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We present series-expansion investigations of the square-lattice spin- ~
Heisenberg antiferromag-

net with nearest-neighbor (J&},second-neighbor (J2},and third-neighbor (J3) exchanges. Expansions
for ground-state properties around dimerized Hamiltonians in conjunction with finite-size studies

and cluster mean-field theories allow us to map out the magnetically ordered phase boundaries. The
magnetically disordered phase of the square-lattice Heisenberg model, which is accessible to the di-

mer expansions, appears to be spontaneously dimerized in the "columnar" pattern predicted by
Read and Sachdev. Estimates for the dimerization order parameter in this phase are a substantial

fraction of that of the fully dimerized state.

I. INTRODUCTION

The possibility' of spin fluctuations playing an essential
role in the mechanism for superconductivity in
La2 Sr Cu04 and YBa2Cu307 has generated interest
in understanding the low-temperature properties of two-
dimensional (2D), S=—,

' Heisenberg antiferromagnets.
The generic phase diagram of these materials shows that
by varying the carrier concentration by doping, the ma-
terials can be driven from insulating to metallic behavior.
At the same time the antiferr orna gnetic correlation
length is reduced, and the system instead of entering a
Neel phase at low temperatures becomes a superconduc-
tor. Short-wavelength spin fluctuations survive even in
the superconducting materials. This has led to the sug-
gestion that certain properties of magnetically disordered
ground states may be central to the superconductivity.
In fact, it has been suggested that the addition of carriers
to certain magnetically disordered ground states immedi-
ately makes them superconductors.

%'hile the actual role of a finite density of mobile
charge carriers in a magnetic system is hard to under-
stand, it seems sensible to first study the nature of mag-
netically disordered ground states by introducing frus-
trating further neighbor interactions to a nearest-
neighbor Heisenberg model. By now there is overwhelm-
ing evidence that the antiferromagnetic nearest-neighbor
square-lattice Heisenberg model has a magnetically or-
dered ground state. The insulating phase of La2Cu04
also seems to be well described by such a nearest-
neighbor model. In the presence of a small density of
carriers, one might be able to formally integrate out the
charge degrees of freedom, to obtain an effective spin
Harniltonian with further neighbor interactions. Here we
shall not be interested in such a connection with doped
systems but rather study the frustrated spin Hamiltonians
for their own interest. In the real doped system there is

also the possibility that the charge and spin degrees of
freedom are so intimately connected that the properties
of the ground state cannot be accurately modeled by a
purely spin system.

The specific model we study here is

H= g S;.Sj.+J~ g S; Si+J3 g S; SJ,
NN 2NN 3NN

where the sums run over all first, second, and third
nearest-neighbor pairs on a square lattice. There have
been many studies of this and related models, analytical
as well as numerical. ' While all the studies are con-
sistent with the idea that the Neel order of the ground
state disappears at some value of the frustrating interac-
tions, they disagree sharply regarding the nature of the
disordered phase. Chandra and Doucot, on the basis of
a 1/S expansion for the sublattice magnetization, predict-
ed that the Neel order vanishes for J2/J& =0.38 for S=

—,
'

and J3=0. They suggest that for a range of Jz/J,
beyond 0.38 the system should be a spin liquid. This idea
has been reinforced in the numerical studies of Figueirido
et al. ,

' who looked at the spectra of 4X4 systems with
di6'erent boundary conditions. By comparing the overlap
of exact ground states with certain trial states they ar-
gued for the existence of a resonating valence bond
(RVB), or spin-liquid, state with no broken symmetries.
On the other hand, based on general arguments" and
certain large-X expansions (spin models being %=2),
Read and Sachdev' have argued that when the Neel
state is disordered by changing parameters, the new
ground state should be spontaneously dimerized. This
latter state does not have the full symmetries of the
square-lattice Heisenberg model. Note, however, that
Read and Sachdev' have not explicitly treated models
with frustration due to further neighbor interactions; in-
stead the Neel state is destabilized in their study by the
stronger quantum fluctuations at large X.
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Here, we present systematic series-expansion studies
for frustrated spin- —,

' Heisenberg models. The starting
points for these perturbation expansions are given dimer
coverings of the lattice; see Fig. 1. All the exchanges for
bonds not present in the dimer covering are set to zero to
form the unperturbed Hamiltonian, which then consists
only of the intradimer couplings. The ground state of
this unperturbed Hamiltonian is a product of singlets
over all the dimers. The interaction Hamiltonian consists
of all couplings between dimers, with the second- or
third-neighbor couplings kept proportional to the previ-
ously omitted nearest-neighbor couplings. When the
strength of these couplings X reaches unity (A, =1), the
full symmetry of the square lattice is restored. Thus the
models at A, = 1 are the ones we are primarily interested in
here and they are accessed by perturbing away from the
trivial models at X=O. For lack of a better name we shall
call these models at X=1 "translationally invariant mod-
els." The models we shall study here always have a
translational symmetry. It is the symmetry under
translation by one site that will be broken for A,A1.
(Note A,&1 also fully breaks the symmetry of the lattice
under rotation around a lattice point. ) If the ground
state at A, =1 is magnetically ordered, the appropriate
structure factor, S(q) diverges at some A., (1. Thus by
studying the wave-vector-dependent structure factors,
one can hope to find the boundaries separating all mag-
netically ordered phases from the disordered phase. For
certain parameters and some starting dimer
configurations the series expansions in powers of A, ap-
pear to be convergent all the way to X=1. This is then
evidence that for those parameters the. ground state of
the system at X=1 is not magnetically ordered. In these
cases we explicitly investigate the possibility of spontane-
ous dimerization (see Sec. IV).

