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Slowing-down time of energetic atoms in solids
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Computer simulation models for the slowing down of energetic atoms in matter are often based
on the binary collision approximation (BCA). Such models typically ignore the temporal aspects of
the problem. A method is described whereby calculations of the times at which energetic particles
reach their collision points may be included in such BCA simulations without altering the "event-
driven" structure of the model. The enhanced model is illustrated by calculations of the time re-
quired by 10-eV to 10-keV Cu atoms to slow down in both crystalline and amorphous Cu targets. In
addition to the mean slowing-down time, distributions of slowing-down times and correlations be-
tween slowing-down times and particle ranges are presented. The utility of range-time correlations
in studying penetration problems is demonstrated,

I. INTRODUCTION

Computer sifnulation is a well-established method for
studying the slowing down of fast atomic particles in
solids, the resulting defect distributions, and such conse-
quences as particle reliection and target sputtering (for
reviews, see Refs. l —4). Ideally, these calculations are
based on classical dynamical models in which the equa-
tions of motion of many mutually interacting particles
are solved for appropriate initial and boundary condi-
tions, but even with modern computers, they are limited
to small samples of primary particles of modest initial ki-
netic energy and to solids with such symmetrical struc-
tures as close-packed or nearly close-packed metals.
While progress is being made in extending the limits of
such calculations, ' approximate methods must still be
used to simulate the slowing down of high-energy parti-
cles in complex crystalline media or in noncrystalline
ones. This is especially true if sufhcient statistical accura-
cy is needed to interpret experiments.

The binary collision approximation (BCA) facilitates
atomic slowing-down calculations. Each particle trajec-
tory is constructed as a series of two-body encounters
with initially stationary target atoms. An approximate
treatment can be given of the nearly simultaneous en-
counter of a projectile with several target atoms. Target
structures are unlimited, since it is feasible to include
many material regions, each with an arbitrary (triclinic)
crystal structore containing many kinds of atoms, or to
simulate noncrystalline media using aleatory methods.
However, BCA mode1s generally proceed from collision
to collision without explicit reference to the time: they
are "event driven", in Harrison's phrase. They cannot,
therefore, include collisions between moving particles or
be used to study correlations in cascade development
where knowledge of the time is essential.

The purpose of this paper is to show how time can be
included explicitly in BCA calculations and how the tem-
poral aspects of particle trajectories may be studied
without abandoning the event-driven structure of the
model. This is accomplished by computing the time at

which each projectile reaches each of its collision points,
with appropriate corrections for its changes in velocity as
it approaches and departs from each such point in its tra-
jectory. The calculation is exact for strictly binary en-
counters in which the collision partners are truly isolated
from other particles. Yamamura has reported calcula-
tions with a time-dependent binary collision program, but
his model has not been described in detail.

The calculations reported here were made with an ex-
tensively modified version of the MA.RLowE code. '
Besides introducing the time evaluations, it was necessary
to make substantial changes in the selection of target
sites, as will subsequently be described. The methods of
evaluating the scattering integrals and of propagating the
target crystal were described earlier. "' In addition to
illustrating a time-resolved BCA model, the calculations
reported below show the general utility of evaluating the
temporal data, even in rather simple particle-range calcu-
lations. The interpretation of the results is made much
easier by the availability of such information.

II. THE COMPUTATIONAL MODEL

A. Two body elastic scattering

Time may be introduced into the BCA by using the
constant velocity of the center-of-mass in each binary en-
counter to clock that event. Consider the situation
sketched in Fig. 1. A projectile of mass I, and initial ki-
netic energy Eo is located at a point I'0 at a time which is
taken as the origin of the (local) time coordinate. A tar-
get atom of mass m2 is initially at rest at the point To,
the origin of the (local) space coordinates. The mass ratio
A =m2/m&. The points I'0 and To are separated by a
distance I, su%ciently large that interactions between the
two particles may be neglected. The impact parameter p,
the barycentric scattering angle 0, the time integral w,

and the laboratory scattering angles 8 and P are defined
in Fig. 1, which shows the two particles and their
barycenter at the apsis in the collision. The barycenter
continues moving to the right until the scattered particles
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FIG. 1. The trajectories of a projectile and an initially sta-
tionary target atom interacting according to a conservative cen-
tral repulsive force. The positions of the particles and of their
barycenter are shown at the apsis of the encounter.

