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Mobility of kinks and polarons in conjugated polymers
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The phonon-limited mobility of kinks and polarons in conducting polymers due to scattering
from acoustic phonons is investigated. The eftect of symmetry-breaking interactions is discussed
taking into account the existence of a finite maximal speed of these excitations. A striking
di6'erence of the transport coefficients depending on the charge of the excitations is found.

I. INTRODUCTION

The original phenomenological model for conjugated
polymers by Su, Schrieffer, and Heeger' has brought
much insight into the static and dynamical properties of
these substances (for a recent extensive review on experi-
mental and theoretical aspects see Ref. 2). Besides ESR
and NMR experiments, the optical properties were espe-
cially studied in detail since they are accessible experi-
mentally with great accuracy. The transport properties
of nonlinear excitations, e.g. , the temperature dependence
of the mobility of kinks and polarons, have been investi-
gated to a much smaller extent; in addition, the theoreti-
cal results are discussed controversially. The diffusion
of solitons may play an important role in the motion of
photoexcitations, and may be crucial in the interpretation
of ESR and NMR data.

The original model with its special electron-phonon
coupling is highly symmetric, and in recent years there is
a growing interest in symmetry-breaking effects. '

One of these symmetries, the so-called electron-hole or
charge-conjugation symmetry (CCS), may be broken by
different mechanisms like additional electron-phonon
couplings or electron-electron interaction. In recent in-
vestigations it was found that a relevant electron-phonon
coupling has a drastic effect on the optical transition ma-
trix elements. As an effect the energy level of the excita-
tions is shifted, and, more importantly, oscillator
strengths between different transitions are redistributed. '

Consequently, it was found that optical experiments can
be explained satisfactorily.

Motivated by this success, it is natural to ask whether
these symmetry-breaking contributions may also
inhuence the transport properties of nonlinear excita-
tions.

In the following we calculate the scattering of solitons,
polarons, and bipolarons with acoustic phonons and
determine the temperature dependence by a method simi-
lar to that discussed by Conwell. ' The method of collec-
tive coordinates gives the same interaction Hamiltoni-
an. ' The calculations were done by assuming "relativ-
istic" motion of the nonlinear excitations. Since the cor-
responding limiting velocities are not well known experi-
mentally, we also discuss the dependence of the diffusion
constant on these parameters. One interesting result of
our investigation is the fact that the diffusion constant

depends quite critically on the charge of the excitation,
and this may give hints to further experimental investiga-
tions.

In Sec. II we discuss two different types of interaction
in the continuum approximation. ' These Hamiltonians
are used to calculate transition matrix elements. We em-
ploy the full relativistic approach similar to that by
Jeyadev and Conwell ' giving rise to a mass of the non-
linear excitations which increases with their velocity. In
Sec. III various results are discussed, especially the
charge dependence of the mobility. An appendix is in-
cluded, giving details of the analytical calculations.

II. INTERACTIONS AND MOBILITIES

We start with the simplest model of conjugated poly-
mers, the Su-SchrieFer-Heeger (SSH) model given by'

Kss = —g [to —a(u„+, —u„)](c„,c„+„+H.c. )

n, s

+ —,'K g (u„+,—u„)

Here the first term describes the (displacement-
dependent) hopping of the tr electrons of the system, and
the second term the elastic energy associated with the o.-

bond compression of the underlying lattice. We consider
two different CCS-breaking terms which contain a cou-
pling between vr electrons and the lattice, namely

K~=Pa g [(u„+,—u„)—(u„—u„,)]2c~,c„, ,
n, s

K = —g [t2 —ya(u„+z —u„)](c„+z,c„,+H. c. ) .
n, s

The first term, H~, gives an additional contribution to the
elastic energy of the lattice depending on the m-electron
density on each site and has been used to explain details
in the optical-absorption spectra of (bi)polarons in
different conjugated polymers. ' The second term, H~,
describes a next-nearest-neighbor hopping used to explain
photoluminescence experiments in cis-( CH )

