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Predicted power laws for delayed switching of charge-density waves
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We analyze delayed conduction in three recent models of switching charge-density waves. Each
model predicts a power-law dependence of switching delay near threshold: ~-c. ~, where ~ is the

delay and c—=(E —ET )/ET is the normalized distance above the threshold field ET. Using bifurca-

tion theory, we show that the models of Hall et al. and Mihaly et al. predict ~-c ', whereas the
model of Strogatz et al. predicts ~-c . These diA'erent predictions allow the models to be dis-

tinguished experimentally.

I. INTRODUCTION

There is a great deal of experimental and theoretical
interest in charge-density-wave (CDW) transport. ' It
has been shown experimentally that CDW conduction
occurs only if the local electric Geld E exceeds a depin-
ning threshold Ez. For fields below the depinning
threshold, the CDW is pinned to the lattice by impurities
and other defects. For E)ET the CDW breaks free
from the pinning sites and begins to slide and carry
current. Much of the work on CDW transport has fo-
cused on CDW's which depin smoothly as the applied
field is increased. These systems are characterized by
continuous and nonhysteretic current-voltage charac-
teristics.

In 1982, Zettl and Griiner described a novel form of
CDW transport in NbSe3 in which the system "switches"
discontinuously and hysteretically between the pinned
and sliding states. Switching has since been studied in
other CDW materials ' as well as in NbSe3, " ' and a
number of theoretical models for switching have been
proposed recently. '

One of the most intriguing phenomena associated with
switching is a delayed onset of CDW conduction close to
threshold. '" In response to a suddenly applied elec-
tric field above the depinning threshold, the CDW does
not depin immediately —there is a time delay before the
CDW begins to slide. This delay can range over several
orders of magnitude, from about 0.1 to 1000 micro-
seconds.

Similar delayed transitions occur in a wide variety of
driven dynamical systems. Examples include delayed
phase transitions in ferroelectrics, hangup in phase-
locked loops 2s delayed firing in neurons, and turn-on
delay in semiconductor lasers and Josephson junc-
tions.

For the case of CDW's, an important open question is
the dependence of the switching delay ~ on the normal-
ized overdrive e=(E ET)/ET. It has —been shown ex-
perimentally that the delay increases as threshold is ap-
proached from above, ' but the functional dependence of
~ on c. remains to be clarified. This functional depen-
dence would provide a benchmark for distinguishing

among the different models of CDW switching.
In Sec. II we analyze three recent models of switching,

and show that they all predict a power-law dependence of
the switching delay ~ on the overdrive c.. Close to thresh-
old, the amplitude-collapse model' ' and the screening
model' both predict ~- E ', whereas the mean-field
phase-slip model' ' predicts ~- z '. These power laws
are obtained by bifurcation analysis of the depinning
transition in each of the models. We show that numeri-
cal results agree with the predictions from bifurcation
theory, and we present phase-plane analyses which allow
one to visualize the "bottlenecks" underlying the delay in
the models. Section III offers concluding remarks and
discusses possible experimental tests of the predicted
power laws.

II. ANALYSIS OF MODELS

A. Amplitude-collapse model

Hall et al. ' and Inui et a/. ' have presented a model of
CDW switching based on the ideas of phase polarization,
amplitude collapse, and phase slip between strongly
pinned CDW domains. We review the physical ideas
behind the model and then present its governing equa-
tions.

In the amplitude-collapse model, switching samples are
imagined to be composed of weakly pinned bulk regions
and strongly pinned domains. The effect of an applied
field above the bulk threshold is to polarize the CDW
about its strongly pinned regions. As the field is in-
creased the strongly pinned domains are not dislodged;
instead the elastic cost of the additional polarization
drives the CDW amplitude toward zero.

Hall et al. ' and Inui et al. ' hypothesize that as the
amplitude decreases, the phase elasticity weakens. This
sets up positive feedback with polarization increasing and
amplitude decreasing until the amplitude is ultimately
driven to zero. At the moment of amplitude collapse, a
2m phase slip occurs and relieves the polarization, paving
the way for another round of polarization buildup and
amplitude collapse. If the amplitude recovers insuffi-
ciently before the next collapse, a switch to the sliding
state may be triggered.
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FIG. 3. Dependence of delay ~ on overdrive c.—= (E
—ET)/ET, for the amplitude-collapse model Eq. (1). Parame-
ters as in Fig. 1. Both ~ and c. are dimensionless. For small c
the curve has a slope of ——', in agreement with bifurcation

theory.

