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NMR determination of the nonclassical critical exponents 8 and 8 in incommensurate Rb,ZnCl,
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The critical behavior below the second-order transition between the normal and the incommensu-
rate phase of Rb,ZnCl, is studied by means of quadrupolar perturbed NMR. The temperature
dependences of the ¥Rb m =+ l<«>+3 satellite transitions are investigated for different Rb nuclei
and different crystal orientations. It is shown that the critical exponents B8 and B=2—a—¢+2B, ¢
being the crossover exponent associated with an uniaxial perturbation, can be determined accurate-
ly. The value =0.351+0.01 and B=0.83+0.03 obtained are in agreement with the theoretical pre-

dictions of the three-dimensional XY model.

I. INTRODUCTION

In several compounds of the A4,BX, type such as
K,SeO4, Rb,ZnCl,, and Rb,ZnBr,, transitions from a
normal (N) phase to an incommensurate (IC) phase
occur. The IC phase can be described by a two-
component order parameter, and therefore these systems
are expected to belong to the universality class of the
three-dimensional XY model.! The critical exponent of
the order parameter $=0.3461+0.002 predicted by this
model? has been confirmed for the substances mentioned
by several techniques’ ~? including nuclear magnetic reso-
nance (NMR) within the given respective experimental
errors. According to our knowledge, the most accurate
determination’ gives the value 28=0.69+0.01 for
Rb,ZnCl,. The exponents ¥ and v determined from x-ray
diffuse scattering’ are in reasonable agreement with the
XY model.

In contrast, we recently reported'? unconventional crit-
ical behavior of the NMR frequency splitting of the $’Rb
(I=3) m=xlo=t3 satellite transitions in Rb,ZnBr,
near the N-IC phase transition. It was shown that in the
IC phase for the three different cases investigated, the
widths of the ¥’Rb satellite transition frequency distribu-
tions followed a power law with a critical exponent of
about 0.84. In every case the crystal was orientated with
one of the crystal axes parallel to the static magnetic field
H,, thus realizing a “quadratic case,” in which until now
in all models the width of the frequency distribution has
been assumed to be proportional to the square of the or-
der parameter.!!"!* Hence, the critical exponent ob-
served was clearly in contradiction to the expected value
23~0.70.

In this work, new NMR measurements for the *’Rb sa-
tellites in Rb,ZnCl, are reported. Firstly, we will present
a measurement of the temperature dependence of the
87Rb satellites in a crystal orientation where a term pro-
portional to the order parameter is dominant (the “linear
case”). The effects of the IC modulation on the resultant
frequency distributions are strong, thus giving rise to a
high accuracy in determining the critical exponent S3.
The value $8=0.35+0.01 obtained for both, Rb(1) and
Rb(2), is in accordance with the theoretical predictions
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and the values reported previously.

Secondly, it will be shown that for crystal orientations
corresponding to ‘“‘quadratic cases,” the critical exponent
describing the temperature dependence of the 8’Rb satel-
lites deviates from 2B and equals 0.8310.03 for both
Rb(1) and Rb(2). This result evidences that this critical
behavior is not restricted to Rb,ZnBr,, but is also present
in the compound Rb,ZnCl,, thus having a general char-
acter. This behavior will be explained by an argument
stressed by Bruce!® in a general context. There can be
secondary order parameters and physical properties,
which a direct extension of Landau theory would require
to vanish as (7,—T)*, but which in a more careful
analysis are predicted to have quite a different critical ex-
ponent. An example for this type of behavior in IC
phases with a two-dimensional order parameter are the
second-order diffraction satellites. The intensity of these
reflections has been predicted to vanish at T; with the
critical exponent 28~1.69. The value of f3 is related to
the specific heat exponent a and the crossover exponent ¢
associated with an uniaxial symmetry-breaking perturba-
tion according to B=2—a—¢.>'!® Because of their weak-
ness, however, diffraction second-order satellites can only
be detected far below the transition temperature T;. This
fact, together with the necessary corrections of the
diffraction data for extinction, multiple and diffuse
scattering, make a stringent test of the critical behavior
predicted quite difficult. Measurements by means of neu-
tron scattering in K,SeO, indicated in fact some devia-
tion from the 48 power law, but the critical exponent 23
predicted could not be confirmed.3

