correction in (2.20) is dropped we obtain

gj = %Xf 132, (2.20)

Hi=1x7"i. 2.21)
These different formulations of A ; will be taken up in the
discussion of the equations of motion later.

All parameters of H, and A ps can be expressed as
derivatives of the energy density

eolpo(X),50(x), [1e(x)121= Eo(pg(x),50(x), Po(x),0,0)

(2.22)
taken at g, 5, and ¥,=0. We have
deo[Pos%0 1¥ol?
ro= 2 olPo 0211’0 ] , (2.23)
kgT BIRVN #=0
d%eo[Po>So» [¥0)?
o= 1 olPo 04% 1 , (2.24)
2kpT RN %=0
org ory
=120 5 %0 (2.25)
‘}/p 2 ap_o 7/5 2 BFO
Y,=ksT &z |
XS B BE% ’
Y, =kyT ) ]hl (2.26)
X = B . ’ .
g 3p5
S i B
S P N B

with ey=e([p(,53,0]. By elementary thermodynamic
transformations one obtains from (2.25) and (2.26)

oo | % (2.27)
70’5 aﬁO o ’ ’
—1
o o __ ’}c/s 1 afo
i —1ts Po
X s X ps ?p kT | 8T ]’o , (2.28)




1&

-1
—i_ste_ 1 |30
Xo "Xes oy o

where the derivatives are taken along a path ry=const.
Relations equivalent to (2.27)—(2.29) have been derived
already by Onuki’* on the basis of Pippard-Buckingham-
Fairbank relations.

All parameters (2.23)—(2.26) are smooth functions of T
and p. In ro[T,u] we shall keep only a linear tempera-
ture dependence around the transition temperature

TA[.“’])
rolT,pl=ro[pl+ao[u (T —Ti[p]) ,

where

aolp]1=27 (3P /3T ), +29,(85,/3T), >0 .

’ (2.29)

To

(2.30)

At given T and u, with the total system at rest, the equi-
librium pressure P =P(T,u) is given by

P=—Q(T,p) . 2.31)

This can be considered as an implicit relation for
pu=u(T,P). In a comparison of our model with experi-
ments at given T and P we may therefore substitute
p=p(T,P) and consider all static parameters as smooth
functions of T and P. In particular the transition temper-
ature T, (P) at given P can be defined as the solution of
T,=T,[u(T,,P)]. Correspondingly we may turn from
the temperature variable T — T, [u] to the usual variable
T —T,(P) by means of well known thermodynamic rela-
tions.*> Hence we eventually take r, as a functlon of T
and P, linearized around T, (P),

—.TA(P)

rolT,P)= TP

7o (P)+ag(P) (2.32)

instead of (2.30), with
ao(P)=T,(PX9r,/0T)p>0.

Within the linear approximation (2.32), it is justi-
fied to linearize (2.31) around T,[u] and hence to
neglect the singular (but higher-order) contribution
~(T —T,[1])* ¢ in this context. This amounts to re-
placing Q by Q'? in (2.31).

In summary we have the static probability distribution

w ~exp(—H /ky T) with
3 (0)
kf m T+ [ dxBy+ R+, @33)

where I? ﬁ s> and I? are given by (2.15), (2.16), and
(2.17) or (2 21)

B. Equations of motion

The physical basis for constructing the appropriate
equations of motion for the fluctuating variables above
T, is provided by the hydrodynamic equations of
superfluid “He. Although essential parts of these equa-
tions have been known for a long time!# the detailed in-
terpretation of some terms is to some extent controver-
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sial.!*~1° This controversy, however, does not touch on
the derivation of our model equations. In order to indi-
cate clearly the basis of our model we start from the
well-known general form of stochastic equations of
motion for the slow variables!?

)

Ry aH
—_— = — Y
2 #= "3

where H is defined by Eq. (2.33) and where @;(t)
represent the spatial Fourier components of py(x,t),

so(x,t), YPo(x,t), and jy(x,t). The Gaussian Langevin
forces satisfy

(6:(10,(t))=24,;8(t —1")

+V,+6,(1), (2.34)

(2.35)

with the symmetric matrix X,-- =1 ji- The reversible part

aQ;; oH

o Qi — 39, (2.36)

Vi= 2

contains the antisymmetric matrix Q;;=—Q;, which is
determined by Poisson brackets. The nonvanishing Pois-
son brackets between py(x), so(x), and the components
Jro(x) of jo(x) read!

{Jko(x)5Jio(¥)} =Jio( X))V 8(x =)+ jroy)V;8(x —y) ,

(2.37)
{io(x), po(»)}=po(x)VE(x —y) , (2.38)
{3o(x),50(»)} =50(x)VE(x —y) , (2.39)

with V and V, acting on x only. Nonvanishing Poisson
brackets exist also between jj, py, and the phase @g(x) of
the order parameter!?

(2.40)
(2.41)

{io(x), @o(¥)}=—8(x —y)Vey(x) ,
{po(X),@o(¥)}=—8(x —y)m, /% .

