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Temperature dependence of the tunneling spectrum near a vortex core
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We propose a simple model to account for the anomaly observed in the tunneling conductance at
a vortex core in NbSe2 by Hess et al. The sharp peak occurring at low bias is attributed to self-

energy corrections of the normal electrons in the core caused by their coupling to superconducting
excitations outside the core. The temperature dependence of the tunneling spectrum is calculated,
and the low-bias peak is found to increase significantly at reduced temperature. However, the width

hardly changes, but the dips on each side of the low-bias peak become more pronounced. Finally,
we show that an appropriate (spatially dependent) admixture of the tunneling spectrum at the vor-
tex center with the spectrum two coherence lengths away explains the position dependence of the
tunneling conductance.

I. INTRODUCTION

Various attempts' have been made in the past to cal-
culate the local density of states near a vortex in a type-II
superconductor. The conclusion reached was that the
density of states near the Fermi energy must either be
constant (equal to the normal-state value) or perhaps
have a reduced value near the center of a vortex. For a
long time such measurements have been out of reach of
conventional tunneling spectroscopy, but the advent of
scanning tunneling'microscopy now makes it possible to
probe directly the local density of states and to test the
theoretical predictions.

A recent scanning tunneling microscope (STM) investi-
gation by Hess et al. of the density of states at the
center of a vortex core in NbSez revealed an unexpected
increase of the tunneling conductance at low bias, in con-
tradiction to the theoretical calculations. Their data are
shown in Fig. 1 for three STM locations. The zero-bias
peak in curve a of Fig. 1 rises 100% above the asymptotic
value, and the dips on either side are about 25%. The
spectrum found 2000 A from the vortex, curve c of Fig.
1, was the same as the spectrum found in zero field (when
there is no vortex lattice present).

In a previous publication we proposed a simple ex-
planation of the effect observed by Hess et al. , and were
able to fit their data rather well. The purpose of this pa-
per is threefold. First, we want to justify in more detail
the theoretical approach of Ref. 5 which, because of
space limitations, was presented succinctly. Second, we
present new results on the temperature dependence of the
tunneling conductance at a vortex core. Finally, we sug-
gest a simple way to account for the position dependence
of the tunneling spectrum for STM locations within two
coherence lengths of the central axis of a vortex.
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shall describe briefIy the physical mechanism which we
think is responsible for the enhancement of the low-bias
conductance in the experiment of Hess et a/. It should
be emphasized at this point that although the transition
from "normal" (at the center of the vortex core) to "su-
perconducting" behavior (outside the vortex) is a gradual
one; its relative sharpness allows us to distinguish be-
tween "normal" electrons and "superconducting'* excita-
tions. Therefore we can divide our basis functions into
these localized within the vortex (which we assume to be
a cylinder of radius R =-go, the coherence length) and
those outside. Because of the overlap between these two
sets of wave functions, there will be a (mean) hopping ma-
trix element t from inside to outside; i.e., there is a finite
probability for a normal electron to escape from the vor-
tex by tunneling into the superconducting region outside
the vortex. This coupling of the normal states to the su-
perconducting excitations is not only responsible for their
"decay, " but also, and more importantly here, it is re-
sponsible for shifting their energy by a small amount,

II. THEORY

A. Theoretical model

Before coming to grips with the problem of calculating
the density of states at the center of a vortex core, we

FIG. 1. STM tunneling conductance for NbSe2 at 1.85 K and
H =0.02 T. Curve a is the spectrum at the center of the vortex;

0 0

curve (b) is 75 A away from the vortex; curve c is 2000 A away
from the vortex. The zero of each successive curve has been
shifted up by one-quarter of the vertical scale for clarity. The
data are from Hess et al. (Ref. 4). For Nbsez, (0=77 A.
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thereby modifying their density of states. This situation
is reminiscent of several important problems in physics,
such as, for instance, a decay, autoionization of many-
electron atoms, spontaneous emission of a photon by ex-
cited atomic or nuclear levels, etc. The crucial point,
common to all these problems, is that once a quantum
state is coupled by a perturbation to a continuum of
states, it acquires a finite lifetime and its energy is shifted.
This effect was initially discovered by Weisskopf and
Wigner. (A more accessible treatment can be found in
Ref. 7.)