In the following we use the Takayama —Lin-Liu —Maki
(TLM) continuum limit" of the Hamiltonians (l)—(3).
Since the dominant scattering mechanism is the one-
acoustic-phonon absorption and emission, ' we are only
interested in terms coupling the n-electron field P, (x ) to
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the acoustic-phonon field P(x ), which is introduced
through tt„=(4a) '[( —I )"b,(x )+P(x )], x =na. Here
the first term corresponds to the q=2kF component of
the lattice distortion, whereas the latter represents the
q=0 contribution. ) In the spirit of the original TLM
model, we have neglected the quantum fluctuations of the
order parameter b, (x). The term for the TLM model has
been derived by Maki,

H,„, =i g f dx
P'(x)[hatt(x)o,

B. g, (x)] .
S

The corresponding terms for the CCS-breaking models
10, 11

aH~, = — P g f dx b, (x )P"(x )g, (x )o 2$, (x ), (5)
S

Hr„, = —ay g f dx P'(x )g, (x ) lg, (x ) . (6)

Note that the contribution of the next-nearest-neighbor
hopping term is of order a and not of a as the TLM and
P term.

Equations (4)—(6) are evaluated with the unperturbed
wave functions for the kinks and polarons, respectively.
The explicit form is given in the Appendix. Here we note
that in contrast to the pure TLM case the CCS-breaking
contributions are proportional to the charge of the exci-
tation.

In calculating the mobility p as function of the temper-
ature T, we proceed in the relaxation-time approach for
solving the Boltzmann equation as proposed by
Conwell. ' The transition matrix element Mkk. for a
scattering of a kink or polaron from a state with momen-
tum k to a state with k' is given by

mkk, = k'iy' q a,„, kiv q
a= TLM, /3, y

where N(q ) and N'(q ) are the initial and final numbers of
acoustic phonons with wave vector q. The calculation of
Mkk. for the various interaction terms is sketched in the
Appendix. The following steps in the calculation of p(T)
are analogous to the calculations of Jeyadev and
Conwell. ' The scattering probability is given by

S(k~k')= IMkk I 6(Ek Ek+-4 )cu,q—
with the dispersion cu =u, Iq I

(where u, is the velocity of
sound) and the phenomenological dispersion relation (cf.
Refs. 8 and 9)

E =(A'c k +m c )'~ +E —m ck 0 p, k 0

for the energy of a kink or polaron, respectively. Here
E k is the creation energy of a kink or polaron with rest
mass m0. The maximum propagation velocity c of kinks
and polarons is given by c =2.6u, for kinks (see Ref. 16)
and for polarons by

c=c(r)=2r(3 —2r )u,

[r being the parameter characterizing the structure of a
polaron (cf. Appendix)]. This last formula has been de-

rived by Pesz' using the fact that the polaron amplitude
b, (x ct ) has just the same form as the one-soliton solu-
tion of a modified Korteweg —de Vries (mKdV) equation.
Since this is only a crude approximation to the maximum
velocity which has to be determined from the full dynam-
ics within the lattice model, we have also used different
values of e in order to show the dependence of our results
on this parameter (cf. Sec. III).

The relaxation time r(k ) for a fixed k value is given by

fdk'S(k~k'),
2m

and the mobility p( T) follows from

f dk r(k)(VkE„) e
p(&)= g'k TB dke

—E~ /k (12)

assuming Maxwell distribution of excitations. The corre-
sponding diffusion coefficient D( T) is calculated from the
Einstein relation

D(T) =k& Tp(T)/Iel (13)

2
Hx, r /Hx', &LE

int 1nt, (14)

and is of order 1 for charged kinks (e.g. , n =0 or 2) and
an estimated value' of y=0. 15 (with the SSH parame-
ters a =4. 1 eV/A, IC =21 eV/A, and 60=0.8 eV).
This directly results in a ratio for the diffusion coefficients
of differently charged kinks S+—of

2

D (S+ ) /D ( S ) =-
I+8y (15)

(with a'/ADK =-1) for the TLM model, extended with the
y term. Consequently, the diffusion (or mobility) of posi-
tively charged kinks is very much suppressed compared
with the negatively charged species (cf. Sec. III).