These relations determine the reversible parts V;, (2.36),
except for additional nondissipative terms related to the
time dependence of |¢,|. Since exact Poisson bracket re-
lations with respect to |4,| are not known we argue on
the basis of the equations of motion for interacting Bose
systems®>3®  that a nondissipative contribution to
a|¢012/at must exist which in the noninteracting case
represents the kinetic energy term of the Schrédinger
equation. This contribution corresponds to the model F
term ~ Ty discussed previously.’” Incuding this term the
reversible parts of the equations of motion as derived
from (2.36)-(2.41) become

G 8H 8H . To s/

3t = 1/;0 8p0 530 —Vip—2i kyT st , (2.42)
9y _ m4 SH

5 = ¢0 ¢ w 8¢‘ =V |poss, (2.43)
dsg _ SH

ar v [soﬁ—jo (2.44)



djo SH SH
ot PV p, 5V 5s,
5H 8H
V—+ -
% Jko 8]]( kJo o Bjko
5 8H
== Vio+ ——V¢t , (2.45)
8 o Yo+ sun (2o

where, at this stage, H contains a8 ; in the form (2.17). If
one substitutes AQ(x), in the original form of Eq. (2.5),
into H, it can be seen that Eqgs. (2.42)-(2.45) are
equivalent to the reversible parts of the hydrodynamic
equations derived by Khalatnikov and Lebedev!” except
for two minor differences: (i) The first term of Eq. (2.42)
becomes

—i(my /A po(x, ) — Ll »

whereas in the corresponding Eq. (28) of Ref. 17 the term
~p is missing. This is equivalent to a different, u-
dependent, gauge factor exp(—ium,t /#) for the order
parameter used in Ref. 17. (ii) In Egs. (2.42) and (2.45)
we have not included the nondissipative terms ~¢3 and
~¢&, of Egs. (27) and (28) of Ref. 17 since they are ir-
relevant in the RG sense. In the notation of Khalatnikov
and Lebedev, 'y in (2.42) corresponds to 1£7'.

Equations (2.42)-(2.45) still contain irrelevant terms.
From a closer inspection of the various contributions it
can be seen (as far as the leading critical behavior is con-
cerned) that these equations may be reduced to

a'/’o____ 2i o SH my

» — %aT 508 —% 5p (2.46)
%E’tz_ -4 .pog—,po 6¢ povg—ﬁ , 47
% - _—ovg_i , (2.48)
%=_§°VST{IO ——'s‘ovg—:j (2.49)

It should be kept in mind that the approximations
Po=Po and sy =3, on the rhs of (2.47)-(2.49) will imply
correspondingly approximate results, e.g., {p,)=p, in
the prefactor of the dynamic structure factor and
(s0) =5, in the expression for the second-sound velocity
which should be corrected in a more refined theory.

H contains I? in the form (2.17) without the (ir-
relevant) 4, dependent terms. The omission of these
terms, as dictated by relevance arguments, implies that
(2.47) differs from the correct continuity equation

9,

20— —vij, (2.50)
by the first term of (2.47), which would otherwise be can-
celed by the bo contributions arising from the last term in
(2.17). A similar defect appears in (2.48), which should
be compared with the continuity equation for the entropy
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density
9sg
o —V(s¢V,0) (2.51)

(dissipative terms are neglected here). Part of these
shortcomings can be avoided by employing the variable
Jno instead of j,. Using (2.19) one can show that the
difference between j, and j,, produces only irrelevant
contributions and that the equations of motions for
(Y0, Po» So» Jno) can be simply obtained from
(2.46)-(2.49) by the formal substitution j,— j,o- Then
(2.47) and (2.48) become

9po

A
—kp TP,V

ot ikg T (lﬁovz'/’o ¥ V2o) 5jn:)
(2.52)
and
as, _ . 5{?, ’ (2.53)
at Bjno

which leads to 1mproved agreement with (2.50) and (2.51)
after substituting ﬁ in the form (2.21). In any case, at
our level of treatmg the critical behavior of correlation
functions these differences between the j, or j,, formula-
tions are unimportant (but they come into play when the
theory is matched with the noncritical background be-
havior) and therefore we shall not make a further distinc-
tion between jg and j,, in the following.

Next we turn to the dissipative terms. We take into ac-
count

d I,
Ho__, To 88 (2.54)
at kgT 543
aSO Ko 2 Sﬁ
Y T bs, , (2.55)
and (with summation over k)
81, 8H
2 =(g— 1008, ViV 5
Jo
SH SH
+170Vk V, 5 +Vk 8],0 ] (2.56)

in agreement with previous equations,'*~!° apart from ir-

relevant terms. The kinetic coefficients T, kq, &g, and 7,
are real positive quantities and represent noncritical con-
tributions to the relaxation coefficient of the order pa-
rameter, to the thermal conductivity, and to the bulk and
shear viscosities, respectively, well away from T,. In the
notation of Khalatnikov and Lebedev!’ they correspond
to 1£1, Tée &5, and &5, respectively.