x, =[(1+f)r+(fA —l)ptan(8/2)]/f (1+3), (2)

xz =ptan(8/2) —x, . (3)

The latter is the length of the incoming asymptote to the
target trajectory. The length of the incoming asymptote
to the projectile trajectory is g=g —x „where

(I 2 2)1/2

Solution of the classical equations of motion' allows
the barycentric scattering angle and the so-called time in-
tegral'" to be expressed as

0=~—2p dr rg r (4)
R

(g2p2)1/2Jdy I [g(y)] I
( 1 pz/y2)1/2

R

where

g(y)=[1 p'/y' (1+A)V(y)//lE]'—/2, —

reach the points P& and T&, respectively, also separated
by the distance L„beyond which interactions are ignored.

The model uses a "quasielastic" approximation in
which a "local" inelastic (electron excitation) energy loss
Q occurs at the apsis in an encounter, a loss taken from
the kinetic energy of the barycenter. Consequently, the
time for the second part of the encounter is increased by
a factor 1/f, where

f =[1—(1+2)Q/AEO]'/

The laboratory scattering angles are related to those in
the barycentric system by

tan8 = Afsin 8/( 1+3fcos8),

tang=fsin8/(1 —fcos8) .
The laboratory asymptotes intersect in the points P, and
T, found by computing the magnitudes x, and x2 shown
in Fig. 1:

y is the interatomic separation, V(y) is the interatomic
potential energy function, and R is the apsis in the col-
lision, defined by g (R ) =0. The inelastic energy loss is ig-
nored in the barycentric scattering integrals, hence the
description "quasielastic. " The integral ~ is the
difFerence between the time taken by a noninteracting
projectile to reach its apsis with the target and that taken
by a scattered particle, scaled by the initial velocity of the
projectile, uo=(2EO/m1)'/ . The numerical evaluation
of the integrals (4) and (5) is discussed elsewhere. '

As the two particles move from Po, To to the apsis,
their barycenter moves a distance (g—r)/(1+ 3 ) at a ve-
locity uo/(1+ 2) in the time (g r)/—uo If t.he collision
were strictly elastic, the particles would take the same
time to move on to the points P&, and T&, but the local
inelastic energy loss increases this by a factor 1/f. The
calculation of the coordinates of P, and T, accounts for
the slowing down of the projectile and the initial ac-
celeration of the target. The time assigned to the parti-
cles at P„T, must also allow for the acceleration of the
atoms as they leave the apsis. The length of the outgoing
asymptote to the projectile trajectory from P, to PI is
evaluated and then the time to traverse it taken by a par-
ticle with the constant velocity u, =(2E, /m, )', where

E, =[(1 fA) +4fA—cos (8/2)]EO/(1+ 2)
is the final projectile kinetic energy. A similar calcula-
tion of the length of the outgoing asymptote to the target
trajectory from T, to T& and the time to traverse it by a
particle with the velocity uz =(2Ez/mz)'/, where

Ez=[(1—f) /I +4fAsin (8/2)]ED/(1+ 2) (6)

is the final target kinetic energy, gives the same result,
namely

g* =uot, =g+(1/f)[ptan(8/2) —(1+f)T ],
where t, is the time assigned to both particles at the
apsis.

In addition to the local inelastic energy loss, the model
includes a "nonlocal" loss which depends on the distance
traversed by the projectile. The time calculated in Eq. (7)
must be adjusted to reAect the slowing down of the pro-
jectile associated with this loss by multiplying t, by the
factor —(1/q)ln(1 —q), where q =kEO/ g/2EO and the
factor kEO is the nonlocal inelastic stopping power.

B. The selection of target atoms

The method used to select appropriate target atoms
and to treat the nearly simultaneous encounter of a pro-
jectile with several targets is illustrated by Fig. 2. A pro-
jectile located at the point P moves along the unit vector
7LO. Target atoms are located at the points T, and Tz,
generated as described previously. '" The vector from
the projectile to the ith target is b,x; (only that to T, is
shown). The distance along A,o to the point nearest a tar-
get is g; =A,o.dLx; and the impact parameter is

p, =(A,oXhx;) . Targets are accepted if p; ~p, and
g, )g;„. The value of g;„was set in the previous col-
lision of the projectile (see below) and p, is chosen to be
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FIG. 2. The selection of target atoms and the treatment of
nearly simultaneous collisions. See the text for an explanation.