In addition, we also carry out some finite-size studies.
We use a cluster mean-field theory, where the boundary
spins of a finite cluster are acted upon by an external
field. This external field represents the interaction be-
tween the magnetizations on the neighboring clusters.
The self-consistency requirement, namely, that the clus-
ter have the same magnetization as that needed to pro-
duce the field, leads to mean-field equations. Its solution
gives us a value for the sublattice magnetization, for a
given set of parameters. By going to larger clusters one
can, in principle, obtain the magnetic phase boundaries
by this method. Here we are limited to the size 4X4 sites

or less. Mata and Arnold' have used a similar method
to study the nearest-neighbor Heisenberg model. Hence,
the method is discussed only briefly. We have also ob-
tained the symmetries of various low-lying excited states
for 4X4 systems with periodic boundary conditions in
different parameter regions, to infer the nature of possible
ordering in an infinite system. Again, since our results
overlap with those of Figueirido et ah. ' and Dagotto and
Moreo' we shall present them only very briefly.

The plan of the paper is as follows: In Sec. II we out-
line the Hamiltonian, its classical (large-S) behavior, and
the various parameter regions studied. In Sec. III we
present the series expansions for S(q) and obtain the
phase boundaries for the magnetically ordered regions.
In Sec. IV we discuss the nature of the magnetically
disordered phase, which is accessible to the series study
and appears to be spontaneously dimerized. In Sec. V the
results of cluster mean-field theory and finite-size studies
are presented. Finally, in Sec. VI we present our con-
clusions.

II. MODELS

The models of interest consist of S=—,
' spins sitting on

a square lattice, and coupled by Heisenberg exchange
terms. The translationally inUariant J, -J2-J3 model is
given by (1.1). To be more explicit, the second nearest-
neighbor pairs are those connected by the diagonal vec-
tors (+1,+1) on the square lattice, while the third
nearest-neighbor pairs are those connected by the vectors
(0, +2) or (+2,0). Note that we have chosen the
nearest-neighbor coupling to be antiferromagnetic and of
unit strength. (We will typically take J2 and J3 to be an-
tiferromagnetic and thus greater than 0 in our calcula-
tions, but that it is not always essential. )

All previous work on frustrated antiferromagnets has
been concerned with translationally invariant systems,
such as those described by (1.1). However, we are
motivated by physical and technical considerations
(namely, the prediction of spontaneous dimerization and
the need for a trivial starting Hamiltonian for series ex-
pansions) to consider a broader class of models; which
can be characterized as dimerized J

&

-J2-J3 models. Let
2) represent a nearest-neighbor dimer covering of the
square lattice, i.e., a partitioning of the points of the lat-
tice into a collection of disjoint, nearest-neighbor pairs.
Each dimer covering is associated with a three-parameter
family of dimerized J,-J2-J3 models of the form

H= $ S;S+A,
(i,j)ED NN

~ (i,j)QD

S; Sj+J~ g S; S~
2NN

+J3+S;S
3NN

(2.1)

FIG. 1. Columnar (a) and staggered (b) dimer coverings of
the square lattice used to set up the series expansions.

If A, =1, one recovers the translationally invariant model
(1.1), but if A, =O, one has a trivially solvable model con-
sisting of independent pairs of antiferromagnetically cou-
pled spins; its unique ground state is the product of the
singlet states associated with each pair.

Because there are an infinite number of nearest-
neighbor dimer coverings of the square lattice, it will not
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be possible to consider every model of the form (2.1).
Indeed, we shall only consider two choices for 2), namely,
the "columnar" and "staggered" dimer coverings
displayed in Fig. 1. These are exactly the ones considered
in Ref. 15 (where models with nearest-neighbor coupling
were studied); they were chosen because the graph
enumeration required for the series expansions is easiest
in those cases. In the present context, these two dimer
configurations are also interesting physically: The colum-
nar dimer covering reAects the pattern of spontaneous di-
merization for the translationally invariant models pre-
dicted by Read and Sachdev, while the staggered dimers
allow for a comparison between the results for the expect-
ed pattern and some other one. '

To recapitulate, for each dimer covering 2) there is a
three-dimensional phase diagram, describing the ground
state of (2.1), which we are interested in probing; the case
A, = 1 (which is the same for all 2)) is of special interest.
Most of our calculations are concerned with two slices
through these phase diagrams, namely, the J,-Jz (J3 =0),
and Ji-J3 (Jz =0) models. (The only other case we exam-
ine is Jz =2J3, and this is treated in less detail. }

We conclude this section with a review of the T=O
phase diagram for the classical (S~ oo ), translationally
invariant J,-J2-J3 model, since this guides some of our
investigations. The phase diagram is displayed in Fig. 2,
with the phases denoted by the wave vectors characteriz-
ing their ordering.