It will be shown in the following that the arguments
leading to this nontrivial critical behavior for second-
order diffraction satellites can be readily extended to the
second-order Fourier amplitude of the electric-field-
gradient tensor (EFG) in the IC phase. In particular, its
critical exponent is given by B. Since NMR measure-
ments on *'Rb satellites allow an accurate determination
of the EFG modulation!® and of the transition tempera-
ture, this technique can examine the above-mentioned
theoretical predictions for both 8 and B. The results for
Rb,ZnBr, reported in Ref. 10 constitute the first clear ex-
perimental evidence of the correctness of the predicted
value. The measurements reported here for Rb,ZnCl,,
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which determine both 8 and B, confirm the theoretical
model.

II. CRITICAL BEHAVIOR OF THE EFG MODULATION

The EFG modulation in an IC phase with a single
modulation wave vector can be described in general by
means of a Fourier series along the superspace internal
coordinate:'!

Viv)=Vy+ 3 V,explinv) . (1)

Assuming fast motion, only the mean value of the EFG
is relevant for quadrupolar perturbed NMR. In Ref. 11
the mean value of the EFG was related by a Taylor ex-
pansion to the mean atomic displacements. Thus, the
mean values V| and V, were shown to be proportional to
p and p?, respectively, p being the order parameter
modulus. As will be shown, these results have to be
corrected if fluctuations are taken into account. -

Dealing with the critical behavior near T;, the discus-
sion can be restricted to the plane-wave limit. Then the
instantaneous local order parameter, n(T)exp[i@(T)], T
being the label for the cells of the nondistorted structure,
can be identified with the local complex amplitude of the
instantaneous atomic modulation. The mean atomic dis-
placements [see Eq. (31) in Ref. 11] are then given by sub-
stituting the complex amplitude 7(T)exp[i@p(T)] by its
thermal mean value {7(T)exp[i@(T)]), which by
definition is the static order parameter pexp(ig,). In the
plane-wave limit this mean value is space independent
and its phase @, is arbitrary (this phase has been taken
to be zero in Ref. 11). Substituting the amplitude p
of the order parameter by its instantaneous value
7(T)exp[ip(T)], we can then follow the same arguments
as in Ref. 11 to demonstrate that the instantaneous values
of the EFG Fourier amplitudes V(T) and V,(T) are in
the first approximation proportional to 7(T)exp[ig(T)]
and 7n*(T)exp[i2¢(T)], respectively. Consequently the
corresponding Fourier amplitudes of the mean EFG
V,={V,(T)) will satisfy

[V =V (T)]| < [{n(T)explip(T)]) | =p , (2a)

[V, =V (T)) | < [{n*(T)exp[i2¢(T)]}| . (2b)

Thus, the amplitude |V,| of the first harmonic of the
EFG modulation is proportional to the amplitude p of
the static order parameter.

Defining

P (T)+iP,(T)=n(T)explip(T)],

for the amplitude of the second Fourier term |V,]|, the
following relation holds:

|V, |« ([{PHT)) —(PHT)) P+4(P,(T)P,(T))*}' 2.
3)

The right-hand side of (3) differs not only from p?, but
also from (7*(T)) and is precisely the square root of the
expression appearing in Ref. 3 for the temperature depen-
dence of the intensity of second-order diffraction satel-
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lites. The argument developed there is therefore also val-
id in the present context. Thus we can expect that

|V,| (T, —T)" 4)

with B=2—a—¢, a being the specific heat exponent of
the d=3 XY model and ¢ the crossover exponent associ-
ated with an uniaxial symmetry-breaking perturbation of
this model.»!1%!7 In the discussion so far only the first
harmonic of the atomic modulation (order parameter) has
been taken into account in the expansion of the EFG in
terms of the atomic displacements (cf. Sec. II of Ref. 11).
Nevertheless, Eq. (4) holds as well, if a second harmonic
is present in the atomic modulation, since its mean ampli-
tude also has the critical exponent B.»!> This is analo-
gous to what happens in the case of second-order
diffraction satellites.’