Inspection of the terms related to j, or j,o shows that
the equations for the transverse components of j, are
decoupled from the remaining equations. This implies
that the transverse viscosity modes do not affect the lead-
ing critical dynamics of the thermal-diffusion and first-
sound modes. Therefore we shall consider only the longi-
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tudinal component of Egs. (2.49) and (2.56).
In summary, on the basis of (2.46)-(2.56) we arrive at
the following set of equations

=2t , 2.57
ot kgT dys  # Yo 8p @57
9py _ .My 8H ., 8H 5H
— =i - —poVor-, (258
ot # ¢0 8¢ ¢O 81/)5 POV 8j0 ( )
9so Ko _, 8H 8H
— V2R 5 Vo 2.59
9 T bs, oV 8jo @59
3o KX, _,8H S5 SH
—= == —p 5V, 2.60
ot KT 8jo PO pg 0" bs, 260
where
y=Ty+ily (2.61)
and
R =kgT(Lo+4n,) . (2.62)

These equations, together with H introduced in Sec. I1 A,
constitute the basis of our dynamic model.

C. Model equations

In the final formulation of our model we shall use, in-
stead of s, and p,, more convenient variables my(x) and
Po(x), which will be introduced in accord with the fol-
lowing requirements: (1) The static fluctuations of m,
and p, should be independent within the Gaussian ap-
proximation, with #7i,=0 and p,=0; (2) the time depen-
dence of my(x,t) and py(x,t) should be adapted to the
separate modes of linearized hydrodynamics; (3) the mass
density variable py(x,t)—p, should be a linear combina-
tion of my(x,t) and py(x,t) in order to simplify the calcu-
lation of the dynamic structure factor. These require-
ments do not yet determine m(x,¢) and py(x,¢) uniquely.

As a simple choice we take m(x,t) to be proportional
to the fluctuation Aoy=o0y(x,t)—T, of the entropy per
unit mass,

mo(x,t)=kg 'poAcy(x,t) , (2.63)
where \
0'0(X,t)=so(x,t)/P0(x,t) ’ (2.64)

with ,=5,/p,.- Then the requirements (3) and (1) deter-
mine py(x,?) uniquely as

Po(x,8)=b,[po(x,8)—Po]l+b,,mo(x,1) , (2.65)
where
oP
==, (2.66)
9Po |
ky |OP
m= —__B— _TO . (2.67)
Po (9T |

'Here P, is the reference value of a local pressure variable
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(at jo=0, V¢),=0)
Py(x,t)= —eg(x,t)+ Tsy(x,t)+upo(x,1) , (2.68)
Py=—e,+ T5,+up,#P . (2.69)

The physical meaning of the variable p,(x,?) is seen by
comparison with the fluctuation

APy(x,t)=Py(x,t)—P, .
Expanding p, with respect to AP, Ao, |,|?, we find
Polx,)=AP(x,1)+O((APy)%, APyAc o, (Ady)?, |1,l2) ,
' (2.70)

which justifies to interpret py(x,?) as a pressure variable.
An alternative choice of the variable mq(x,t) would be
the linear combination of s, and p,

mo(x,t)=kg [so(x,t)—Taoo(x,1)] . .71

This choice would imply slightly modified thermodynam-
ic derivatives in the definition of the static parameters
(2.66), (2.67), and (2.83)—(2.86), but-would lead to the
same form of the equations of motion since the difference
between m, and i, shows up only in higher-order con-
tributions that are irrelevant in the RG sense. Similarly
Agy=qo(x,t)—g, would be a possible choice where

(2.72)

is the heat variable of Kadanoff and Martin.3® (h,
denotes the enthalpy per unit mass.) Because of

Aqo_m0~0(r0|¢0[27m(2)’(AP0)2)

the form of the equations of motion would again be the
same.

From the definitions (2.63) and (2.65) we obtain

qo(x,1)=ey(x,t)—hopy(x,t)

Im, 1 859 50 dpo
=L 1= —_—
Y B Po PR p(z) EY: (2.73)
and

9p, PoSo | 9po Po 959

= = — k—l Y 17V 9

ot le bmks p3 |9t "B py o’
(2.74)

hence it is straightforward to rewrite our equations of
motion (2.57)-(2.60) in terms of my and p,. Thereby we
may set po=~p, and s, =7 in the coefficients of (2.73) and
(2.74). Including stochastic forces, we arrive at our mod-
el equations in the final form®

o , _ . SH . 8H .. . 8H
at ¢0-— 2r0 8¢3 +lém¢0 8m° lgp'/’o 8]70 +0¢ ’
2.75)
8, —3 g2 0H 2 0H « 8H
3; ™o AV Bmg +LV 5, 2g,,,1m[¢o T +6,, ,
(2.76)
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9 , OH 2 8H SH
= 2
aPo=LoVg, AV g,Im "’05%
v 1q,, 2.77)
8jo
J . 2 OH SH
S Io=A YV T —coV —16; (2.78)
ardo=s7 8o 890
H=fddx[%(?0|¢o|2+|v¢o|2+)°(;lmtz)
+X, P8+ i)
+ ol thol*+(§ mo+ 7 ,00) %l
_’; mo'_l;ppol . (2.79)
(In Eq. (3) of Ref. 8 the dynamic coupling é‘ should read