(ii) For the (bi)polarons the CCS-breaking interactions
have two effects on the mobility. First, there are new in-
teraction terms H~, arid H ~,. Secondly, the CCS-
breaking terms may change the polaron parameter r con-
siderably, ' and this clearly influences the maximum ve-
locity c(r ) in (10) and the (bi)polaron mass'

1 rartanh( r—)mo —mo(r)=2mk(nkr 1 3 —1
7

(16)

(Bi)polarons may become very massive in CCS-breaking
models, a situation discussed recently in connection with
polyaniline. '

Two concluding remarks are in order.
(i) A simple consideration shows that the inclusion of

CCS-breaking terms may result in a dramatic change of
the diffusion coefficient (or mobility) of difFerently
charged kink excitations. It is shown in the Appendix
that the interaction Hamiltonians H;„, of the TLM and y
models are of the same functional form. The ratio of the
prefactors is given by
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III. RESULTS AND DISCUSSION 0.10
pk

In Figs. 1 and 2 the intrachain diffusion constant D( T )

and the corresponding mobility p( T) for both hole and
electron polarons are shown using parameters appropri-
ate for trans-polyacetylene. The inclusion of CCS-
breaking interactions results in a reduction of both quan-
tities compared to the TLM case studied before. In addi-
tion, a significant splitting for positively and negatively
charged excitations is seen. The strong increase of the
mobility p(T) at lower temperatures (cf. Fig. 2) indicates
that the one-phonon scattering process corisidered here
becomes quite ineffective, and, consequently, different
mechanisms such as trapping and/or scattering from de-
fects determine the transport properties of the nonlinear
excitations along the chain in this temperature range.

As can be seen in Fig. 1 the maximum in the diffusion
coefficient D( T) is shifted from T= 85 K (TLM interac-
tion) to higher temperatures by the P and y interactions.
This is a consequence of the effects of these CCS-breaking
mechanisms on the mass of a polaron: it is shown in Ref.
12 that the inclusion of the I3 term strongly influences the
value of the parameter r. According to the expression
(16), this leads for r values greater than the TLM value
r = 1/v'2 to an increase of the polaron (rest) mass. The
temperature at which D(T) exhibits a maximum is pro-
portional to this mass resulting in the observed shift to
higher temperatures.

In contrast to polarons the splitting discussed before
becomes much more pronounced when bipolarons and
kinks are considered (cf. Figs. 3 —5). Furthermore, we
now want to study the influence of the two CCS-breaking
interactions on p(T) separately. The inclusion of the
next-nearest-neighbor hopping y leads to a strong in-
crease (decrease) of the mobility for positively (negatively)
charged bipolarons. We also observe that the effects of
the P and y terms are opposite with respect to the TLM
behavior, resulting in a strong competition between these
two CCS-breaking interactions. This can be understood
from the different sign of the corresponding coupling
constant i) (cf. Appendix). In spite of this difference the
value of the mobility at 300 K differs by an order of mag-
nitude for differently charged bipolarons for finite values
of P and y.

The strong enhancement of the mobility for negatively
charged kinks as seen in Fig. 5 has been discussed and al-
ready explained in the previous section.

In Fig. 6, the inAuence of the maximum velocity c on
the mobility p, (T) is shown for various values of c (in
units of the sound velocity U, ). The Newtonian limit cor-
responds to c —+~. As discussed at length by Jeyadev
and Conwell, ' this limiting velocity becomes compara-
ble to the thermal velocity at room temperature, and,
thus, the effects of a varying mass cannot be ignored.
Note that the resulting lowering of the mobility is not as
strong with CCS-breaking interactions as compared to
the TLM (deformation-potential) model (cf. Fig. 2 of Ref.
8).

In conclusion, we have demonstrated that small CCS-
breaking terms drastically alter the mobility of charged
nonlinear excitations in conducting polymers. These
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FIG. 1. Diffusion constant D as function of temperature T
for difterently charged polarons P—.Solid line, TLM interac-
tion with parameters appropriate for polyacetylene; dashed

lines, with inclusion of symmetry-breaking interactions
P=y=0. 1 (cf. text).