There are four classical phases present for the antifer-
romagnetic case Ji =1. They are (i) the usual Neel phase
ordered at wave vector (m., m) (k„=m, k =~), (ii) a four-
sublattice antiferromagnetic phase ordered at wave vec-
tors (O, m) or (m, 0); (iii) a spiral antiferromagnet phase
with the spiral along the diagonal, ordered at (+q, kq)
with cosq= —1/(2Jz+4J3) and (iv) a spiral phase with
the spiral parallel to a lattice axis, ordered at (+q, m ) or
(m., +q ) with cosq = (2Jz —1)/4J3. There are special
points of classical degeneracy: At the point J3=0 and
Jz =

—,
' all spirals ordered at (+q, m) or (m, +q ) with any q

become degenerate in energy and similarly on the half-
line Jz =2J3 ~ —,

' all spirals with (cosk +cosk» )
= —1/2Jz are degenerate in energy.

III. SERIES EXPANSIONS: PHASE BOUNDARIES

A. Preliminaries

The series expansions in A, for the models described by
Eq. (2.1) were calculated by the cluster method of Singh,
Gelfand, and Huse' to order A. . Most of the calcula-
tions were confined to the cases J'z %0,J3 =0 and
J3%0,Jz =0 because (for the columnar dimerization)
there are less than half the number of connected graphs
at 0(A, ) for these cases than for the general case
Jz, J3%0. All calculations, except those for Jz,J3%0
with the columnar dimerization, took roughly one day of
Sun 3/50 time for each choice of Jz,J3, and dimerization;
the exceptions would have taken about three days but
they were run instead on an IBM 3090.

The quantities for which the series were calculated
were (i) the ground-state energy per spin Eg, (ii) the full
set of spin-spin correlations S(r)=(S(00) S,), and (iii)
the "dimerization, "defined by

D =4((S(z ()) S(, o)) —(S(o 0) S(, o) ) ),
where the nearest-neighbor spins (0,0) and (1,0) are as-
sumed to be in the same dimer. The factor of 4 is for
convenience, so that D(A. =0)=3.

It should be noted that even at fifth order in A, , the
range of correlations which are accounted for in the
series calculations is quite large. S(r) is nonzero at fifth
order for ~x~ as large as 11, even without second or
third-neighbor couplings; when the further neighbor in-
teractions are included, the entire zone ~x ~

~ 11, (y ~

~ 10
has nonzero correlations at fifth order. Thus, the series
can effectively probe systems much larger than those
which can be exactly diagonalized. In addition, one does
not have to worry that the boundary conditions are
favoring one type of possible ordering over some other,
since the series are exact for the infinite system.

In the rest of this section, we will focus on the analysis
of the spin-spin correlation series. The "ideal" way to
handle the series would be to calculate the wave-vector-
dependent structure factor

S

S(q) = g exp(iq r)S(r) (3.2)

and its second moment

Q(q) = g exp(iq r)S(r)rz (3.3)

1/2

FICi. 2. Phase diagram for the classical J&-J2-J3 model with
Jl =1 at zero temperature. The wave vectors where the various
phases order are indicated.

for each q and locate the values of k where they diverge.
The smallest such A,,(q) would then determine the limit
of stability of the magnetically disordered phase, and the
nature of the instability for each given dimer covering J2,
and J3.

In practice, this is not what was done. In many cases
(especially for J3 =0), analysis of the classical model indi-
cates the wave vector at which ordering should occur;
under those circumstances, there was little reason to
thoroughly explore q space for every choice of coupling
constants. In the cases in which the nature of the pre-
ferred orderings was noI; obvious a priori, the favored
wave vector qo was instead determined by looking for
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maxima in the coefficients of the S and 19' series (at each
order in A, ) as a function of q, following Redner and Stan-
ley. ' This method is preferable to studying A.,(q), be-
cause, for the short series available, the A,, estimates are
subject to large uncertainties, whereas the coefficients are
known exactly. Once qo has been obtained, A,, (qo) is es-
timated by the standard ratio method. The uncertainty
in A,,(qo) is typically due only in small part to the lack of
exact knowledge of qo, rather, it is dominated by non-
linearity of the ratios (i.e., corrections to asymptotic be-
havior) and by discrepancies between the extrapolations
for the S(qo) and M(qo) series. The uncertainties in A,,
are largest for k, close to 1—and they do become quite
large, on the level of 15%%uo —even when qo is believed to
be known exactly.

In the following subsections, our results for the phase
diagrams will be presented for the cases
J2&O,J3=0; J2=0,J3%0; and Jz=2J3; within each
subsection the columnar and staggered dimer
configurations will be compared.