ép . .
The Gaussian Langevin forces have the nonvanishing
correlations

(0,(x,1)05(x",1")) =4T'gd(x —x")8(t —1t') , (2.80)
(0,(x,0)0, (x",t')) =—2K, V?8(x —x")8(t —¢t'), (2.81)
where k stands for m, p, or j, and

(6,,(x,0)0,(x",t"))=—2LV?8(x —x")8(t —t') . (2.82)

From Egs. (2.15), (2.16), (2.25), (2.26), (2.65), and (2.66)
we obtain the static parameters

o poT | 3T,

S R e ) 2.83
™" kg | OT |’ (2.83)

a -1
—kpTp, |22 | (2.84)

oP Py |7,

ks (@
po=—2 20| (2.85)
Po | 95, P,

—1 |2 (2.86)
Tp=2 aP, |z, '
Po=ro=29 mAmXm — 27,1, X, (2.87)
k,=0, (2.88)
h,=0. (2.89)

[Although I; and I; vamsh we have included formally
the terms A mMo and hppo in (2.79), since they may serve
to perform a constant shift of the m, and p, variables
such that all tadpole diagrams vanish.] According to
Eqs. (2.83) and (2.84), ¥ m and 5(p are noncritical contribu-
tions to the constant-pressure specific heat per unit
volume (divided by kp) and to the inverse adiabatic
compressibility (divided by kjpT), respectively. From
(2.85) and (2.86) we obtain

Po -1
o

T,
kg "po

ap,

(2.90)

m To

Since both r, and @, are monotonic-increasing functions
of T, we conclude from (2.85)

J. PANKERT AND V. DOHM 40

¥m>0 (2.91)
in agreement with Onuki.

The only independent kinetic coefficient in Egs. (2.76)
and (2.77) is

R =roks ", 2.92)
whereas L, and Xp are determined by
L3=X,.%, (2.93)
and
— oT
Xp =Pokp [ | %o
9Po |z,
9Po 1 1
=kgT — - (2.94)
B4 Ko 3P, |5, | C© C‘(,O)
with
5, | 97,
cO=1|=—=2|, cO=1|21|_. )
v aT ,.)o 14 aT PO (2 95)

These relations are consistent with the absence of a kinet-
ic coefficient in the continuity equation (2.50) for p,. Cor-
respondingly the Langevin forces 6,, and 6, are not in-
dependent of one another.

Equations (2.75)-(2.79) have a gauge-invariance prop-
erty analogous to that of model F.>* The signs in Egs.
(2.75)-(2.78) are chosen such that all dynamic couplings
Iy, &, &,, and ¢, are positive. With the exception of
Ty,37 they can be expressed in terms of static quantities
according to

gn=—"7300T, (2.96)
m aP ap,
8=k, T | =2 [1 Zo ——’iﬂl_ , @97
#i Po J% Po |90 |Po
p, | !
0=Po | ==~ | ksT=xp (2.98)
a 0 J%

These relations will be used in the quantitative apgllca-
tion to the attenuation and dispersion of first sound.® For
¢y =0 our model is appropriate for the study of the criti-
cal statics and low-frequency dynamics of *He-*He mix-
tures if the variable p is reinterpreted as the >He concen-
tration. In this case, however, Xm, L,, and Xp are in-
dependent kinetic coefficients.** The connection of our
model with model F (Ref. 20) will be discussed in Secs.
III and IV.

III. STATIC CORRELATION FUNCTIONS

In this Section. we discuss the structure of the static
two-point correlation functions,

(:‘a,g(k)=de"x e " F{ay(x)By(0)) — () By ],
(3.1)

with a, and B, being one of the variables mox 2 or
Po )( - 172, Here the brackets { - - - ) denote averages with
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the distribution ~exp-H, where H is given by (2.79), with
the couplings #,, ¥,,, and ¥,- Since m, and p, enter H
only up to the second order we have the exact relations

Coplk)=8,5+7.75C (k) , (3.2)
with §, and 7 being 7, X }/? or #,x }/%, and
Cyrr= [ déx e Lol 2lYo(0) = (9[22 .
(3.3)

The average in (3.3) can be performed with the statistical
weight ~exp(—H,), with the usual Ginzburg-Landau
Hamiltonian

Hy= [ d%(rolgol?+1IVeol+uolthl), 3.4
where

uo=to= 378 (3.5)

V3= 2 Xm + 72X, - (3.6)

We shall show that the critical behavior of € op(k) is most

easily analyzed in terms of the couplings u,, ¥3, and the

dimensionless ratio
¥oX "2

TmX W2
For a similar discussion see Onuki.?* We introduce new
variables ny(x) and gy(x) defined by