B. Decay rate

unit cylinder (along a fixed direction perpendicular to the
axis) and from an arbitrary point inside is 8/3m. , we take
~tobe

~=8(o/3irvF .

Now the coherence length is given by

(O=AvF /orb, ,

(3)

(4)

where 6 is the superconducting gap parameter at T=O.
Combining Eqs. (2)—(4), we find

3m'
16%

where t is the hopping matrix element from inside to out-
side the core. In order to evaluate this matrix element,
we have to elucidate somewhat its physical origin. This
is most conveniently done by recalling the superlattice
representation, the basis functions of which are specified
by a superlattice cell L; and a coarse-grained momentum
K;. The size of the superlattice cell can be chosen to
have any value between an atomic cell and the entire
crystal, so representations having any degree of localiza-
tion between the Wannier limit and the Bloch limit are
possible. It can be shown that a consequence of having a
semilocalized basis is that the kinetic energy operator ac-
quires off-diagonal matrix elements between basis states
in neighboring cells. Consider then a metal in the normal
state to be divided into a cylinder of radius go and the en-
tire region outside. (Below the transition temperature T,
the cylinder will be identified with a vortex core. ) Above
T, the hopping matrix element t from inside the cylinder
to outside can be determined by requiring that the golden
rule transition rate

1 2m
t Xor (2)

be consistent with the mean time r= go/vF needed for an
electron traveling at the Fermi velocity vz to escape from
the cylinder. Xo is the density of normal states outside
the cylinder for T & T, which are connected to those in-
side by t. Since the mean distance to the boundary of a

Let us now consider the quantum-mechanical problem
of a discrete state coupled by a time-independent pertur-
bation 8' to a continuum of states. The Hamiltonian of
the unperturbed system is designated by Ho. Its spec-
trum includes a discrete state ~P) with energy
w: Ho~/)=w~g), and a continuum of states ~a) with
energies e: Ho~a) =a~a). In general, the energy of the
discrete state falls within the energy range of the continu-
um. It is further assumed that these states form a corn-
plete set and that the perturbation 8' couples only the
discrete state to the continuum, i.e., the matrix elements
(P( W~P), (a~ W]a), and (a'~ &~a) are identically zero.
Finally, we designate the density of states in the continu-
um which are coupled to ~P) by N, (s).

It is of course well known that the decay rate is given
by Fermi's "golden rule":

X(w)= i' Ns(w),=2~ 2

It is noteworthy that go and vF have dropped out and
that 5, which sets the energy scale, remains. Now in a
weak coupling superconductor the transition matrix ele-
ment from normal electron states to superconducting ex-
citations does not change. ' Accordingly, the decay rate
(I) for normal electrons in a vortex core is completely
specified by the matrix element t, from Eq. (5), provided
N, (w) is the density of superconducting excitations out-
side the core. We will discuss N, (w) in detail in Sec. III.

C. Energy shift

E= i—,'iriy(E) =w+ X(E) i ,'Ry(E)—=w—+cr(E), (7)

where we have introduced the so-called self-energy cr

with the usual meaning attached to it, i.e., the real part of
o' is the "true" energy shift while its imaginary part is
proportional to its decay rate. A simple, approximate ex-
pression for X was obtained by Weisskopf and Wigner, '

who showed that the energy shift X can be calculated by
using time-independent perturbation theory. Their ex-
pression for X, however, is too crude for our purpose
here. Its use leads to a correction in the density of states
which qualitatively resembles the experimental result,
but no quantitative fit can be obtained. So it is crucial to
calculate the energy shift X with the greatest possible ac-
curacy.

In order to motivate an accurate theory for X(E) we
consider a set of discrete states [ ~a; ) ). The case of in-
terest here is a continuum of states, but for the sake of
simplicity, in order to avoid cumbersome notations, we il-
lustrate our point on a discrete set of states; the con-
clusion remains unchanged for a continuum, and we sup-
pose that we have diagonalized the Hamiltonian in the
portion of Hilbert space spanned by this set of states. If
we now include one more state, coupled in general to all
the states j ~a;) ~ by a time-independent perturbation,
then in order to determine the energy correction to each
state, one has to solve the following secular equation:

Not only does the coupling with a continuum make a
discrete state unstable, it also shifts its energy from w to
E by an amount X(E):

E= w +X( E).