Consequently, two different types of “quadratic” con-
tributions to the quadrupolar perturbed NMR frequency
modulation in IC phases have to be distinguished.

(a) The second harmonic in the frequency modulation
originates in the second harmonic of the EFG. Its ampli-
tude will then vanish at T; following the law (7, —T)?
with B#£2p.

(b) The second harmonic in the frequency modulation
is a consequence of a second-order perturbation term of
the EFG first harmonic. In that case the relevant aver-
age values of the EFG components have to be determined
differently according to whether the fast or slow motion
regime is realized.'®!® Assuming fast motion, the critical
behavior of the second harmonic in the frequency modu-
lation will then be given by (T; —T)*, while in the slow
motion regime the critical exponent 3 will dominate.

Obviously, case (a) will be realized in the satellite fre-
quency modulations, which are practically only due to
first-order quadrupolar perturbation.!® For the m=1
«<>—1 central transition, in general the second harmonic
of the frequency modulation includes both types of con-
tributions, (a) and (b). Their relative weight depends on
the actual magnitudes of the several EFG Fourier com-
ponents and the crystal orientation. Thus, a special case
might be possible where the contribution of type (b) be-
comes dominant. This would explain the results of
Nakamura et al.* These authors could fit the distribu-
tion widths of the central line in a quadratic case with an
exponent 23~=0.70, in contrast to the results of this work
and of Ref. 10.

Renormalization-group techniques and series expan-
sions give for ¢ the value 1.175+0.015,2° which taking
for a the value —0.02 results in B=~0.84."7 However,
considering a. more precise theoretical estimate of
a=—0.007+0.006,% 8 becomes 0.83240.021.

III. EXPERIMENTAL DETAILS

Crystals were available from previous investigations on
Rb,ZnCl,.>! The sample used in the NMR experiment
had a size of about 0.6 cm® and was orientated by
goniometric methods. The NMR equipment including
special mechanical devices for adjusting the crystal’s
orientation with respect to the direction of the static
magnetic field H, was described previously.!®?!
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A specially adapted standard gas-flow temperature re-
gulation provided a temperature stability AT < +0.05 K
over the measuring period (time for scanning was 1-5
min for T;,—T 510 K). The temperature was measured
by a thin platinum resistance thermometer located paral-
lel to the axis of the sample coil in a distance of about 3
mm from the sample. The temperature gradient over the
sample was about 0.1 K (cf. Fig. 1). This value is much
smaller than the one given in the preceding work'® be-
cause of the following reasons: The probe head was
modified to direct the gas flow around the sample in a
way minimizing the temperature gradient. In addition,
the temperature range investigated in this work was close
to ambient temperature. In different runs temperature
was lowered step by step.

IV. EXPERIMENTAL RESULTS
A. First harmonic of the EFG modulation

The upper frequency satellite transition m =+ }«+3
of the ¥Rb nucleus (I=3) in Rb,ZnCl, was mea-
sured within a temperature range 0S5 T, —T <520 K. The
orientation of the crystal was determined to be TLH,,
£(a,H,)=45.2°. Crystal axes are defined such that

Rb(2)

Y S - 30.80

—
3070
—WJL» 30.65
wJ\/\j\/\\—- 30.62
_,/\J\\JUL 30.49
.J\—/\—NL 30,41
_JM’}L 30.22

frequency

FIG. 1. Spectra of the ’Rb upper frequency satellite transi-
tion in the crystal orientation €1H,, Z(a,H,)=45.2° obtained
near T; for the two different groups of Rb nuclei Rb(1) and
Rb(2). (Phase distortion was eliminated by “magnitude calcula-
tion,” which gives the square root of the power spectrum. Asa
consequence, the well-known typical IC lineshape in absorption
is changed and lines and edge singularities are broadened by a
factor of about 1.6 compared to absorption spectrum.) The rel-
ative accuracy of the given temperatures is AT < £0.03 K.
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FIG. 2. Temperature dependence of the frequencies of the in-
tensity maxima (edge singularities in the IC phase) of the ¥’Rb
spectra specified in Fig. 1.

a>c>b, i.e., the spacegroup of the N phase is Pcmn.
The results are summarized in Figs. 1-3.