For this model the current carried by the CDW is pro-
portional to d P/dt.

Figure 4(a) shows the phase plane for Eq. (3) just below
the depinning threshold. There is a stable node corre-
sponding to the pinned state, and a saddle point close to
it. As in the amplitude-collapse model, the depinning
transition in the screening model occurs via a saddle-
node bifurcation in phase space. As E is increased, the
saddle and the node approach each other and coalesce at
E =ET. Note that there is also a stable limit cycle in Fig.
4(a)—it corresponds to the sliding state of the CDW.
The coexistence of the stable node and the stable limit cy-
cle accounts for the hysteresis between pinned and sliding
states in this model. However, the limit cycle plays no

CDW amplitude to collapse for the first time. This delay
is found by integrating the equations numerically until
6=0.

Figure 3 shows that very close to threshold the delay
scales as c ' . However, for values of c larger than
about 10 the curve becomes more shallow with a slope
between —

—,
' and 0.

B. Screening model

The physical idea of the screening model proposed by
Mihaly, Chen, and Czruner' is that deformations of the
CDW lead to local charge fluctuations which are
screened by conduction electrons not condensed into the
CDW. The screening currents introduce Ohmic dissipa-
tion which damps the relative motion of CDW domains.

The equations for the model are
T

d@) dN)
dt dt

d+2
+X(N, 42) =E+sinC—&i,

dt

(2a)

d+2d+2
dt dt

d4,
+K(C&2 —4, ) =E—sinC&z,

(2b)

where @, and 42 are the phases of two coupled domains,
y is the viscous coupling strength, K is the elastic cou-
pling strength, and E is proportional to the applied elec-
tric field. The viscous term refiects the internal damping
due to the screening effects of the normal electrons. The
pinning strength has been normalized to one in the sinN
terms.

It is convenient to rewrite Eq. (2) in terms of new vari-
ables P and f, defined as P = ( N i

—
C&z ) /2 and

f= (@,+@z)/2. This yields

FIG. 4. Phase plane for the screening model Eq. (2). The pic-
tures are 2m. periodic in the g direction. Parameters: y=0. 5,
E=0.05, for which ET =0.879 528. (a) For E =0.85 & ET,
there is a stable limit cycle (heavy line) and two equilibrium
points: a stable node (solid square) and a saddle point (crossed
circle). (b) For E=0.90 & ET, the saddle and node have
coalesced, leaving the limit cycle as the only attractor. Delay
occurs when the system passes through the bottleneck before
reaching the limit cycle.
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part in the depinning transition.
Figure 4(b) shows the phase plane for E slightly above

ET. As in the amplitude-collapse model, trajectories are
attracted into a bottleneck remnant of the former saddle
node. Thus this model also predicts that the time delay
scales as c. ' close to the depinning threshold.

Figure 5 illustrates the delayed onset of the CDW
current d P/dt for Eq. (3). The parameters were
K=0.05, y=0. 5, and E=0.88. Equation (3) was in-
tegrated numerically starting from the zero-field pinned
state. For this model and for the parameters chosen, the
zero-field pinned state is g=n/2 and /=1. 43. At t=0
the field is turned on. An initial relaxation current is visi-
ble in Fig. 5(a) as the system rushes into the bottleneck.
Then the system comes to a near standstill. Eventually
the system emerges from the bottleneck and the CDW
current dgldt rapidly increases. The system exhibits
current oscillations in the sliding state, but for clarity we

have plotted only the mean value of these oscillations in
Fig. 5(a).

Figure 5(b) shows the switch and the subsequent
current oscillations at an expanded scale. We define the
switching delay r by the condition that d tttldt =0.1. Be-
cause the switch is rapid any other definition would give
essentially the same value for the delay ~.

Numerical integration of Eq. (3) confirms the expected
square-root scaling of the delay. Figure 6 plots the delay
for different values of the normalized overdrive c. The
delay scales as c. ' as E—+0. In Fig. 6 this square-root
scaling appears to hold over a wider range of c than in
the amplitude-collapse model (Fig. 3). A distinctive
difference which would allow the two models to be dis-
tinguished experimentally is that the screening model
yields a ~ versus 8 curve which is concaue down.