Finally, it should be remembered that the analysis of
the S(r) series will only reveal critical points. First-order
transitions cannot be seen directly —but evidence for the
existence of first-order transitions in the phase diagrams
will be presented later. Thus, some of the phase diagrams
displayed are incomplete. Of course, it is also impossible
for the series to reveal all critical points —only the ones
closest to A, =O are accessible in this study.

J, —Jz mode

When J3 =0 and J2 is not near —,', the preferred order-

ing is unambiguous. For "small" Jz( (—,', classically) one
has "two-sublattice Neel'* order, that is, the usual (rr, vr)

antiferromagnetic order. For "large" J2 ( ) —,
' classically)

the ordering is "four-sublattice Neel"; for the translation-
ally invariant models, (~,0) and (O, m. ) are degenerate.
However, any transitions at k& 1 to a four-sublattice
phase should be via an instability at (Ir, O) only, since at
the transition some of the horizontal nearest-neighbor
bonds are stronger than the vertical ones; this is
confirmed by inspection of the relevant series. For J2
near —,

' one must check for order at all momenta of the
form (m, q ).

For the columnar dimerization, the phase diagram is
displayed in Fig. 3. Series were calculated for J2 at in-
tervals of 0.1 between 0 and 1, and also for some J2) 1,
which are not displayed. Notice that for J2=0.4, 0.5,
and 0.6 there was no indication that the system un-
derwent a magnetic phase transition at any momentum
(q) and A, ~ 1. With only terms to O(A, ), transitions at
A, ) 1 are difficult to ascertain; in any event, as will be dis-
cussed in Sec. IV it appears that a first-order transition
exists on this phase diagram at X=1 when there is no
magnetic ordering at A, & 1.

In contrast, for the staggered dimerization there is al-
ways a transition to an ordered phase at A. ~ 1: see Fig. 4.
For 0.5 ~ J2 ~0.6, series were calculated for J2 at an in-
terval of 0.01 in order to estimate J~z ', where the (m, m)

I.O

I l I

VP

0.5

0.0
Q.Q 0.5

Jp
1.0

instability is replaced by the (Ir, O) instability. We find'

J2 ' =0.53+0.01; at J2 ' stability of the disordered phase
all the way to A, =1 cannot be ruled out. If, as appears to
be the case, we assume A,,(Jz"') (1, then this is a bicriti
ca/ point, with a first-order transition between (n, m ) and.
(vr, O) ordering as J2 varies for A. just above A,, (J~z '). Al-
though we have not made a detailed analysis of the prob-
lem, the most natural surmise is that it is a classical d =3
O(6) bicritical point, since the transitions on either side
are expected to be in the classical d=3 Heisenberg
universality class. '

1.0

0.5

0.0 I I I I

0.0
I

0.5
Jp

1.0

FIG. 4. Phase diagram for the staggered dimerized J&-J2
model.

FIG. 3. Phase diagram obtained by series expansion for the
columnar dimerized J&-J2 model. The open circles on the line
A, = 1 indicate values of J2 where there is no sign of magnetic or-
dering for A, ~ 1.
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C. J&-J3 model

For the J,-J3 model (J2=0) the classical phase dia-
grarn displayed in Fig. 2 suggests that for sufBciently
large J3, the ordering wave vector at the transition from
the disordered phase varies continuously with J3 For
the columnar dimerization, a continuously varying qo
seems to hold; see Fig. 5. The evidence for a qo which is
not strictly locked in to (n /2, n/2) .(to which qo must ap-
proach, as J3 —+ ~ ) is fairly strong, even though the
series are only to fifth order. The maxima in the
coefficients are reasonably far from (m/2, n/2), and do
not move strongly towards it with increasing order.
There is also an interval in J3 for which apparently no
critical point is encountered between A, =O and A, =1. In
addition, but not so germane to the matter of interest
here, for J3)0.6 we find a transition to a (~,0) phase at
negative A, , which is consistent with what one would ex-
pect classically.

In contrast with the J, -J2 model, for the Ji-J3 case the
phase diagram for the staggered dimerization is qualita-
tively similar to that for the columnar dimerization.
Again, there is a (m., O) phase at negative A, and an inter-
val in J3 for which the translationally invariant limit
A, =1 can be reached froID A. =O tmthout an intervening
critical point. The transitions at A, & 0 for J3 0.8 appear
to have a continuously varying qo, though qo varies less
strongly with J3 than in the case of a columnar dimeriza-
tion, and a lockin at qo= (n. /2, m. /2) cannot be ruled out.

Unfortunately, the series method cannot give any in-
formation regarding the details of the ordered phase of
the Ji-J3 model at J3~0.7 and k&A, One possible
scenario, based on a naive correspondence with the
three-dimensional, finite-temperature biaxial next-
nearest-neighbor Ising (Bi-ANNNI) model (which itself
is not fully understood) is that the ordering wave vector

1 I t I
l I I J I

0.5—

(0.51 {1),0.550 (5

(0.51 (1 ),0.555 (5))

-0.5—

FIG. 5. Phase diagram for the columnar dimerized J&-J3
model. The estimated ordering wave vectors (in multiples of m)

are indicated by arrows.

does lock in to commensurate values. It is difBcult to
conceive of any practical numerical scheme to test this
hypothesis, and determine which lockins occur, since the
largest finite systems of S=—,

' spins which can be exactly
diagonalized are smaller than 6, and present quantum
Monte Carlo methods are not well suited to frustrated
models.