Figures 1 and 2 demonstrate the strong effect of the
N-IC phase transition on the ¥’Rb satellites in the given
crystal orientation. Within a temperature interval of
about 0.05 K (this is at the limit of our temperature reso-
lution because of the available temperature stability and
gradient) the discrete line characterizing the nonmodulat-
ed N structure splits into a frequency distribution of a
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FIG. 3. Temperature dependences of the frequency distance
between the edge singularities shown in Fig. 2. The fit curves
correspond to a power law with 8=0.35 for both Rb(1) and
Rb(2).
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width of about 130 kHz for Rb(1) and 90 kHz for Rb(2),
reflecting the modulation of the IC structure. The edge
singularities of the frequency distribution appear to be
rather broad and smeared. This smearing is reasonably
attributed to the combined influence of the pronounced
change of the spectra with temperature and the tempera-
ture gradient over the sample (and temperature fluctua-
tions over the measuring period). Accordingly, the
widths of the edge singularities decrease on passing to
lower temperatures where the temperature dependence of
the spectra is less pronounced. Because of the same
reasons, the spectrum at 7=30.7°C already includes
some IC contribution. In fact, an intensity comparison
shows that about 40% of the crystal has transformed to
the IC phase at that temperature. Thérefore, for the
evaluation of our experimental data, 7; is taken to be
(30.70+0.05)°C.

Following the procedure described, for example, in
Ref. 10 [cf. e.g., Egs. (9) and (10) therein], it can be
shown that in the given orientation and temperature
range the frequency distance of the edge singularities is
dominated by the amplitude |V, | of the first harmonic
of the modulation of the corresponding EFG tensor com-
ponent. In fact, using the Fourier components deter-
mined at T = 10 °C from measurements of the orientation-
al dependences of the 87Rb satellite transitions, the
influence of the main diagonal elements V,,, V,, appear-
ing in first-order quadrupolar perturbation can be calcu-
lated to be about 0.05% for Rb(1) and 0.002% for Rb(2)-
at T, —T =20 K. At higher temperatures their influence
is even less. Contribution of second-order quadrupolar
perturbation to the IC frequency splitting is of the order
1073%. Thus, the experimental data presented in Fig. 3
can be fitted according to Eq. (2a) yielding a critical ex-
ponent 3=0.35+0.01 for both Rb(1) and Rb(2). Within
the given accuracy, this value coincides with the value
predicted by theory (see Sec. I). The given possible error
includes the contribution originating from the uncertain-
ty in determining 7T;, which is one of the main contribu-
tions. The value for T; given above has been confirmed
by taking T; as an additional fit parameter or equivalent-
ly by varying T; in a double logarithmic plot of the exper-
imental data in Fig. 3.

B. Second harmonic of the EFG modulation

To investigate the temperature dependence of the EFG
second harmonic, the upper frequency satellite transition
of the ¥’Rb nucleus in Rb,ZnCl, was also measured in a
crystal orientation with 2||H,. There, to a very good ap-
proximation, the frequency distance between the edge
singularities is proportional to the amplitude |V, | of
the second harmonic of the modulation of the corre-
sponding EFG tensor component [cf. e.g., Egs. (16) and
(17) in Ref. 10].