20
1B-
1E)—
14—
12—
10—
Eb-

E)—

2—
0

1

1

I
1

1

I

\

100

T (K)

200 300

FIG. 2. Mobility p as function of temperature T for
differently charged polarons P+; lines as in Fig. 1.
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FIG. 3. Mobility p as function of temperature T for positive-
ly charged bipolarons. The dift'erent lines correspond to
different choices of interaction strengths as indicated (cf. text).
TLM: absence of symmetry-breaking interactions.



10 512 U. SUM K. FESSER, AND H. BUTTNER~ 7 ~

2.0

~.O — --
p. ~ -.P=O. O, y=O. 'I

0.0 I

100
I

200 300

140

120

100 .—

'
n of temperature T for negative-. M bility p as function o emp

ly charge ipod b' larons; lines as in ig.

tion

ACKNOWLEDGMENTS

s su orted by the Deutsche For-
u h Sonderforschungsbereichschungsgemeinschaft through Son er o

213 (Bayreuth).

APPENDIX

x we ive detais ox we
' '1 of the calculationspp g

sketched in Sec. . nhl faction terms t e e ec
h 'h' """'"'b'd6 are evaluated wit

f rturbation expansion.
'1 d b

the s irit of a per u
For e ink' k this can be done easi y, anth

K TLM —TLM Idx F (y)GTLM TLM( g )H;„,'

and

~ ~

ere e, t espih litting of the mobilitye
ed s ecies, may pog p

able. Unfortunate y, e
~ ~

mentally observa e.
the mobi ity a ong1 g a single chain is

lk
ar

u les only to neutrathe ESR which coup e
b detected. An investi-

bt lk
effects cannot be e ec

n mobilities in suga 1

e o
' ', h the inclusion ofe ol anilines, w ere

h f
y

CCS-breaking interac
'

'
n data has been provenn quite useful,

h 1 d-promises eth possibility of testing our
s.

100 200

ion of temperature T for5. Mobility p as function oFIG. 5. o
differently charged kinks —;in

=yl~ 9rc Jdx Fp(y)( )Gp(y)(g )

'
ns respective y.13o ) ~ o pfort e

the charge of a kin,
e a in Sec. II, an

g
field as introduced in
The various functions are

2 a2

y
TLM — a p p

4~~~oko
'

4~o

FTLM Fy yl( ) G TLM G gi ( )

(A2)

(A3)

5-
M

eq

«I & ek, fk, (x() x —,x)1 (x))( 1/l~(x )(738~ g X

FP=P"(x ), Gg =Ax(x )hx(x ) .

evaluation ofs the correspondingFor polarons,
L se is quite lengt y; iin the TL case

'(P ( ),&1(( )s 3 x s

—1 G A d )with the ep oh 1 f the (Bogoliubov — e
uations o mof tion. One obtains

2

I

100
I

200 300

+ [2A (x ) /~UFO' ] I

=g( ")a where ak isis the annihi-

k The resulting

+l U aild =
U k, is

for electrons inin state
11 1 thanrm is muc mo

ex ression o aint eh corresponding p
osed by Jeyadevdeformation-potentia app

ll ' and we obtainand Conwe, '

as function of temperature T for negative-
f h

l'nl
ly charged polarons for var'rious values o t e m
as indicated (cf. text).

P, TLM TLM d ~ GTLM TLM g )H;„',

= —a /4U, andwith q



40 MOBILITY OF KINKS AND POLARONS IN CONJUGATED POLYMERS 10 513

G TLM 1 1

P & g2 g2
c/(r) c2(r)+

2 2, r =Kp/p A'+ =cosh[Kp(x+xp)],

b, (r)= (n+ n—)(1 —r )'~ + arcsin 2r(1 r—)
'~ mtp.