C. Nearly simultaneous collisions

After the scattering integrals are evaluated for each en-
counter deemed by the above procedures to occur at the
same time, the results are combined into a whole almost
as described before. The direction and kinetic energy of
each target atom are evaluated as if it alone were in-

somewhat less than the nearest neighbor distance in the
target crystal.

Originally, the distance to the first collision point
along Ao was determined: This is g& in the sketch. Other
target atoms were considered only if they met the cri-
terion hfdf; =g; —

gf ( b,g,„, where the subscript f refers
to the first target and b,g,„was usually 50 pm. This cri-
terion ignores the effects of the time integral on the posi-
tion of a collision point: At low energies, the time in-
tegral is comparable to interatomic distances and may
even change the order of collision points, as shown
schematically in Fig. 2. When this happens in the origi-
nal model, particles may move backwards to a collision
point. Such negative motions have only minor effects on
projectile ranges and other spatial aspects of trajectories,
but the effects on the time values are profound: some
projectiles even had negative slowing down times, a phys-
ically absurd result. To correct this situation, all targets
generated by the crystal propagation procedure are ac-
cepted as long as g,. )g;„and p, (p, . Consequently,
more scattering integrals are evaluated than before.

At this point in the calculation, it is determined wheth-
er or not the selected lattice sites are occupied by atoms,
a step guaranteeing that particle number is conserved and
that no lattice site emits more than a single projectile.

After the asymptote intersections are located, the first
one along A,o is found. Targets are retained as long as

kgf g' gf ( b,g,„, wher'e the subscript f refers to the
first asymptote intersection. The limit b,g,„ is usually
taken as 25 pm. In addition, it is required in the modified
model that gf* exceed a mimmum value kg*;„, usually
taken as zero. The last condition prevents negative time
increments from occurring in the calculation. The code
keeps track of targets rejected for failing this condition:
the frequency and nature of such events are discussed
later.

volved in a collision with the projectile, using Eqs. (1), (3),
and (6). The direction and momentum of the scattered
projectile are evaluated by applying the conservation of
linear momentum to the incident projectile momentum
and the set of target momenta. Finally, the conservation
of energy is used to scale the momenta of all particles.
The algorithm is exact when there is only one target, but
generally underestimates the energy transferred to multi-
ple targets.

The local inelastic energy loss is considered in the kine-
matics of each contributing partial collision, but the non-
local inelastic loss is not. Thus, it is possible for the sum
of the kinetic energies of the emerging particles and the
inelastic energy loss to exceed the. kinetic energy of the
incoming projectile. When this situation occurs, the pro-
jectile kinetic energy is set to zero; the inelastic energy
1oss and the target particle kinetic energies are scaled
equally to assure energy conservation.

Each target atom is placed at the intersection of its lab-
oratory asymptotes, a distance x2 from its initia1 position.
The projectile is placed at gf, the first asymptote intersec-
tion along A,o. This differs slightly from earlier practice,
where the mean g, value was used. The difference is
small and has only a small effect on the spatial results.
The new position is probably somewhat more plausible
than was the earlier one. The time associated with the
collision is obtained from Eq. (7) for the scattering event
which determines the projectile position. This value is
assigned to each of the particles emerging from the event.

D. Preparing for the next collision

At the completion of each coHision, the parameters
which control the next collision of the projectile are es-
tablished. The method is sketched in fig. 2. The direc-
tion of the projectile after scattering is A, „which makes
an angle 8 with A,o. For each target atom, the distance
forward along A, , is g =A, &.bx'; (only that to T& is shown)
and the impact parameter is (p,.') =(A, , Xb,x;) . Original-
ly, the value of g;„for the next encounter of the projec-
tile was set to the greatest value of g,' for any target, sub-

ject to a minimum, usually 25 pm. This scheme
guaranteed that no target was encountered again in the
next collision of the projectile.

It is easily shown that in binary encounters, p') p, but
if there are multiple targets as in Fig. 2, usually some will
have p,-'(p;. This is especially true when large projectile
deAections occur. In such situations it may be more real-
istic to allow a further collision with a closely approached
target. Consequently, in the modified model, if 6 & 8
targets with p &p; are excluded from the determination
of g;„. Both the spatial and the temporal aspects of pro-
jectile trajectories are fairly insensitive to the value of
8;„.The value ~/4 (45 ) was chosen, since it minimized
the number of targets rejected for inducing negative time
increments.