The frequencies obtained for the edge singularities in
the IC phase and for the discrete line in the N phase
(called N line henceforth), respectively, are plotted as a
function of temperature in Fig. 4. Especially near T; the
widths of the frequency distributions are much smaller
than in the “linear case” (Sec. IV A). Thus, close to T; no
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FIG. 4. Temperature dependence of the frequencies of the in-
tensity maxima of the spectra of the *’Rb upper frequency satel-
lite transition for a||H,.

splitting into edge singularities can be detected at all, but
only a broadening of the N line. In order to obtain even
close to T; reliable data for the frequency distance of the
edge singularities of the “ideal” frequency distribution
[cf. Eq. (16) in Ref. 10], the effect of the convolution of
the N line with the ideal frequency distribution was taken
into account. Using power spectra like lineshapes (cf.
caption of Fig. 1) for determining the edge singularity fre-
quencies, this deconvolution procedure is only relevant in
a small temperature region near T; [T,—T <1 K for
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FIG. 5. Temperature dependence of the frequency distance
between the edge singularities of the ideal frequency distribu-
tion of Rb(1) calculated from the data in Fig. 4 by the procedure
described in the text. The inset shows the temperature range
near T;. The fit curve corresponds to a power law with 5=0.83.
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FIG. 6. As Fig. 5, but for Rb(2).

Rb(1), T;—T 0.5 K for Rb(2); such a deconvolution
procedure is completely irrelevant in the linear case dis-
cussed in Sec. IVA]. The values of the frequency dis-
tances thus obtained are plotted in Figs. 5 and 6 versus
temperature and are fitted according to Eq. (4). For both
Rb(1) and Rb(2), the fits yield the critical exponent
B=0.83 with a tolerance of about +0.03 in accordance
with the theoretical prediction (see Sec. II). As demon-
strated especially by the upper inset of Fig. 6, the critical
behavior can be followed up to temperatures close to 7.
Deviations from the power law become obvious approxi-
mately for T < —25°C for Rb(1) and T <0°C for Rb(2).
This does not prove that for these temperatures the
power law for the order parameter is violated. Rather
these deviations can also be caused by the fact that far
away from T;, Fourier terms of higher order become
relevant in the EFG modulation.

Analggous experiments were done for the crystal orien-
tation b||H, yielding the temperature dependence of
|V3,,|. The exponents B obtained for Rb(1) and Rb(2)
coincide, within the tolerances, with the value given
above. The results are also in accordance with the
exponents B=0.83+0.02, 0.84+0.03, and 0.8610.02
determined previously for Rb,ZnBr, (Ref. 10) for the
three different cases investigated.

NMR DETERMINATION OF THE NONCLASSICAL CRITICAL ...

10 751

V. CONCLUDING REMARKS AND SUMMARY

In a previous work?? (cf. also Ref. 13) the idea was in-
troduced that in the IC phase near T the floating of the
phase of the pinned incommensurate modulation should
result in a more or less pronounced partial motional
averaging of the incommensurate spectrum. This should
give rise to a deviation of the temperature dependence of
the width of the IC spectra from the usual power law. It
has been stated!>?? that this effect indeed becomes obvi-
ous in the 8’Rb central line spectra observed in Rb,ZnCl,.
Such a deviation from the power law could not be detect-
ed in our experiments. From a physical point of view this
is to be expected because [cf. Eqs. (2a) and (2b)] the
relevant fluctuations are already included in the calcula-
tion of the critical temperature dependences, e.g., of the
order parameter amplitude.

Sometimes attempts are made?>?* to interpret the tem-
perature dependences observed besides by the nonclassi-
cal critical exponents given above by applying a Landau-
type theory taking into account in a suitable expansion of
the free energy at least terms up to the sixth order in the
order parameter. Our data, however, reveal a basic argu-
ment against the validity of Landau theory: If Landau
theory strictly holds, Egs. (2a) and (2b) can be represent-
ed as | V| «p, |V,| <p? Consequently it should be pos-
sible to represent the data of Figs. 5 and 6 as the squares
of the ones in Fig. 3 with a respective constant scale fac-
tor between them. In terms of exponents this would
mean S=2p. This, obviously, is not the case.

We have studied the critical behavior at the second-
order N-IC phase transition at T;=~30°C of Rb,ZnCl,,
which is a representative of the large group of 4,BX,
compounds by investigating the temperature dependences
of the distributions of the ¥’Rb NMR satellite frequencies
for different crystal orientations. By that means the criti-
cal exponents 8-and B could be determined. The results
are consistent with the nonclassical exponents predicted
by the d=3 XY model.
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