D. J&-J2-J3 model

Our exploration of the full J&-J2-J3 model has been
limited in scope: We have studied only one slice through
the phase diagram, with J2 =2J3. We have found that X,
for the disordered and/or (vr, m') phase boundary in-
creases with J2, reaching A,,=1 at J2 ——0.2 for columnar
dimers and J2 -—0.4 for staggered dimers. No ordering is
evident for J2~ Jz and 0&A, &1, but we have not at-
tempted to determine the character of ordering which
may set in at large J2. In short, the J&-J2-J3 model looks
very much like the J&-J3 model, at least for Jz ~ 0.7.

IV. SERIES EXPANSIONS: NATURE OF
THE QUANTUM DISORDERED PHASE

It is now clear, based on the phase diagrams in Figs.
3—S and also on other work (including that in Sec. V),
that the two-dimensional, translationally invariant, frus-
trated S=—,

' Heisenberg antiferromagnets lack long-range
spin-spin correlations over a range of coupling strengths
J2,J3. The question remains, however, as to the nature
of this "magnetically disordered" phase. In particular, is
the ground state nondegenerate, as proposed by Chandra
and Doucot or is it fourfold degenerate, with long-range
energy-energy correlations in the same pattern as the
columnar dimerization, as proposed by Read and
Sachdev. '2

The series expansions about the columnar dimerization
are analogous, in the present context, to expansions about
infinite magnetic field at fixed temperature in a classical
Ising ferromagnet. The issue is whether or not any order
remains, spontaneously, even after the imposed ordering
field is removed. Of course, since we also have expan-
sions about the staggered dimerization, one can ask the
same question in that case. However, it is clear, that if
the ground state is spontaneously dimerized at A, =1, it
can only be dimerized in one pattern (and equivalent pat-
terns obtained by uniform translation and rotation in
space) except at special values of the coupling constants.
One such case is the "Klein model' " (which also con-
tains 4-spin couplings) for which any state composed of
singlets on a nearest-neighbor dimer covering is an exact
ground state.

Our observations relevant to the nature of the quantum
disordered phase begin with the phase diagrams. The
fact that, for the J&-J2 model, there is a range of J2 for
which no phase transition is evident between X=O and
A. = 1 for the columnar dimerization (Fig. 3), but not for
the staggered dimerization (Fig. 4), is surely a hint that
the quantum disordered phase in this model is columnar
dixnerized. ' However, that qualitative difference be-
tween the phase diagrams for columnar and staggered di-
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merizations appears to be restricted to J3=0. Indeed,
the lack of critical points between X=O and A, =1 for the
columnar and staggered dimerizations over a range of J3
(in both J,-J3 and J, -J'2-J3 models) might be taken as
evidence in favor of a nondegenerate, nondimerized quan-
tum disordered phase.

The conQicting evidence provided by the phase dia-
grams is resolved by examining the ground-state energies
at A=? for those values of (J2,J3) in the quantum disor-
dered regime. In Fig. 6 various estimates of the energy
for the Jt-J3 model at A, = 1 are displayed for the colum-
nar and staggered dimerizations, respectively. (Ordinary
Pade approximations are used in the expectation that the
disordered phase is noncritical. ) It is apparent that the
energies one finds in each case are different, whereas they
should be the same if the quantum disordered phase were
nondegenerate. Furthermore, the columnar dimerization
yields lower energies than the staggered dimerization. Fi-
nally, and most significantly, the estimated energies for
the staggered dimerization lie above rigorous (variational)
upper bounds, while the columnar energies lie below
these bounds, which are also shown in Fig. 6. (For the
J

&

-J2-J3 model with J2 =2J3, the staggered dimerization
violates the variational bound for 0.4&J2~0.64, and
exceeds the energy for columnar dimerization over a wid-
er range, at least 0.3 to 0.7.)

These variational bounds are obtained by numerically
determining the ground-state energy for the 4 X4 cluster
with free boundaries. The energy per spin for that cluster
is necessarily greater than the energy per spin on the
infinite lattice, since one can partition the infinite lattice
into nonoverlapping 4X4 blocks (which are, however,

-4 0—

~ -42—
CO

~O
r ~

0 Q
~ .Q. .

Q~ ~ r

P

~ ~ "Q

-4 Q—

~ay~ ~p
~
'

]r'
Q / r ~a ~a ~Q

/
r r

0
6~

-4.6 I

0.3
I

0.4
I

0.5 0.6

FIG. 6. Estimated ground-state energies at A, =1, for the Jl-
J3 model. The solid line shows the variational upper bound (see
text). The dotted lines are for the case of staggered dimeriza-
tion, while the dashed-dotted lines are for columnar dimeriza-
tion. The dark and the open circles stand for partial sums of the
energy series to order A, and A, ', respectively, whereas the
squares represent the [2/2] Fade estimate.

connected by interactions) and use, as a variational wave
function, a product of the ground state for the 4 X4 clus-
ters. The energy per spin of this trial state is the same as
for each individual 4X4 block, since spins in different
blocks are uncorrelated, and so terms in the Hamiltonian
which couple such clusters give no contribution to the en-
ergy of the trial state. Although such a calculation gives
poor bounds for the ground-state energy of an unfrustrat-
ed system we expect the bounds to be close to the true
answer for a highly frustrated system, due to cancella-
tions in the boundary interactions.