Yo 3.7)

> —1/2
9o | _ moX m
no —R(yo) poi,p_l/z (38)
with the orthogonal matrix
2\—1/2 Yo
Rewriting H in terms of n, and g yields
H=Hq+de"x(%n(2,+—;—,\°{j'1j(2,—-i;nno) (3.10)
with the model-F-type Hamiltonian?!
Hy= [ d%(4lg0/2+ LIVl +oltl*
+1a3+vodolvol*—,q0) (3.11)
where
A A )"( 172
9 | — mA m
hn R(yo) };I,X,l,/z (3.12)

Coplk,0)= [d’x [dte="k==o([ay(x,1) = ag) J[Bo(0,0)— (By) 1)

with ay and B, being one of the hydrodynamic variables
moX m' % PoX , /% or jox ;172 These correlation func-
tions suffice to determine the dynamic structure factor

according to (3.18). For T > T,, mixed two-point corre-
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Thus ny(x) has only Gaussian fluctuations, while g,(x) is
coupled to the order parameter through (3.6). This im-
plies

¢.n.=1, ¢,=¢,=0 (3.13)

and

& (K =1+73C,(k) . (3.14)

¢ op can be expressed in terms of é’qq via the matrix rela-
tion

X' Conm

(imip )—I/Zémp
XpXom) ™ 2o

X5 'y

Cq O

0 1
(In (3.15)-(3.18) the coefficients )'(m and )°(p are given ex-
plicitly, i.e., C,,, ={momy) —{(my)?, etc.)

After substitution of (3.14) and (3.9), Eq. (3.15) clearly
exhibits the separation between the simple algebraic
dependence on y, and y3 and the u, dependence via é¢.
The crucial point of the representation (3.15) is that the
ratio and the matrix R(y,) constitute noncritical quanti-
ties (even in the renormalized theory, see Ref. 6) deter-
mined by the thermodynamic derivative (2.90) parallel to
the A line. Consequently the static critical behavior of
éaﬂ is reduced to that of a single model-F-type correla-
tion function C,,. Their asymptotic and nonasymptotic
critical properties at kK =0 are well known.?!?2

For completeness we mention the invariance of the
trace and determinant of the matrix (éap) under the or-
thogonal transformation (3.15),

=RT(y0) R(yo) . (3.15)

_ %15 o __
Cut1=x"Cnt+x,'C,, (3.16)
C=xm'x; (Cpm€,,—C2) . (3.17)

The relations derived above can be applied to the static
structure factor

¢,,(k)=b,*[C,, (k) +2b,,C,, (k) +b2C,,, (k)]  (3.18)
[compare (2.65)] and, in the limit k —0, to various ther-

modynamic quantities (see Ref. 6).

IV. DYNAMIC CORRELATION FUNCTIONS ABOVE T,

Because of the complexity of our model it is
worthwhile first to discuss the general formalism and to
defer explicit calculations to subsequent parts of this
work. The main application will be the calculation of dy-
namic correlation functions

4.1)

I1ation functions between ¥ (or ¥§) and the variables m,
Po» and jo vanish because of gauge symmetry. The aver-
age in (4.1) will be performed with the statistical weight
~expJ, where J is the dynamic functional* ~* that is
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equivalent to the Langevin equations (2.75)-(2.79). It is
given explicitly in Appendix A. The definition of
response functions C_4(k,®) is analogous to (4.1) with &,
denotzing one of the response fields** X 12, PoX }/% or
T2 1/

JoX j

A. General form

J. PANKERT AND V. DOHM

I&

In the spirit of perturbation theory we split Cas

Ck,0)=Gk,0)+ Y (k,0), 4.3)

where ¥ represents the contribution due to the nonlinear

couplings g, ¥,,, V5> &m> and &,. The zeroth-order part

G is well known from linearized hydrodynamics of ordi-
" nary fluids and is given by

We shall use the matrix notation Glk,w)=—M ~N(—k,—o) (4'.4)
. [Capth,0)] [€,p(k,0)] with
Clk,w)= [éaB(k,a))] 0 , 4.2) M(k e 0 —iw—[lt(k)]* “s)
. . = io—[Lk)]  [2R(K)] ’ :
where [C,g] and C are 3X3 and 6X 6 matrices, respec-
tively. From (4.1) we have and
Cpulk,0)=C,(—k,—0)=C 4i(k,0) .
|
AnXm'k®  Lo(XmXp) ™'k 0
[L(OI= |LoXmX,) " %k2  Rx, 'k icoli,x;) V% (4.6)
0 icoX;X,) "%k Rixjk?