The fact that a discrete state is unstable is sometimes ac-
counted for by assigning a complex "energy" to it:
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The determinant is readily evaluated:

(E—~)/(E —E, ) —g ~w, ~'g(E —
E, )=0.

After dividing this equation by the first product which
appears, we can rewrite Eq. (9) in the following way:

N (E) N (E)

E=tc+ g
i=1 i

(10)

and this is nothing else but the result one would have ob-
tained by using the first term only of a Brillouin-%'igner
perturbation expansion. " However, Eq. (10) is the exact
result for the problem considered here. ' This important
result being established, let us turn our attention to the
calculation of the energy shift X(E) caused by a continu-
um of e's

Crudely speaking, the states in the continuum can be
divided into a set of states contributing essentially to the
finite lifetime of the discrete state and a set of states con-
tributing essentially to the energy shift. The first set of
states corresponds to the continuum states having an en-
ergy close to the energy of the discrete level; the second
set to all those remaining. The decay of the discrete state
to the first set of states must be blocked, otherwise an ex-
act solution for the wave function having original energy
m will consist almost entirely of components from the
(outside) continuum. Out interest is only in the corrected
energy E of this level in so far as it has not decayed into
the continuum. However, a sharp division, as in Fig.
2(a), between states contributing to the decay (and to be
treated by time-dependent perturbation theory) and states
contributing to the energy shift X(E), and to be treated
by a time-independent method, does not seem appropri-
ate.

There is, however, a simple way to determine to what
extent a state in the continuum "contributes" to the de-
cay of a discrete state. Indeed, we know that if we wait
long enough, the discrete state decays and the distribu-
tion in energy of the final states is proportional to a
Lorentzian centered on the shifted energy E:

(11)1

(E—E) +(A'y/2)
shown in Fig. 2(b). Therefore, when calculating X from
the second term of Eq. (10), we should weigh the contri-
bution of each state in the continuum to the extent that it
does not participate in the decay. Accordingly,

t N, (c, ) (&y /2)X= dc. 1— (12)
(E s)+(fry/2)—

zero, which is required to completely block the decay.
Equation (12) can be rewritten in a slightly different way:

or

t N, (s)(E—c, )X(E)= dc,
(E—s) +(ir'y/2)

(13)

t N, (e)
X(E)=Re d E E s i fiy /2— — (14)

The result for X(E), given by Eq. (14), is new to us. It
would be of interest to see whether an alternative deriva-
tion can be found using the formalism developed in col-
lision theory for the description of decaying states. '

Equation (14) resembles the first term of a Brillouin-
Wigner expansion, but the resemblance is merely a
mnemonic convenience. (Brillouin-Wigner perturbation
theory cannot handle complex energies. ) Moreover, Eq.
(14) is an exact expression for E, given the unblocked por-
tion of the continuum used in Eq. (12) and shown in Fig.
2(b), and is not merely the first term of an expansion.

D. Density of states

The final step consists in calculating the core electron
density of states N(E). This quantity is related to the en-

ergy shift X(E) as follows. If Z is the number of states
with energy less than m, where m is, as already defined
above, the energy of a core electron before perturbation„
then

FIG. 2. A discrete state is shown adjacent to the continuum
density of states with which it interacts and into which it can
decay. The shaded area corresponds to the states involved in
the decay and which do not contribute to the energy shift. (a) A
naive "rectangular" set of states which must be deleted from the
eigenvalue equation (10), to close off decay. (b) A refined
"Lorentzian" set of states which are "closed" in proportion to
their contribution to the decay process from time-dependent
perturbation theory.