Since the energies for the staggered dimerization
violate the variational bounds, there is presumably a line
of phase transitions somewhere, which makes it impossi-
ble to reach A, =1 from A, =O without crossing the phase
boundary. If we believe that the magnetical1y disordered
phase is columnar dimerized, the phase diagram of Fig. 3
is also incomplete; there must be a first-order transition
at X=1, where the degenerate ground states exchange
stability. A similar situation arises in the 1D frustrated
antiferromagnets. It is not obvious, a priori, whether
the A, = 1+ ground state is horizontally dimerized (but
shifted by one 1attice spacing compared to that of
A, =l ), or, vertically dimerized and hence twofold de-
generate, but a comparison of the estimated correlations
at A, =1 indicates that the horizontal dimerization is
favored for k) 1.

The ground-state energy series show that columnar
and staggered dimerizations are not on an equal footing
in regard to the disordered regime, and that a columnar
spontaneous dimerization is preferred. Further evidence
in support of column dimerization comes from examining
the dimerization, or order parameter, series [recall Eq.
(3.1)]. In Fig. 7 various estimates of D at X= 1 are shown
for the J&-J2 model starting from columnar dimerization.
The Pade approximants give physically sensible results,
in the range 0 ~ D ~ 3, for J2 in the magnetically disor-
dered regime, but outside of that regime the approxi-
mants tend to have poles in the interval 0 ~ A, ~ 1

(reflecting the critical points there) which make D vary
widely. The value of D in the quantum disordered regime
appears to be roughly 1.5 —2.0, which is easily dis-
tinguished from zero.

The Read-Sachdev theory' suggests that D(A, =1)
should be identically zero for J2 &J2, where J2 is the
boundary between the (rr, n) ordered phase and the mag-
netically disordered phase, and increases from zero with a
singularity as J2 increases past J2. Such subtleties clear-
ly cannot be captured by the series expansions presented
here; the extrapolations of D to A, =1 will be unreliable
for J2 &J2 because of the intervening singularities; even
for J2 greater than but close to J2, the estimates from a
short series will not be trustworthy.

The analysis of dimerization series for the J,-J3 model
with columnar dimerization again indicate a substantial
spontaneous dimerization, in the range 1 to 2, in the
quantum disordered phase. A positive D is also con-
sistent with an ordered phase with q =

—,'m and collinear
spin ordering, which could account for the reasonably
good behavior of the Pade approximants for J3 on the
high side of the magnetically disordered regime, in con-
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However, as we shall see in Sec. V, finite-size studies rein-
force the evidence that the ground states are column
dimerized.

Apart from the question of the ground state itself, the
evidence presented here is certainly suggestive that there
are fourfold degenerate sets of eigenstates in the quantum
disordered phase, in agreement with Haldane's predic-
tion. " If one accepts that there are eigenstates which are
columnar dimerized, then the estimates of D presented
here should be reliable at least in the middle of the dimer-
ized phases. Furthermore, this throws strong doubt on a
nearest-neighbor RVB ground state, as the latter is not
orthogonal to these dimerized states.

0.0
l

0.5
l

&.0 U. FIMTE-SIZE STUDIES
I

0.4
I

0.5 0.6
I

0.7

FIG. 7. Pade estimates for the columnar dimerization order
parameter (3.1) at X=1, for the J&-J& model. The inset shows
the behavior of the Pades in the extended range 0 &J, (1. Out-
side the dimerized phase this estimate is clearly meaningless as
it falls outside the physical bounds of [0,3].

trast with the situation for the J&-J2 model. As one
might expect, the J,-J2-J3 model also seems to be spon-
taneously dimerized to a large degree in the quantum
disordered regime, with D=2.0—2. 5. For comparison
with other work, in Table I we present the series for the
ground-state energy and dimerization for selected values
of J2 and J3, starting from the columnar dimerization.

It is clear from the evidence presented that the quan-
tum disordered phase is not spontaneously dimerized in
the staggered pattern. The variational bounds on the. en-
ergy provide evidence that staggered dimerized states, if
they exist, have higher energy than the ground state (in
the J, -J3 and J,-J2-J3 models). But, the fact that the
variational bounds are satisfied in the columnar case does
not prove that the adiabatically continued state, which
appears column dimerized, is the ground state for A. = l.
In principle, some other pattern of dimerization might
give yet a lower ground-state energy. Also the possibility
of a first-order transition to a state with totally difFerent
symmetries cannot be ruled out by our calculations.