In (4.5) [A(k)] denotes a 3X3 matrix that is identical
with (4.6) for c,=0, i.e., [A(k)] is purely dissipative,
whereas the matrix elements ~icok of [L (k)] reflect the
two propagating sound modes. The transverse viscosity
modes have been omitted. In Appendix A it is shown
that the perturbation part of (4.3) can be written as

Y(k,0)=G (k,0)1(k,0)G(k,0)
with

4.7

0 [C,ky)]

. H(k:w)= [éﬂv(k’y)] [é’”’v(k)w)]

(4.8)

Here € uv Tepresent correlation functions whose definition
is analogous to (4.1) but with u and v denoting one of the
composite fields

3 (5, )=X 2 V(R ¥ +Lo¥, ) V2 902

+&, Im(Y5V>9)] , 4.9)
8,6,00=x ; V(Lo ¥m+A, 7,V 9|2

—&,Im(Y3 V2] , (4.10)
8;(x,)=—x7"2co?,VItyol? . (4.11)

Similarly C'Z’ﬁv and ¢ v aTe response functions where fi, v
denote the composite fields

56, )=2F PRl —(7,, T3 + 38X n Wod$],  412)
§u0=2k ) Rel ~ (5, T — 28,7, Wotd],  @13)

$=0. (4.14)

f

In conclusion, according to (4.3)-(4.8) the problem of
calculating C,g is transferred to the calculation of éuv
and éﬂv. As seen from (4.9)-(4.14) the composite fields
do not involve the hydrodynamic variables mgy, pg, jo
iy, Do, and Jo. In this respect the structure of (4.3) and
(4.7) is parallel to the representation of the static correla-
tion functions C,g in terms of the static four-point
order-parameter correlation function é,,,, compare (3.2)
and (3.15) of Sec. III and (2.10) of Ref. 21. The advan-
tage of this representation is that it exhibits the structure
of the correlation functions as far as the leading depen-
dence on the nonlinear coupling constants ¥,,, 7,, &, &,
is concerned.

For the purpose of explicit perturbation calculations it
is convenient to introduce the matrix of two-point vertex
functions

Lko)=C(—k —w)™!

0 [F,5k0)]

T b ko] B ke | @Y

which in zeroth order coincides with —M(k,w), 4.5),
thus

Lik,0)=—Mk,o)—3(k,o) . (4.16)

The contribution Z is given by all one-particle irreducible
diagrams with two external (truncated) legs. According
to (4.2) and (4.15) the 3X3 matrix of correlation func-
tions éag can be expressed as

[Capth,0)]=—[F 5k,@)1 [, sk, ) [, 4k 0)] 7"

4.17)
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For the application to the dynamic structure facfor it is
more convenient to rewrite the matrix elements of (4.17)
as

N uB( k, (0] )
|Ak,w)|?

vghere ﬁ(k,co) is the determinant of the 3 X3 matrix
[I‘aﬁ(k,w)]

Coplk,0)=— (4.18)

B. Fluctuation-dissipation relations

We shall apply well-known fluctuation-dissipation rela-
tions in order to express the correlation functions (4.1) in
terms of response functions. One relation reads*®+’

R px —x',t —t")=—0(t —x')gt—éaﬁ(x —x',t—t'),

(4.19)

where RaB(x ',t —t') describes the linear response of
(ay(x, t)) to an external field A p(x',t") coupled linearly
to By(x’,t") via the additive term

—_ fddxl};ﬁ(xl,t:)ﬁo(xl’tr)

in the Hamiltonian (2.79). In terms of Fourier transforms
(4.19) becomes

c"a,,(k,m)=7i7[1%a,3(k,w)—1%3a(—k,—m)]. (4.20)
Note that in the present model
R p(k,0)#R 5, (k,00)
due to the reversible couplings §,, &, Therefore
C,p(k,0) is complex for a7 f3, whereas
aa(k,w)Zé‘aa(k,—w)=;lm]§aa(k,w) 4.21)
is real. A further relation can be given in terms of

response functions C,,(k,®) that describe the linear
response of {a,) to an external force added to the equa-
tion of motion for y =moX,,'"% poX ; /% joX j /% (Refs.
43, 44, and 47). In the present model we obtain

R ptk,0)=C, (ko)L k) +285C 5k 0) , (4.22)

where summation over y is implied. The matri elements
L,g(k) are given in (4.6). In the last term the index ¢
stands for the composite field

Bolx, ) =Im[y(x, )Po(x,)*] , (4.23)
which arises from the terms ~§ﬁ}:ﬂ inJy, (A3). C°’a$ can
be decomposed as

o -(k,cu) ~(k o)l (k ®), (4.24)

where again summation over 7 is implied. The vertex
functions I‘? $(k w) will be specified diagrammatically in
Ref. 6.

For the application in Ref. 6 we shall also consider
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(i'¢(k,w)=fddx fdte_i(k"_“")<3¢(x,t)>
=ZImR (ko) , 4.25)
(0]
where
A y(x,0) = [0, )] 260,02 — (| h]2)? (4.26)

and
Ry(kw)=— [ d% [dre™® o009 (R x,00) .