C. Mean-field phase-slip model

In previous papers' ' we have presented a mean-field
model of CDW transport with phase slip, in which the
CDW is regarded as a many-body system of coupled
domains. Phase slip due to amplitude collapse between
domains is modeled by a periodic coupling term
sin(8; —Hz), where 0 is the phase of the jth domain.
This coupling force increases approximately linearly for
small 0, —0, then softens and reverses for greater phase
differences. The model is closely related to the
amplitude-collapse model ' for example, the sinusoidal
coupling is qualitatively similar to the effective phase-
phase coupling inherent in the amplitude-collapse model
(see Fig. 1 in Ref. 17).

The main simplifying assumption in the model is that
the coupling between domains is infinite range. This as-
sumption enables the model to be studied analytically.
As we have shown elsewhere, ' ' the depinning threshold
can be calculated exactly, and one can obtain a closed
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FICx. 5. (a) Delayed onset of the current dP/dt in the screen-
ing model Eq. (2). Note that the time axis is logarithmic, and
that both time and dP!dt are dimensionless. Curve obtained by
numerical integration of Eq. (2) with E=0.88 and other param-
eters as in Fig. 4. The initial condition was the E=O pinned
state P=~/2, /=1. 4276. Current oscillations in the sliding
state have been suppressed by time averaging. (b) Same simula-
tion as in (a), but shown at an expanded scale and without time
averaging of the oscillations.
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FIG. 6. Dependence of delay ~ on overdrive c= (E
—ET)/ET, for the screening model Eq. (2). Curve obtained by
numerical integration of Eq. (2), with parameters as in Fig. 4.
For small c the curve has a slope of —2, in agreement with bi-

furcation theory.
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form approximation for the switching delay close to
threshold. The following treatment is intended as a
simplified presentation of some of these results.

The equations for the model are

=E+sin(a J
—8 ) +—g sin(8; —

8~ ),
i=1

j=1, . . . , N . (4)

In Eq. (4), 8~ is the phase of the jth domain, E is propor-
tional to the applied field, K is the coupling strength, and
a is a random pinning angle between 0 and 2~. By an
appropriate rescaling of E,K, and t, the pinning strength
has been normalized to one.

The model is most conveniently analyzed in the limit
N —+ ~. Then the state of the system is characterized by
a function 0 which gives the phase 0 of the domain with
preferred pinning phase a. The equation of motion be-
comes

d0
=E+sin(a —8 )+ICr sin(P —8 ), aE[0,2m],

(5)
where we have introduced the complex order parameter
re'~ defined as

~ 1 2~re'~= J exp(i8 )da .

Thhe amplitude r measures the phase coherence of the sys-
tem and P is the average phase. The CDW current is
taken to be proportional to the rotation rate dit//dt of the
order parameter.

The pinned state for the model Eq. (5) is the time-
independent solution 8 =a+ sin 'E, for a E [0,21r].
This static equilibrium state exists for all E ~ 1 and has
coherence r =0.

In the amplitude-collapse and screening models con-
sidered above, depinning occurs when the pinned state is
annihilated in a saddle-node bifurcation. In the present
model the pinned state does not disappear at the depinnininning
threshold —it just loses stability. To see this, consider the
evolution of a small perturbation about the pinned state.
Let 0 =o.+sin 'E+g, where q is a small perturba-
tion. Expand g as a Fourier series with small ampli-
tudes.

Equation (7) shows that all the amplitudes decay ex-
ponentially fast except a& and b], which lose stability
when E/2) ( I E—)'/ . Thus the depinning threshold is
given by E,=(l —rC'/4)'"

Delayed switching occurs in this model for the same
reason as in the first two models: the system is funneled
into a bottleneck region of phase space. For this model
the static state 0 =a+sin 'E plays the role of the
bottleneck. Systems that are initially incoherent (r=0)
evolve toward this bottleneck state because for r =0, E .
(5) reduces to the uncoupled system

d0
dt

=E +si n( a—8 ) .
Ct (8)

stable
manifold

-- sin(a)

Equation (8) has very simple dynamics: for almost all ini-
tial conditions the solutions to Eq. (8) approach the state
0 =++sin 'E. A similar behavior occurs for the full
system Eq. (5), at least when r is initially small enough.