III. PRIMARY SI.D%'ING-DQ% N CAI.CUI.ATIQNS

The model described above is illustrated by a series of
calculations on the slowing down of 10-eV to 10-keV Cu
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atoms in Cu targets, calculations of a type that have often
been made before. ' Besides the usual range calcula-
tions, the times required for the particles to slow down
were evaluated as well as correlations between the ranges
and the slowing-down times.

A. Computational parameters

The interactions of the atoms were governed by the
Moliere potential with the screening length a&2=7. 38
pm. The lattice constant of Cu was ao =0.3615 nm and
the impact parameters were cut off at p, /a0=0. 62. The
inelastic energy losses were taken from the LSS theory. '

Four-point Gauss-Mehler quadrature was used to evalu-
ate the scattering integrals. The targets were often static
single crystals. For polycrystalline targets, the crystal
axes were rotated randomly and isotropically about a lat-
tice site close to the primary impact point before launch-
ing each primary. For "amorphous" targets, a similar ro-
tation about a lattice site near the projectile position was
performed before each collision. The projectiles were fol-
lowed until their kinetic energies fell below a value E„
usually 5 eV. Sets of 10000 primary particles were gen-
erated with randomly selected initial conditions: direc-
tions of motion for particles starting from lattice sites;
impact points for particles entering a crystal surface from
outside. Distributions were recorded of the time taken by
the projectiles to slow down and of various components
of their ranges. Several central measures of these distri-
butions were recorded. The resulting mean ranges and
slowing-down times were evaluated with a precision of
about 1%.

The calculation were done on a Data General Corpora-
tion Eclipse MV/10000™computer. A calculation for
projectiles launched from lattice sites at 10 keV required
about 48 min to perform; times were roughly proportion-
al to the initial projectile velocity. Calculations for pro-
jectiles launched from outside the target required much
longer times because of channeling: 2 h for 10-keV pro-
jectiles incident on a polycrystalline target.

The results reported here emphasize the radial range
and the slowing-time. The radial range, also called the
"vector" range, "' is the distance from the initial site
of the particle to its final collision point. The slowing-
down time is the difference between the time at which the
particle makes its final collision and the time at which it
began to move. A few results are also reported for the
penetration, the projection of the radial range onto the in-
itial direction of the primary.

B. Rejection of target atoms

As mentioned before, difhculties were encountered
with time calculations using the original model ' be-
cause negative particle motions resulted from collisions
misordered in time by time-integral effects, but changes
in the model eliminated most such events. A detailed in-
vestigation was made of the frequency and the nature of
those remaining events in which targets were rejected be-
cause they would cause negative motion of a projectile.

Whatever the initial energy, such events occurred only
near the end of a trajectory, usually in one of the last two

or three collisions. As a result, their frequency depended
strongly on the value of E, . Furthermore, the rejected
atom had always been a target in an earlier collision, usu-
ally two or three before the one in which the rejection oc-
curred. In the earlier collision, the target often received
enough energy from the projectile to be regarded as dis-
placed had cascades been generated. In that case, the
later target rejection would not have occurred since its
site would then be unoccupied. The incidence of such
events was always low: at initial energies above 100 eV,
only one trajectory in five involved rejected targets, rarely
more than one each. At lower energies, lattice effects in-
creased the incidence of rejection to as many as one tra-
jectory in three, but other aspects of the situation were
unchanged. If thermal displacements or random rota-
tions were included in the model, more targets were re-
jected because these processes often put atoms in loca-
tions inconsistent with the previous history of the projec-
tile: for example, an atom could be rotated into a posi-
tion just in front of a projectile where it would compel
negative motion. The rejection of targets eliminates col-
lisions with such particles, as well as inappropriate repeat
encounters.

In no case did such target rejection inhuence either the
spatial or the temporal aspects of the trajectories to a
significant extent. Statistical uncertainties springing from
altogether other causes were always far greater than any
effect of the rejection of a few target atoms.

C. Effects of the cut-off energy, E,

It is well known that the ranges of energetic atoms in
solids are dominated by their initial kinetic energies and
that the choice of cutoff energy has relatively little effect
on the results of range calculations. Figure 3 shows the
mean radial ranges and slowing-down times of Cu atoms
recoiling from lattice sites in a static Cu monocrystal as
functions of E„normalized to the values for E, =5 eV,
for three initial kinetic energies. The radial range is rela-
tively insensitive to the choice of cutoff: At 10 keV, an
order-of-magnitude change in E, produces a change in
the mean radial range of only 2 iso. The sensitivity in-
creases when the cutoff energy becomes a significant frac-
tion of the initial energy, but these results show that the
ranges of the particles are determined primarily by the
early portions of their trajectories, as expected.