H=o n +h(cr' o')— (5.1)

Here the o. are Pauli spin matrices, and the molecular
field h depends on the pattern of ordering. For the two-
sublattice Neel ordering [q= (m, n ) j,

h =3k,m 4AJ2m —4AJ3—m . (5.2)

We can easily diagonalize the Hamiltonian in (5.1) and
evaluate the magnetization on the site 1, in the ground

In this section we shall discuss the results of cluster
mean-field theory and finite-size studies for the J,-Jz-J3
models. Both of these methods rely on exact diagonaliza-
tion of finite-size systems, to extract information about
the ordering in the infinite system.

The cluster mean-field theory is a straightforward gen-
eralization of Kikuchi's cluster method to quantum spin
systems. '" In the simplest approximation, the cluster
consists of a single site, and the mean-field equations cor-
respond to Weiss molecular field theory. One can sys-
tematically improve the mean-field treatment by going to
larger clusters. In that case the molecular fields are ap-
plied to, the boundary spins of the cluster, the cluster is

.then treated exactly and self-consistent equations are ob-
tained for the resulting magnetization in the interior of
the cluster.

The method is illustrated by considering the 2-site clus-
ter of a nearest-neighbor pair. If this cluster is embedded
in a lattice when the outside spins have a fixed magnitude
of the magnetization m, then the cluster Harniltonian is
given by

TABLE I. Ground-state energy and dimerization series (coefficients of A, to five significant digits), for the columnar dimerization,
for selected values of J2 and J3 in the magnetically disordered regime. The A. terms for 8Eg and D are —3 and 3, respectively, in
every case.

Jp =0.5,J3 =0
8Eg D

Jp =0.6,J3 =0
8Eg D

J2 =0.4,J3 =0.2
8Eg D

J2 =0.5,J3 =0.25
8Eg D

0
—0.9375

0.16406—0.15991
0.097 20

—0.75
—0.656 25

0.261 72
—0.315 67

0.13466

0
—0.885

0.213 75
—0.149 77

0.13085

—0.75
—0.626 25

0.297 56
—0.288 81

0.268 60

0
—0.855

0.078 75
—0.214 44

0.158 71

—0.45
—0.506 25
—0.071 44
—0.393 68

0.184 25

0
—0.75

0.140 63
—0.222 66

0.174 25

—0.375
—0.351 56

0.053 71
—0.309 58

0.232 05
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state, by the formula

~i =~&fol~flto&/&Polfo&I .

The self-consistency requirement is, then,

mI =m .

(5.3)

(5.4)

Diagonalizing the Hamiltonian, we find that for J3 =0 a
nonzero solution for m exists provided

A, &1/(3 —4J, ) . (5.5)

Similarly for the ordering at q =(0,vr) a nonzero solution
for m exists for J3 =0 when

A, & 1/(4J2 —1) . (5.6)

1.0

0.2-

, 0) 08 (7r, 7r) .' ] & (&,0)
~

~

~ ~

r~

0.4 —~. ' '
~ .o

If ~

0.2—
(a)

0 I I I

0 0.2 0.4 0.6 0.8 'l.O

Jp

(b)
0 I I I

0 0.2 0.4 0.6 0.8 1.0
Jp

FIG. 8. Phase diagram obtained by cluster mean-field theory
for the J&-J2 model with (a) columnar and (b) staggered dimeri-
zations. The dotted lines represent the phase boundary ob-
tained by 2-site cluster mean-field theory. The other phase
boundaries are from the 4X4 clusters. The solid line represents
a first-order phase transition, while the dashed-dotted line is the
corresponding spinodal (see text). Some of the series estimates
for the phase boundaries from Figs. 3 and 4 are shown for com-
parison.

The resulting phase boundaries are shown in Figs. 8(a)
and 8(b).

One can now consider the mean-field theory for
4, . . ., 16, 18, . . . site clusters. Since the phase boundaries
cannot be extrapolated in a systematic manner from the
sizes studied, and are qualitatively similar for 16- and 18-
site clusters, we shall restrict attention to the 4X4=16-
site cluster. For this cluster the Hilbert space is too large
to be treated analytically. However, the ground state is
readily obtained by the Lanczos method. We have inves-
tigated both the J&-J2 model and the J,-J3 model with
both columnar and staggered dimerizations.

The phase diagrams obtained for the Ji-J2 model are
shown in Figs. 8(a) and 8(b) with the dashed lines separat-
ing the disordered and magnetically ordered phases. The
solid line in the columnar dimer case [Fig. 8(a)]
represents a first-order phase boundary, where a jurnp in
the spontaneous magnetization occurs. The dashed-
dotted line represents a "spinodal" beyond which the
zero magnetization state becomes unstable to small per-
turbations. The region in between shrinks as one goes
from 2 X 2 to 4 X 4 clusters and hence is consistent with
the possibility that the actual transition is second order.

These results are quite similar to those obtained by series
extrapolations. For the columnar dimers there is a region
0.4 & J2 S0.6, where the translationally invariant Heisen-
berg model appears to be magnetically disordered and
connected to the dimerized phase. In contrast, for the
staggered case no such phase seems to appear. The phase
diagrams obtained for the Ji-J3 model are also similar to
those from series expansions, except that incommensu-
rate ordering is not captured.