In particular, suppose we start the system in the zero-
field pinned state, to simulate the experiments where de-
layed switching is seen. For this model the zero-field
pinned state is 0 =a, which has coherence r=0. Then
we turn on a field E & ET at time t =0. Because the

'

tial state has coherence r =0 the system rapidly evolves
toward the bottleneck state 0 =a+ sin 'E.

Figure 7 is a schematic representation of the dynamics
near the bottleneck. The state space is the space of func-
tions 0, subject to the periodicity condition 0 =00 2m.

(mod 2m. ). The origin is the equilibrium state
—10 =a+sin E, and the axes correspond to the Fourier

amplitudes of the perturbation 2) in Eq. (6). Near the
equilibrium state, the linearization Eq. (7) governs the
evolution of the amplitudes. Equation (7) shows that at

aksinka+ g bkcoska . (6)
k=] k=0

Then substituting 8 into Eq. (5) and expanding to first
order in the amplitudes, we find that the various modes
evolve as follows.

le
old

dai
( l E2)1/2K

2
al

db,
dt

( I E2)1/2K
2 1

dak = —(I —E')'"a
dt k~

dbk = —( I —E2)»2b
dt k~

(7)

FI~G. 7. Schematic plot of the How in state space for the
mean-field phase-slip model Eq. (5). The state space consists of
functions 0 that satisfy the periodicity condition 0 = 0~0 2n.

(mod2m). The origin is the state 0 =o;+sin 'E, which is a
saddle point for the Aow. The saddle has a two-dimensional un-
stable manifold whose tangent plane at the origin is spanned by

th
the functions sin(a) and cos(a). If the initial state lies clos t
t e stable manifold, then the Bow drives it rapidly onto the un-
stable manifold. From there the state drifts very slowly away
from the saddle point and eventually jumps to a distant limit cy-
cle (not shown) corresponding to the sliding state.
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the depinning threshold, the state 0 =o;+sin 'E
changes from a stable node to a saddle point with two
equally unstable directions. These directions correspond
to the k =1 modes sin(a) and cos(a), as shown in Fig. 7.
Thus the unstable manifold of the saddle point is a sur-
face which is tangent to the plane spanned by sin(a) and
cos(a).

States close to the saddle point are driven rapidly onto
the unstable manifold; from there they evolve slowly
along the manifold, eventually leaving the neighborhood
of the saddle point. When the system has moved

sufficiently far from the saddle point, the linear approxi-
mation Eq. (7) is no longer adequate, and higher-order
terms in the amplitudes must be considered. When the
higher-order terms become comparable to the linear
terms, the system switches abruptly to a coherent sliding
state.

Thus the switching delay for Eq. (5) is a sum of three
contributions: a rapid approach to the saddle point, a
slow evolution along the unstable manifold, and a rapid
switch to the sliding state. Near threshold, almost all of
the delay is due to the time spent lingering near the sad-
dle. Equation (7) governs the time required to leave the
neighborhood of the saddle point. Above threshold, the
amplitudes a1 and b1 grow approximately exponentially
with a time constant [E/2 —(1—E )' ] '. For F. close
to ET, this time constant scales as (E ET )

' —and hence

n 410 ~ ~ ~ I ~ ~ 't ~

103
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102

10'
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~ ~ ~ I
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~ I

10
~ ~ ~ i

10 10

as c '. Therefore the switching delay ~ should scale as—1

Figures 8 and 9 show that this simple analysis agrees
with numerical integration of Eq. (4). Figure 8 shows the
evolution of the coherence r and the CDW current dP/dt
for two different values of the overdrive c.. Note that the
jumps in coherence and current occurs simultaneously.
Here the switching delay ~ is defined as the time taken for
r to grow to a value of 0.75.

Figure 9 shows that close to threshold the delay scales
approximately as c. '. By including nonlinear terms in
Eq. (7), we have shown elsewhere ' that there is a loga-
rithmic correction to this c. ' scaling. The effect of the
logarithmic correction is to cause the effective exponent
to be slightly less than 1 (typically between 0.9 and 1).
For example, the curve in Fig. 9 has a slope of —0.93 for
small c,. Note also that the curve is slightly concave
down over a wide range of E.