This behavior contrasts with that of the slowing-down
time which shows a substantial dependence on the final
energy chosen. In fact, the slowing-down times are dom-
inated by the late portions of the trajectories, where the
projectiles are moving most slowly, and must be sensitive
to low-energy aspects of the model. Comparisons be-
tween BCA slowing-down time calculations and either
experiments (currently not feasible) or other calculations
requires careful attention to the final energies involved.

D. Final-energy distributions

Distributions of the final projectile kinetic energy Ef
are shown in Fig. 4 for 10 keV projectiles slowing down
in Cu for several variations in the model. The effect of
varying E, in the nonlocal inelastic loss model is shown
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FIG. 3. The mean radial range and the mean slowing-down
time of Cu atoms recoiling from lattice sites in static monocrys-
talline Cu, as functions of the cutoff energy E„normalized to
the values for E, =5 eV.
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in parts (a) through (d). In each case, a large peak near
Ef =0 results from the energy scaling performed when
the sum of the indicated elastic and inelastic energy losses
exceeds the kinetic energy with which a projectile enters
a collision. The mean total inelastic energy loss (Q) is
essentially independent of Ef, but some 10/o to 25% of
the projectiles require the rescaling of their energy losses,
a fraction that decreases as E, increases.

When the local inelastic energy loss model is used,
such rescaling is rarely necessary, even at E, = 5 eV, and
the peak near Ef =0 is greatly reduced, as Fig. 4(e)
shows. The final-energy spectrum obtained with the local
model differs but slightly from that obtained in Fig. 4(f)
with no inelastic energy losses at all. The shape of the
spectra in these cases results from the effects of simul-
taneous collisions on the final energies. This can be seen
from Fig. 4(g), which shows calculations performed with
neither inelastic energy losses nor simultaneous collisions.

The shape of this spectrum is still not what might be
expected, since small-angle scattering is much more prob-
able than large-angle scattering, just the opposite of what
the figure implies. The calculation was repeated for an
amorphous target, with the result shown in Fig. 4(h).
The final-energy spectrum for the amorphous medium
shows the expected preference for small-angle elastic
scattering. This spectral shape gradually appears in the
nonlocal inelastic loss results when E, is increased
sufficiently. Thus, the crystallinity of the target

FIG. 4. The final energy spectra of 10-keV Cu atoms recoil-
ing from lattice sites in static monocrystalline Cu. The arrows
mark the mean final energy (Ef ). The effects of several varia-
tions in the model are shown.

influences the final energy spectrum (and therefore the
slowing-down time), in addition to the cutoff energy, the
model used for the inelastic energy losses, and the pres-
ence of simultaneous collisions.

IV. SLOWING-DOWN TIMES
IN CRYSTALLINE TARGETS

Figure 5 shows the mean radial range computed for
10-eV to 10-keV Cu atoms recoiling from lattice sites in
static monocrystalline Cu targets and the corresponding
mean time taken by the projectiles to slow down from
their initial energies to (5 eV, using the nonlocal inelas-
tic energy loss model. These curves show several features
which can be explained by reference to distributions of
the radial range and the slowing-down time.

A. Low-energy slowing-down times and radial ranges

The step in the slowing-down time curve of Fig. 5 at
about 18 eV can be understood by examining the
slowing-down time and radial range distributions shown
in Fig. 6. There is a close correspondence between the
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FIG. 5. The mean slowing-down time and the mean radial
range for Cu atoms recoiling from lattice sites in static mono-
crystalline Cu.

time and the range histograms: The same groups of par-
ticles occur in both with the same number of particles in
each group. The group positions in range change only
slightly as the energy increases from 10 to 22 eV. The
groups evidently represent particles stopped primarily by
encounters with their near neighbors: up to 22 eV, only
the first three groups of neighbors are important. In
units of ao, the distances from the initial primary site to

these neighbors are 0.707, 1, and 1.225, respectively, but
the distances to the actual collision points are reduced,
partly by the quantity x, [see Fig. l and Eq. (2)] and part-
ly by geometrical effects. The group positions are about
0.37, 0.68, and 0.88, respectively. The difference from the
crystallographic values, averaging 0.33, is consistent with
the scattering integrals appropriate to collisions at these
low energies.