Unfortunately this mean-field theory does not give us
any information on the nature of the magnetically disor-
dered phase, which is the subject of prime interest here.
There does not appear to be any straightforward way of
constructing a mean-field theory that shows spontaneous
dirnerization for this model. ' However, we will now
consider the symmetries of the low-lying states, in finite
systems, which are informative of the nature of these
phases.

For a 4 X4 system with periodic boundary conditions,
we have found the energies and quantum numbers of the
ground and low-lying excited states of (1.1). Similar work
has been done independently in Refs. 10 and 13. The
ground state is always of the highest symmetry: It is a
singlet with total spin zero, no momentum, and is even
under all reflections and rotations of the lattice. If the
ground state in the thermodynamic limit spontaneously
breaks a symmetry, for the finite system it should be
thought of as a sum of all the different symmetry-broken
states with equal weights. Low-lying excited states of a
large but finite system can be constructed by adding the
symmetry-broken states with unequal weights in a way
with lower symmetry. However, the only symmetries
that can be broken in such low-lying excited states are
those that the system spontaneously breaks in the ther-
rnodynamic limit. Thus the quantum numbers of the
lowest-lying excited states in a finite-size system suggest
the possible nature of the broken symmetries in the ther-
modynamic limit. Of course, even if the system does not
spontaneously break any symmetries in the thermo-
dynamic limit the finite-size systems will have lowest-
lying excited states with certain quantum numbers. Thus
the evidence presented here is merely suggestive and is al-
ways also consistent with a fully disordered phase.

In the usual two-sublattice Neel phase there is magnet-
ic order at momentum (m. , n. ) and this is indicated by the
lowest-lying excited states being a triplet with total spin
unity and momentum (m, m). This occurs for J3=0 and
J2 & 0.41; J2 =2J3 and J2 & 0.33; and J2 =0 and
J3 & 0.38. In the four-sublattice Neel phase there is mag-
netic order at momentum (O, n. ) or (m. , O). Since the sys-
tem has two different momenta at which it may order, it
also breaks the symmetry under rotation of the lattice by
angle vr/2. The lowest-lying excited states are a pair of
triplets with total spin unity and momenta (m.,O) and
(O, m) for J3=0 and J2 ~ 1.27, indicating this phase. For
J3 =0 and 0.41&J2 & 1.27 the lowest-lying excited state
is a singlet with all the same quantum numbers as the
ground state except it is odd under rotation of the lattice
by m. /2 (see also Ref. 13).

A spontaneously columnar dimerized state has total
spin zero and breaks translational and rotational sym-
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metrics. The four postulated ordered states can be added
four ways to produce (i) the fully symmetric ground state,
(ii) a state that is odd under rotation by rr/2 of the lattice
but otherwise fully symmetric, and (iii) two states with
mornenta (O, n ) and (n., O). Note that the lowest-lying ex-
cited state for J3=0 and 0.41&J2&1.27 is consistent
with both the four-sublattice Neel phase and the colum-
nar dimer phase. Thus to get an indication of which of
the two ordered phases is more plausible we look for the
lowest-lying excited state that discriminates between the
two. For J3=0 and Jz ~0.64 this is the pair of triplets
with total spin unity and momenta (O, m ) and (m, O), sug-
gesting that four-sublattice Neel order prevails in that re-
gion. Over the remainder of the interval 0.41 & J2 &0.64
there is a pair of singlets with total spin zero and mo-
ments (0,~) and (m, O), as expected for the columnar di-
mer phase (see also Ref. 13).

For J2=2J3 and 0.33&J2 &0.8, as well as for Jz=0
and 0.38 & J3 &0.7, the three lowest-lying excited states
with symmetry different from the ground state are as ex-
pected for the columnar dimer phase. We did not look at
larger values of J2 or J3 for either of these cases.

Thus the excited-state quantum numbers of this small
system are consistent with the occurrence of a columnar
dimer phase over a substantial range of J2 and J3, in gen-
eral agreement with our series and mean-field results.

VI. CONCLUSIONS

We have presented here a detailed study of the ground
states of frustrated quantum 5=—,

' Heisenberg models on

the square lattice. The approaches used include series ex-
pansions around dimerized Hamiltonians, cluster mean-
field theory, and an investigation of the low-lying excited
states of 4X4 systems. All these studies indicate that
there are regions in the parameter space where the
ground state has no long-range magnetic order in the
thermodynamic limit. Furthermore, there is strong evi-
dence that in this magnetically disordered phase there
occurs a different type of spontaneous ordering, namely,
spontaneous dimerization in the columnar pattern.

To the best of our knowledge, there is no evidence for
such a spontaneous dimerization in doped LazCu04.
This suggests, not surprisingly, that the effects of doping
are not accurately modeled by simply adding further
neighbor interactions to a Heisenberg model. Precisely
what type of ground state such a doping actually leads to
remains to be seen.
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