Notice that we have normalized the Lorentzian so that
the contribution of the state with energy c.=E is exactly

=.dz (15)
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Now, Z&E( ) is the number of states with ener le
E, so the density of st t f

wi energy less than
s a es a ter perturbation is

0.8

dZ(E) dE—
dE

"
eM

(16)

Now, by virtue of Eq. (6), one finds

dE dX dE
dN dE dl8

(17) Z(E) oo ———

Upon solving this equation for dE/dw and aft
tio of th lt i E '16in q. ( 6), the density of states N(E)

N(E)=N, 1—
dE

which is easily evaluated once X(E) is known

III. TUNNELING CONDUCTANCE

- 0.8-3
I

0
E/Z

The density of states N(E) can be calcu
qs. ) and (18). On conversion t

sionless variables, x =E/b,
'

n to dirnen-

, y =e/b„Eq. (13) becomes

X(x 3' +
16
3' + (x —y)g (y)dy

(x —y) +(3~ /16) g (x
where

(20)

2ax /m.

(x —1) +a x

1+exp[b(1 —x )] 1+exp[b(1 —x )]
(21)

g(E)—=
N, E

We must now find an ana1 tic
fits the ex eri

na y ic expression for g (x) which
s e experimental spectrum far from them e vortex, curve

states. A 'bl
, an which conserves the

possi e choice is
he total number of

FIG. 4. Energy shift X(E) for the electrons in
1 1 d f E {13q. using the density of su erc

by curve of Fig. 3.

g(x) is displayed in Fig. 3, cu~~e
b = 10, and should b
energyshift X calc 1 t d f o FEq. (13) is shown in Fig. 4.

s a es a ove EF (E)0), are dis la
wards whereas states bel E

Th d it of t t b
es e ow Ez are dis laced

b (1)ofF' . 5 Th
s a es, obtained from E .

ig. . e peak at E=0 '

fh"e squeezing" action of

shows that the 1'
ison o t is curve wiwith curve a of Fig. 1

e qua itative features of the
duced but are somewhat examew at exaggerated. However, the tun-

l.5 5.0- b= IO

M lo

Ld I.O =

4J

0.0-

0
e/8

FICs. 3Cs. 3. Density of states of the su ercon
g (x)=N, (E)/N mod

e superconducting excitations,

curve or =10 models the oe observed spectrum,

models the ex
ig. , A from the vortex. The curve for b =2.9

o e s t e expected spectrum just ouside th e vortex core.

FIG. 5. The solid curvurve is the relative density of stat f
(normal) electrons in a vo

o sacs or
in a vortex core obtained from Eq. (18) b

differentiating X(E) shown in Fi . 4 Thin ig. . The dashed curve is the
relative conductance at T=1.85 K obtained b g

ve wi t e ermi-Dirac factors according to Eq. (25).



10 782 L. L. DAEMEN AND A. W. OVERHAUSER 40

neling conductance is proportional to N (E) only at T=0.
Finite temperature eff'ects, to be described below, lead to
curve (2) for T=1.85 K (the measurement temperature).
No new parameters are involved here, since a and b of
Eq. (21) were used to fit curve c of Fig. 1. Therefore the
zero-bias anomaly predicted without benefit from adjust-
able parameters agrees very well with experiment and is
too large by only 50%.

The superconducting spectrum we used for g (x) was
based on the experimental tunneling spectrum far away
from the vortex core and, consequently, does not take ac-
count of the fact that the superconducting excitations ac-
cessible to the normal electrons (inside the core) are lo-
cated just outside the core where critical currents circu-
late. Now it is known that superconducting excitations
in a region carrying a critical current are gapless. ' Ac-
cordingly, the parameter b in Eq. (21) can be reduced so
that there will be a finite density of states at c.=0. If we
take b =2.9, keeping a =1.2, the density of excitations
just ouside the core is modeled by curve (2) of Fig. 3.
Note that g(0) is now =0.1. The relative density of
states inside the core [calculated from Eqs. (13) and (18)]
is now shown by curve (1) of Fig. 6, which would also be
the relative conductance at T=0. At T= 1.85 K the
theoretical conductance becomes the dashed curve, (2) of
Fig. 6. It, is essentially a perfect fit to the data, curve a of
Fig. 1, and reveals the dips on either side of the zero-bias
peak and also the small shoulders near E=+1.56. Of
course the value of b was chosen to achieve this success.