The group positions in time, in contrast, are not fixed,
but move to smaller times as the particle velocities in-
crease. The mean slowing-down times represent a bal-
ance between this effect and the changing populations of
the groups. The mean time increases only slowly with
the initial recoil energy from 10 to about 16 eV, where
the third particle group first appears. It rises rapidly as
this group grows in importance, but then grows more
slowly until a fourth group appears at about 30 eV.
Thus, the "waves" in the slowing-down time curve of Fig.
5 occur when the primaries are able to escape beyond
particular sets of neighbors: Second neighbors at about
18 eV, third neighbors at about 40 eV, and so on. This
behavior damps out as the energy reaches 100 eV or so,
because so many different particle groups are involved.
The 18 eV step may be related to the fact that the
minimum displacement threshold in Cu is approximately
19 eV, ' since only particles that leave the vicinity of
their near neighbors are in fact permanently displaced.
The "waves" are much less evident in the range curve,
since the group positions in range are fixed and the mean
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FIG. 6. Radial range and slowing-down time distributions for low-energy Cu atoms recoiling from lattice sites in static monocrys-
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radial range is determined only by the changing group
populations.

B. Slowing-down times and radial ranges at higher energies
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FIG. 10. The mean slowing-down time and the mean radial

range for Cu atoms recoiling in amorphous Cu. The dashed line

shows the slowing-down time calculated in a continuous
slowing-down approximation. '

At higher energies, the local crystal structure no longer
dominates the radial range and slowing-down time distri-
butions. Distributions calculated at 1, 3.5, and 10 keV
are shown in Fig. 7. The nearest-neighbor peak in the
slowing-down time is still observable at 1 keV, but disap-

pears at higher energies. As the initial kinetic energy in-
creases, the distributions become increasingly skewed to
the right, evidence that channeling is becoming impor-
tant. The penetrating tail of the range distribution is
hardly noticeable at 1 keV, but the quite unsymmetrical
distribution suggests that at least a tendency towards
channeling is beginning. Blocking of the primaries by
neighboring atoms also contributes to the shape of this
distribution. The development of a group of channeled
particles and their increasing importance accounts for the
somewhat sigmoid character of the curves in Fig. 5 near
4 keV.

The slowing-down time distributions parallel the radial
range distributions but are significantly less skewed. In
addition to the less pronounced tail on the long-time side,
they rise less abruptly on the short-time side than do the
corresponding range distributions.

C. Correlations of radial ranges and slowing-down times

Correlations between the radial range and the slowing-
down time were also investigated: Two examples are
shown in Fig. 8. In general, of course, particles which
stop slowly will travel greater distances than those which
stop quickly. However, especially for intermediate
ranges, there are so many possible trajectories that can
lead to a particular range that considerable dispersion of
the slowing-down times must be expected for most parti-
cles. This expectation is borne out in Fig. 8. At both en-
ergies, the slowing-down times and radial ranges are
strongly correlated, but significant dispersion also occurs.



40 SLOWING-DOWN TIME OF ENERGETIC ATOMS IN SOLIDS 10 725

10 keV Cu -+ STATIC AMORPHOUS Cu

MOLIERE POTENTIAL (a~2 = 7.38 pm)
LSS NONLOCAL INELASTIC ENERGY LOSS

E =5eV

0.10-

0.08-

O
0.06-

), = 17.25+ 0.08

(3

o.o4-

0.02 q
x10

0 10 20 30 40 50
r/ap RADIAL RANGE

0.010-

0.008-

O
O.OOS-

Q
0.004-

0.002-

26.9+ 0.4 fs

x10

0 50 100 150 200 250 300
t SLOWING-DOWN TIME (fs)

60
LIj

I-

0
UZ'

0
CO

300—

+II ~E

'
.-':"&'-%%i

250—

--'%p

FREQUENCY
a-1 fs—1

p

2x10 5

150—

-;fit'

'100 -mp, ."it

5o -~"-

'i'

0
0 10

1 x10~

2 x10~
EE

4x10~

I . I ~ I

20 30 40 50
riap RADIAL RANGE

I

60

FIG. 11. Radial range and slowing-down time distributions for 10-keV Cu atoms recoiling from lattice sites in amorphous Cu.
The arrows mark the mean values in the two single-variable distributions. The scale above each arrow is marked off in units of the
standard deviation of the distribution. The + marks the maximum in the joint distribution. Four frequency ranges are shown by the
shading.