(4.27)

From a dissipation-fluctuation theorem applied to ﬁ¢ a
relation corresponding to (4.22) can be obtained. It reads
Ryk,0)= [dix [dt e ~90(|y(x,0)|*74(0,0))
(4.28)
with
Tolx,1) (4.29)

=T gto(x, )Po(x, 1)* + T 9ho(x,1)* Po(x,1) .

The connection with the static correlation functions (3.1)
and (3.3) is given by the sum rules

Caplr=2m " [ ¥ do Coplk,0)=Rop(k,0),  (4.30)
Cyky=2m " [ 7 do&y(kw)=R(k0), (4.31)
thus, according to (3.2),

Coplk) =85+ o7 sR ,(k,0) . (4.32)

Therefore one may regard the response function R (k@)
as a k and o dependent generalization of the specific heat.
This will be further discussed in Ref. 6. In the limit
w—0 we obtain from (4.30), (4.22), and (4.24)

Copth)=C (K, 0)[ L 5(k)+285T 5(k,0)] . (433

C. Relation to model F

It is obvious that our model equations (2.75)-(2.79)
contain model F (Ref. 20) as a special case. In a formal
fashion this is seen by dropping p, and j, or by setting
&,=7,=Ly=0. A more physical way to describe the re-
lation to model F is the following.

The basic time scale of the propagatmg modes is set by
the inverse frequency [eolx;x,)™ 2171, where
co(Xj)(p)_l/ 2 is essentially the velocity of sound. This
time scale is short compared to the characteristic time
scale of heat diffusion, (X, 'k2)”!, for all wave num-
bers k well below the cutoff A~10° cm~!. The crucial
point is that the sound velocity remains infinite at T, as
noted previously.*®* Therefore the sound modes can be
considered as fast modes even at T, which in the limit of
small k do not influence the asymptotic critical behavior
of the heat mode. The effect of the sound modes consists
essentially of a modification of the background values of
the couplings and the transport coefficients appearing in
model F. Our model is an appropriate basis for proving
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the correctness of these qualitative remarks.

Here we do not attempt to provide such a proof but
confine ourselves to specifying the relation between mod-
el F and our model in the limit cy— .!%!! According to
Eqgs. (4.3) and (4.7), the effect of the critical fluctuations
on the correlation functions (4.1) is described by the
quantity 11 defined in Eq. (4.8). As noted after Eq. (4.14),
II does not explicitly involve the hydrodynamic variables,
except via the couplings to 9, and 9§ in the statistical
weight expJ of the averages ( - -+ ). A simple way of el-
iminating the sound modes consists of a partial average in

|

=fdtfddX(_Xmmovzmo"'rf)%l/jg—ﬁlo[(
—Re{9[3,+ (7

Here §p, 5»1,, and L, have dropped out because of ¢y— oo,
whereas 7, has been absorbed in the effective four-point
coupling

To=0o— 172X, - (4.35)
This connection with model F will be exploited in the
subsequent paper.®

On the other hand the preceding discussion clearly
shows that there must exist corrections to model F calcu-
lations due to the finiteness of the sound velocity. These
corrections will affect the precritical dynamic behavior
and may be of relevance in a quantitative comparison of
second-sound damping with experiments. A systematic
study of such corrections to model F can be carried out

on the basis of our model.

V. OUTLOOK

The main result of this paper is the derivation of the
model equations (2.75)-(2.79), which we believe are ap-
propriate for the description of the critical thermal-
diffusion and first-sound modes in the vicinity of the A
transition in “He. This opens the possibility of treating a
number of problems:

(1) Our principal aim is to provide a systematic and
quantitative renormalization-group analysis of the sound
mode. This will be the subject of subsequent papers.®

(2) A study of the relation between our complete model
and model F enables us to investigate the effects of the
sound mode on the heat mode above T', and the second-
sound mode below T,. This may be of relevance in the
context of a previous controversy>® that is still un-
resolved. In addition the unexpectedly large background
J

Jy= [ dx [ dt Re{Tdoth § — Dol d, + T8 (ro— V>4, |90 g + ol iz-h—ig-7 10012105}

with the three-component vectors

°—1/2
mMoXm moX,ln/z
—_ —1/2 . 172
a,= |p Xp o o= ﬁOX ’
ot |

JOX_]

— XX 7 Vm

V2+4u0|¢o|2+27’mm0)]'/’0 B & o(moXm 7m0l D})
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(ol’/“, and Co'w over the variables pgy, Fo, jo» Jo» and then
performing the limit ¢,— . These steps can be carried
out explicitly (see Appendix B).* In this limit py, 7o, jor
and j, become nonhydrodynamic fast variables. This
procedure leaves the resulting effective dynamic function-
al J4 free of hydrodynamic singularities (which would
otherwise arise if the integration is carried out at finite
¢g). The reduced functional J 4 depends only on the slow
model F variables m, i, and ¥y, V3, ¥y, ¥&. As shown
in Appendix B, J; has indeed the structure of model F
(with h,, =0)

— &, Im(Y V4]
(4.34)

value of the transport coefficient I'j (Refs. 25 and 37)
could be modified if the sound mode is correctly included
in the analysis.