Notice finally that if superconductivity disappears, i.e.,
if g(E) becomes a constant, the energy shift for electrons
in the core goes to zero. Thereupon the density of states
N(E) becomes constant (and equal to N, ).

IV. TEMPERATURE DEPENDENCE

We now turn to the temperature dependence of the
tunneling conductance. Some results from this section
have already been shown in Figs. 5 and 6. We first em-
phasize that we shall confine our attention to tempera-
tures T &0.3T„so that variations in the gap parameter
h(T) can be ignored. Since T, =7.2 K for NbSez, the
published data (taken at 1.85 K) allows this
simplification.

The first remark is to note that there is no temperature
dependence in the renormalization of N(E), for states in-
side the core, caused by the hopping matrix elements t,
which are nondynamic, i.e., independent of time. (It is
well known' that dynamic perturbations, e.g. , electron-
phonon interactions, cause a temperature-dependent con-
tribution to the self-energy. ) The reason for the tempera-
ture independence in the present case is easy to under-
stand. The energy shift of a particular state so in an
N+1 particle system is the total shift with that state oc-
cupied minus the total shift (of the N particle system)
with that state empty. Consequently,

b, EO—
~o E; Eo

(22)

where f(E;) is the Fermi-Dirac factor. It is evident that
the terms involving f(8;) in Eq. (22) cancel.

The tunneling conductance between a STM tip and the
electronic states near a vortex will nevertheless be tem-
perature dependent because of the structure in N(E).
The relative conductance is'

g(V r)= J — f(E+eV) dE . (23)
+~ N(E) B

N, BE

Since

b = 2.S
=0 =f (E)[1—f(E)], (24)

UJ

z 2-
C3

Cl

O
C3

=1.85 K

the relative conductance becomes

N, k~T
'g ( V, T)= I f(E+eV)[1 f(E+eV)]—

(25)

LLJ

I=

4J
0

0
E/6

FIG. 6. The solid curve is the relative density of states for
{normal) electrons based on g(x), Eq. {21) with a=1.2 and
b =2.9, i.e., the superconducting excitations spectrum shown in

curve (2) of Fig. 3. The dashed curve is the relative conduc-
tanve at T=1.85 K obtained by convoluting the solid curve
with the Fermi-Dirac factors according to Eq. {25). The dashed
curve matches the data of curve a of Fig. 1a.

It is evident that the relative di6'erential conductance is
just the convolution of the relative density of states with

f(1 f). g( V, 1) is sh—own in Fig. 7 for four temperatures.
The zero-bias peak grows with decreasing temperature
and the dips on either side become more pronounced.

The temperature dependence of the conductance is cer-
tainly interesting to study, first because it can be deter-
mined experimentally and second because it provides a
crucial test for our model, or any other model designed to
account for this type of anomaly. (It is of course neces-
sary to experimentally relocate the STM at the vortex
center with each change in temperature. ) We conclude
this section by stressing that, in order for the measure-
ments to be reliable, one has to make sure that the tun-
neling conductance is independent of the current so that
any observed temperature dependence cannot be attribut-
ed to heating effects at the STM tip.
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FIG. 7. Theoretical relative conductance curves for four tem-
peratures.

FIG. 8. Schematic behavior of the weight function g{r) and
1 —g{r) which are respectively, the tunneling of the weight
function g{r) amd 1 —g(r) which are, respectively, the tunneling
fraction to superconducting excitations or to normal electrons
inside the core (of radius R).

V. POSITION DEPENDENCE

Attention has so far been focused on the voltage depen-
dence of the tunneling conductance, particularly when a
STM is located at the center of a vortex. We have as-
sumed that for this location electrons in the STM tip tun-
nel primarily to the normal electron states inside the vor-
tex core of radius R. For STM locations just outside the
core, say at r =2R, the electrons in the STM tip will tun-
nel primarily to the superconducting excitations, which
have a distribution given by curve (2) of Fig. 3 (on ac-
count of the critical currents which How in this region
and create the Auxoid).