At 10 keV, a pronounced tail extending to long ranges
and long times represents the channeled particles. This
tail is not significant at the lower energy.

Channeling is much more important for primaries in-
jected into a crystalline target from outside. Figure 9
shows some results obtained for the penetration of 10-
keV Cu atoms normally incident on a polycrystalline Cu
target. Both the slowing-down time and the penetration
distribution show the long persistent tail characteristic of
channeling. ' The joint distribution shows a pronounced
tail region with an interesting structure. Therre is evi-
dence of at least three particle groups, each with its own
relationship between penetration and slowing-down time.
These groups presumably represent the most open axial
and planar channels in the fcc Cu crystal. Traces of this
structure are probably present in Fig. 8 as well, but the
much lower incidence of channeling for primaries recoil-
ing from lattice sites obscures this point.

V. SLOWING-DO%N TIMES
IN AMORPHOUS TARGETS

Figure 10 displays the results of some calculations of
the mean slowing-down times and radial ranges of projec-
tiles recoiling from initial sites in amorphous Cu targets.
The amorphous model used is based on rotational disor-
der of the crystalline lattice, with preservation of the dis-

tances to near neighbors, and shows considerable short-
range order. The mean slowing-down time in Fig. 10
shows the presence of the short-range order in the step
near 18 eV, less abrupt than in the crystalline case of Fig.
5, but explained in the same way. No other structure
remains in either the slowing-down time or the radial
range curves.

The slowing-down times evaluated for amorphous Cu
targets may be compared with the results obtained by
Oen and Robinson' using a continuous slowing-down
model. Their calculation used the LSS inelastic energy
loss model' and an approximation' to the elastic stop-
ping cross section developed by Lindhard et a/. The
dashed curve in Fig. 10 was obtained from Oen's and
Robinson's calculation with the screening length used in
the MARLQ%E calculations and with the final energy
E, /2, . Because the times are additive in the analytical
model, changes in the final energy correspond to moving
the dashed curve vertically in the figure: Changing the
final energy to E„for example, reduces the slowing-down
time by 7 fs everywhere. More importantly, although the
same screening length was used, the potentials were
different in the two calculations. The energy-dependent
potential corresponding to the Lindhard differential
scattering cross section has been deduced ' using an in-
version procedure of Firsov's. At the highest energies
in the present calculation, this potential is somewhat less
repulsive than is the Moliere potential, while at the
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lowest energies it is somewhat more repulsive. These
differences correspond qualitatively to the fact that the
analytical slowing-down times are greater than the
MARLowE results for high energies, but are less for low
energies.

Figure 11 shows the radial range and slowing-down
time distributions evaluated for 10-keV primaries. Both
functions are much less skewed than are those for the
crystalline targets and there is no sign of the long tails
which are the signature of channeling. The slowing-
down time distribution is very nearly Gaussian. The
mean values of both distributions lie quite close to the
modes (most probable values), unlike the situation for the
crystalline targets. The joint distribution also shows only
the appearance of a two-dimensional Gaussian distribu-
tion. Thus, the appearance of the distributions for the
amorphous medium confirms the identification of chan-
neling in the crystalline distributions.

VI. CONCLUSION

The work reported here shows how evaluations of
significant times can be included in BCA calculations
without altering the event-driven character of the model
and without major impact on the computational
efficiency. It therefore appears feasible to treat the col-
lisions in a complete cascade calculation in proper time
order, rather than in the velocity order or other order
that has been used before. The broad range of slowing-
down times displayed in Figs. 6—9 already suggest that

reordering the collisions may have significant conse-
quences: Since cascades develop by generating mostly
low-energy projectiles, many particles must stop long be-
fore the high energy recoils slow down completely and in-
terferences between fast and slow particles may be impor-
tant.

Finally, the slowing-down times for primary recoils al-
low some remarks to be made about the validity of
separating collision cascade development into separate
collisional and many-body phases. The mean slowing-
down times, even at 10 keV, are short enough to separate
the collisional phase reasonably cleanly from the direct
effects of thermal vibrations, diffusion, and other many-
body effects, which typically are concerned with times of
a few hundred femtoseconds or more. However, as the
distribution functions of Figs. 7 and 9 show, some parti-
cles take much more than the mean time to slow down,
especially when channeling is important. Thus, at the
very least, the "frozen" thermal displacement model
which is often used in cascade calculations' may be un-
reliable. To say more than this requires extensive study
of whole cascades.
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