(3) The complete light-scattering spectrum can be cal-
culated. As noted recently’ this will provide the basis for
a dynamic calculation of the Landau-Placzek ratio, which
seems necessary in view of the discrepancy between
light-scattering experiments®! and static renormaliza-
tion-group calculations at finite k (Refs. 3, 26, and 52).

(4) Our model constitutes the appropriate basis for an
analysis of the approximations and the range of validity
of the phenomenological approach by Ferrell and Bhatta-
charjee.’

(5) From a purely formal point of view, our model con-
tains (for the case c;=0) the model-F-type generalization
of the Siggia-Nelson model for 3He-*He mixtures.*®>?
Therefore part of the results of the present and subse-
quent papers® are directly applicable to the statics and
low-frequency dynamics of 3He-*He mixtures.

APPENDIX A

In this Appendix we work with the dynamic functional
J (Refs. 41-44) that is equivalent to the Langevin equa-
tions (2.75)—(2.79). The functional reads

J=J,tJdy, (A1)
where
_ d 1 e |0 |@ ag | [Sp
Jo=[d% [dt| a2 la |t lal s ]| A2
and
(A3)
(A4)
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8, S
so= |5 |5 =13, | (AS)
§; ;
% g | (R
7= y,,x},” . B=|=&x, |, b= kY, (A6)
0 0
and the 6 X 6 matrix M and 3 X 3 matrix [Ij], respectively
. 0 (=3—[L]"
M= o ) (A7)
—3,—[L]  [24]
—X,x w2 —Lo(XmX,) ' 2V? 0
[£1= | —LoXmX,) "V 2V2  —RXx,'V2  colx;x,) 12V (A8)
0 colX;X,) "V =Ry Ve
[ .
The components of (AS5) are given in (4 9) (4.14). In (A7) (q0; Ty; )=0, (A12)
the differential operator (—3, —[LD' is the adjoint d iU — o)
operator of (—9, —[LY)), i.e., it acts on the vector on its fd xfdte (goi(x,1)40,(0,0))
left. [5»] in (A7) is given by (A8) with ¢, =0. =M Nko)=—M N—k —o) (A13)
1) ’ ij ’ .

Since the fields ag, &, enter J only up to second order,
some exact relations can be derived by an appropriate
shift of the variables. We need these relations in order to
derive (4.7)-(4.14). In terms of the six-component vec-

n (A13) A_Z(k,m) is the Fourier transform of (A7), as
given in (4.5) and (4.6). From (A11)-(A13) one obtains
(4.3)-(4.14).

tors
APPENDIX B
_ §0 a, C
To= So |’ D~ |5 +M 7T, (A9) In this Appendix we derive the model-F dynamic func-
0 tional from the complete functional J, (Al), by integr'it-
Equation (A2) can be rewritten as ing over the pressure and momentum fields po, Po, Jo» Jos
and passm to the limit ¢;— . We consider only the
Jo= f d’x f di( quMqO ‘TOMTO) (A10)  case h =h, =0. The functional J can be split as
This implies J=J,+J,+J,, (B1)
(qy)=0, (A1l)  with J,, given in (A3), and
| .
Jn=[d% [ dt{[—moL, Vo —mig(d, =k, X, VP Im,
. o o i
+molVA(F A+, Lo ol* = 8 (V5 Vb0 — %0V 45)]
o, T o, T i S —1(F 7
~m0[7mr(’;¢0¢6 +7’mr0¢(‘;¢0+—2-§mx ml(¢0¢6 _¢3¢0)]} ’ (B2)
J,= [dix [ dti(y,doyo—%oAq '%o) . (B3)
Here x, and y, denote four-component vectors
(Lo¥m + 4,7, V210012 — 8, Im(93 V24ho) + Lo VA(X 5 o —2,)
COT/pvl!pOIz
Xo=— N (B4)
—Re[(7,I§— épX,, "Pos 1+ LoVioX ;!

0
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Po
Vo= Jo + A5 %, .
0 RO Ao Xp
Jo

The 4X 4 matrices 4, and 4, ! have the form

B Bl _, |oO (8H~!
AO:' BT 0 ’ AO = B-l __BAIB(BT)wl ’

where 8 and B represent the 2 X2 matrices

-2,V 0

-3, +X,x,'v?

= , B= S -
B cOXp IV
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18

(BS)

(B6)

co)};‘v
-9, +X,x;'v?

(B7)

The functional integration over pg, jo, Do Jo in the distribution ~expJ is equivalent to the integration over y,. Thus the
first term on the rhs of (B3) does not contribute to the correlation and response functions in 1I, Eq. (4.8). In the limit

¢o— o the second part of (B3) reads

‘o

This leads to the model-F functional (4.34).

lim J,= [ d% [ dt 7, |40l (Rel(7,%, 18 — 5 & Wotd 1~ Lo V’mo) - (BS)
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