FIG. 9. Dependence of delay on overdrive for the mean-field
phase-slip model. Curve obtained by numerical integration of
Eq. (4), with parameters as in Fig. 8. For small c the curve has a
slope of —0.93, close to the value of —1 predicted by the linear
approximation Eq. (7). A nonlinear analysis presented else-
where (Ref. 21) yields a theoretical curve which accurately
matches the numerical data.
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FIG. 8. Delayed onset of the coherence r and the current
df/dt in the mean-field phase-slip model, for two values of the
overdrive c. Note that the time axis is logarithmic, and that all
quantities shown are dimensionless. Curves are from numerical
integration of Eq. (4) with N=300 and %=1. The initial state
was the E=0 pinned state with a small amount of random jitter:
OJ =aj+gj, where gj —O(10 ). The current d@ldt is large
for t ( 10 as the system rushes onto the unstable manifold of the
saddle point (Fig. 7). Note that for a given c, the coherence r
and the current dg/dt switch at the same time. The switching
delay increases as c. tends to zero.

III. DISCUSSION

In this paper we have analyzed the dynamics of switch-
ing delay in three recent models of CDW transport. The
analysis of Sec. II shows that for both the amplitude-
collapse model (Sec. II A) and the screening model (Sec.
IIB), the depinning transition occurs by a saddle-node
coalescence. From one point of view this is not
surprising —the saddle-node bifurcation is generic for
dynamical systems with one control parameter (here, the
applied electric field). As stated more precisely in Ref.
30, p. 149, "all bifurcations of one-parameter families at
an equilibrium with a zero eigenvalue can be perturbed to
saddle-node bifurcations. " Thus, for other nonlinear
dynamical models of switching, one would generally ex-
pect a saddle-node bifurcation at the depinning threshold,
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and hence a power-law scaling of the form ~-c ' as
c.~0.

In the mean-field phase-slip model (Sec. II C) the bifur-
cation is nongeneric because of a rotational symmetry in
the model: there is no preferred phase P of the complex
order parameter. One consequence of this rotational
symmetry is that at the depinning transition, the pinned
state coalesces simultaneously with an entire circle of sad-
dle points. This symmetry also accounts for the simul-
taneous loss of stability of the a, and b, modes in Eq. (7)
at the depinning threshold.

For the mean-field phase-slip model, the switching de-
lay is predicted to scale as ~-E. '; a related c. ' scaling
occurs in systems where a pitchfork bifurcation gives rise
to type-III intermittency. ' As with other mean-field
theories, e.g., infinite-range models ' of smoothly depin-
ning CDW's, one expects the picture presented here to be
qualitatively correct, but possibly with a somewhat
different exponent. The mean-field theory of Sec. II C as-
sumes that the coupling between CDW domains is
infinite range, whereas the coupling between real CDW
domains has a finite range. It is an open problem to
determine how the predicted power law ~-c ' would
change if the range of the coupling were made finite.

In our analysis we have not discussed one of the lead-
ing models of switching, the avalanche-depinning model
proposed by Joos and Murray. ' This model is a variant
of the kinetic Ising model, and cannot be analyzed by the
bifurcation methods used here. In particular we do not
know what this model would predict for the dependence
of ~ on c.. This question could be addressed by computer
simulation. The model' has one realistic feature not
shared by the models considered above: for a given ap-
plied field E it predicts a distribution of delays, rather
than a deterministic dependence of ~ on E. The

avalanche-depinning model was motivated by the earlier
experiments of Zettl and Gruner, who reported a scatter
in the switching delays.

Experiments on switching CDW's are needed to deter-
mine how the switching delay ~ scales with the overdrive

To our knowledge, two published studies report data
relevant to this issue. Kriza et ah. studied delayed
switching in pure and electron-irradiated o-TaS3. They
reported that switching delay increases as threshold is ap-
proached, and proposed a phenomenological model
which gave good agreement with their data. Their model
predicts r-exp( —E) close to threshold. Maeda et al.
studied the field and temperature dependence of switch-
ing delay in the blue bronze K03Mo03. For measure-
ments close to threshold (e(10 ') their data are con-
sistent with ~-c ' but not with ~-c

For all of the models considered here, the predicted
scaling laws are robust —they are independent of the
values of the microscopic coupling constants, pinning
strengths, and other phenomenological parameters. For
instance the amplitude-collapse and screening models al-
ways predict ~-c. ' as v~0. Because of this robust-
ness, the r versus e dependence should provide a useful
experimental benchmark for comparing models based on
fundamentally different mechanisms.
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