2UF 71'vF 2A, 2 r (m.tp) +r 6p

c, (r)=
2~o 2r'

rtu~A, (1—r )
]/2 2(

2hp

HUFF, 1 —
P

For the other (P, y) interactions this procedure yields, in
a similar form as for the kink case,

consideration.
The subsequent calculations are analogous to the ones

given in Ref. 8; the acoustic-phonon field is written as

Gr =bp +, 6~= b~(x )b~(x )
1 1

(A6)

P(q)=
2~cH~q

1/2

(a +a )

P(x ) = —g P(q )e'qv'~
(A7)

(which is in fact different from the corresponding expres-
sion for kink, since kink and polaron profiles are
different). It is clear that the CCS-breaking interactions
are proportional to the charge of the excitations under

with co~ =u, ~q ~. The necessary integrals over x are com-
plicated (especially in the case of polarons), but can be
computed by analytical continuation onto the strip as is
usual for hyperbolic functions; some of these integrals are

tqx pe7Tl

sinh (2Kpxp )sinh(mq /2Kp)

;q tanh(x /g ) i rrq

cosh2(x/g) 2sinh(~qg/2)

e ' i —2coth(2Kpxp) +i —2coth(2Kpxp)
Kp Kp

(ASa)

(A8b)

J' dx—e'& 1 7Tl 2q ~xp—4 coth(2Kpxp )
r sinh(mq/2Kp)sinh(2Kpxp) Kp Kp

(ASc)

In Refs. 8 and 9, it is shown that, due to conservation of
energy and momentum, only long-wavelength acoustic
phonons [A. ~ 40a (50a ) for kinks (polarons)] have to be
considered in one-phonon-emission and -absorption pro-
cesses. Therefore, these integrals can be approximated by
their values for small q (cf. Ref. 9). The resulting in-
teraction operators are, for the kink,

H;„,= g H"(q)(1+Syi, +Pq ),
q

1/2

1/2

xg
q 5

ia 1 c) (r )Kpxp
b, (r)——

2tp r ' r sinh(2K~ p )

+ . 2 [2Kpxpcoth(2Kpxp ) —1]r sinh (2K~p)

H "(q ) =(2iu, hp/g ) cu' (a —a )q q q

g =4a(a /MCH )
' (A9)

imp
y(n++n —2)

2tp

/3a b,pf2= (n++n —2)( —i )
4tpKp

(A10)

4(X a tpP= (1 n)P, y =—(1 n)y, —
2

1X 2K' p +
(1—r2)'~2 sinh(2Kpxp)

and, for the polaron,

X [1—2Kpxpcoth(2Kpxp )]
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Calculating the matrix elements MI,&, with these in-
teraction operators as given in Eq. (7), the final result for
the difFusion constant as given by Eq. (13) up to an in-
tegration which has to be done numerically reads, for the
kink with maximal velocity c,

c3 2
(T)— g fK( ) y

2b'oko v 1+y T
(A 1 1)

with ko=moc/A, mo the kink rest mass, and Y=k/ko,

V /C VSff (y)] '=Il+8y+13k ( ) I (e ' ' —1) ' —+
[(IyI — ' )'+1]'"

+e(lyl —y, )Ii+8)-+%02(y, )'I'(1 —e " '"'
) 'y,

c

+e(y, —IyI)Il+8y+/3ko(y, b) I y,„(e ' "—1) ' ——+y /c~y f Vs Iy I+yfb

[(IyI+yf ) +1]'

[(lyI —y, )'+1]'"

3' = k, =
ko c [1—(u, /c) ]' '

fi[1 —(u, /c) ]'~

The expressions

u, /c(1+y )' +IyI
1 —(u, /c )

u, /c(1+y')'" —
Iy If s

1 —(u, /c)

and

sorption and emission, respectively). Here the bracket
(x(y) ) T means the thermal average

f dy x(y)exp[ —g(1+y )' ]
(x(y) ) T=

dy exp g 1 +y 2 1 /2

with g=moc /k&T. The corresponding result for the
polaron is

u, /c(1+y )'
Jem

1 —(u, /c )

are the same as in Refs. 8 and 9 (ab and em denote ab-

McH us Ac
D (T)= (y)

Baulk 1+y l
with

(A12)

+e(lyl —y, )l f)+f k 2(yo,
—)'I (1—e ' '

) 'y,

V /C[fI( )] 1 —
I f +f I 2( fl )2IZ(e 5 ab 1) 1 6y 2 sb 8

[(I I

b )2+1]J/2

f
+e(y, —Iyl)l f, +f,ko(yfb) 1(e —' "—1) yfb ——+V /C 'gg Iy I+y.b

[(I I+ f )2+1] l2

[(Iyl —y, )'+1]'"

and all other parameters as before.
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