If a STM tip is moved continuously from r=0 to
r =2R, the tunneling conductance will transform gradu-
ally from g, ( V), given by curve (2) of Fig. 6 to g, (V),
given by curve (2), Fig. 3, since the only fermion-like
states accessible near a vortex are the two species already
described. Accordingly the r dependence of the conduc-
tance g(V, r) will be a statistically weighted sum of the
two limiting functions:

g( V, r )=g(r)g, ( V)+[1—g(r)]g, ( V) . (26)

g(r) is a continuous weight function, which varies from
(essentially) nil at r =0 to unity near r =2R, and is the
probability that a tunneling event between the supercon-
ductor and the STM tip involves transfer to (or from) a
superconducting excitation. The spatial dependence of
q(r) is illustrated schematically in Fig 8. It seem. s reason-
able to assume that g(r) is a smooth monotonic function,
as shown. The number of electron states within a vortex
core per p of length (for NbSez) and within +b of the
Fermi energy is =2X 10 . Any attempt to calculate g(r)
microscopically would require knowledge of the wave
functions of all these states (in the core) as well as of the
excitations outside. The smootheness of g(r), which we
have assumed, seems likely because nodes of individual
states would be averaged out by the extensive summation.

It seems appropriate to define the radius R of a vortex
core to be that value of r for which g(R) =0.5. Accord-
ingly for a STM located at R, half of the tunneling events
involve the normal electrons inside the core, and the oth-
er half involve the superconducting excitations outside.
Such a definition allows R to be measured experimentally,
once the relative conductances g, ( V) and g, ( V) have been
determined. In Fig. 9 we show g(V, r), calculated from
Eq. (26), for three values of g. The STM location r which
exhibits the conductance shown for g =0.5 determines R.
The conductance curve for g=0.38 in Fig. 9 has been
shown because it is an exact fit to the data of Fig. 1(b).

Figure 10 is a simulated plot of a zero-bias STM posi-
tion scan along a straight line passing through a vortex

T= I.85 K

0.38
u
cf
O

q =O.5o
hJ0

LLI

q =0.8

0
Ela

FIG. 9. Relative tunneling conductance for three values of
the weight function q. The curve for q=0. 38 fits the experi-
mental data shown in curve b of Fig. 1.
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4R

hl

o
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Oo
43

ld Q-
«3

E /th

-2R

'P, R

FIG. 10. Zero-bias conductance along a STM scan line
through the center of a vortex (having a core of radius R). The
dashed extensions approach zero at large distance from the vor-
tex center.

center. The curve (between —2R and 2R) was calculated
with ri(r) =sin (nr/4R), also used in Fig. 8. This heuris-
tic choice has a half-width (at half maximum) 1 t R.um equa to

e "note added" in Ref. 4 describes a careful STM scan
at zero bias and reports that the half-width was 77+5 A.
It is noteworthy that the half-width of such a scan, which
we suggest be taken as the phenomenological definition of
R, the vortex core radius, agrees with the. coherence
length go=77 A for NbSez. ' The dashed extensions of
the curve in Fig. 10 gradually approach zero at remote
locations; e.g., the zero-bias conductance in curve c of
Fig. 1, for r=2000 A, is nil.

Figure 11 shows two three-dimensional views of the
STM conductance near a vortex calculated from the
theory presented here. g (E,x ), where E =e V, was evalu-
ated from Eq. (26) and is plotted versus E and x, the
inear coordinate along a line though the vortex center.

The total range (along x) is 308 A, i.e., 4R. An experi-
mental view of this type was presented in Fig. 4 of Ref. 4
but included a range of 1000 A. Finally, we note that an
alternative approach based on the Bogoliubov —de
Gennes equations' has been attempted Th f 'd-
ablea e computational eff'ort required in solving (numerical-
ly) the Bogoliubov —de Gennes equations led us to seek a
simpler (but perhaps less profound) approach. In the
form ordinarily used, the Bogoliubov —de Gennes equa-

2-o
f-o
Cl

O I-

4J

LU
Ce Q

2R

E/6,
3'-PR

FIG. 11. Two two three-dimensional perspectives of the tunnel-
ing conductance vs bias voltage and STM location relative to
the center of the vortex.
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ttons assume a local (6-function) pairing potential rather
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stance, in the Eliashberg equations. Consequently we do
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