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The vibronic model for Fe + impurities in zinc sulfide crystals is analyzed theoretically with the
recursion method. It is shown that the far-infrared absorption spectrum of iron ions can be under-
stood by taking into account the coupling of the electronic state T2 to phonons of symmetry I, in
three different energy ranges: a low-energy phonon of frequency Ace&=25 cm ', an intermediate-
energy one of frequency Aco2=125 cm ', and a high-energy one of frequency Ac@3=300 cm '. The
corresponding Jahn-Teller energies are estimated as EJTI =50 cm ', EJT2 130 crn ', and EJT3 70
cm . Theoretical predictions of the vibronic multifnode model for the infrared-absorption spec-
trum are compared with experimental results and previous speculations available in the literature.

I. INTRODUCTION

It is commonly accepted that the dynamic Jahn-Teller
effect plays an important role' in the infrared-
absorption spectra of transition-metal impurities (for in-
stance, Fe +) in II-VI compound semiconductors. Al-
though some features and trends in the rich structure of
the experimental spectra ' have been interpreted at least
qualitatively, a quantitative theoretical analysis of the im-
purity problem in ZnS is still lacking.

The most formidable obstacle for a theoretical treat-
ment of a vibronic system is the large number of basis
functions (or degrees of freedom) required in the product
space of the electronic and vibrational states. For exam-
ple, a T2 electronic multiplet linearly coupled with a
two-dimensional phonon mode leads to 15 XN degrees
of freedom, 1V —1 being the number of phonons included.
In the case of a multimode vibronic model of the type
T2(1 3+I 3) the number of basis functions becomes

15 XN21 X%22.
Vibronic models for transition-metal impurities in cu-

bic semiconductors have been treated until recently ei-
ther by means of perturbation theory' or by direct diago-
nalization of matrices of as large a dimension as possible.
It is evident that the direct diagonalization, somewhat
cumbersome even when one considers only a single mode,
becomes intractable in the presence of multimode vibron-
ic systems. On the other hand, from the form of the in-
frared spectrum of Fe + in ZnS it can be inferred that a
single-mode model cannot explain the numerous absorp-
tion features.

Very recently, a flexible technique for the theoretical
analysis of vibronic systems for transition-metal impuri-
ties has been introduced by combining the recursion
method with the concepts of dipole-carrying states. His-
torically we remind the reader that a major breakthrough
in the study of systems with a large number of degrees of
freedom, described by sparse matrices, has been given by

the Lanczos-Haydock-Heine-Kelly recursion method. '

The method, pioneered by Lanczos, was originally intro-
duced in solid-state physics in connection with electronic
problems. ' Then it was extended to coupled electron-
boson systems, " allowing a nonperturbative treatment
of the absorption as well as luminescence spectra of typi-
cal impurity centers. ' The formal relationship between
the recursion method and the renormalization method
has also been established. ' For what concerns the study
of the Jahn-Teller effect in transition-metal impurities,
the recursion method was introduced and applied in Ref.
3 to a single-mode vibronic model. The purpose of the
present paper is to generalize our procedure and to ana-
lyze theoretically a multimode vibronic problem for the
infrared spectra of Fe + in ZnS.

An interpretation of the infrared-absorption spectrum
of iron impurities in zinc sulfide is a challenging problem
indeed; in fact, since the pioneering works of Slack, Ham,
and Chrenko it is apparent that a single vibronic mode
could'not explain such a complex spectrum, which shows
a very intense line at 2945 cm ', and two less intense
lines at 2964 and 2984 cm ', followed by a number of
other transitions, empirically interpreted as phonon-
assisted transitions. Also, a more recent theoretical inter-
pretation that by necessity could treat only one phonon
at a time seems in favor of the conclusion that at least
two phonons of different energy must be invoked to ex-
plain the absorption spectrum of the impurity centers.

In this paper we solve with the recursion method a
number of appropriately chosen single-mode and two-
mode vibronic models for ZnS:Fe + and discuss the im-
plications on the far-infrared-absorption spectrum. Some
technical aspects on the vibronic model and the calcula-
tion procedures are given in Sec. II. The disposable pa-
rameters of the vibronic model are determined in such a
way to satisfy the very compelling requirements on the
energy levels and especially on the relative intensities of
the lowest transition lines. This is done in Sec. III, where
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the results of the models are discussed and compared
with the experiments. Section IV contains the con-
clusions.

0. iO

II. VIBRONIC MODEL
AND CALCULATION TECHNIQUE
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FIG. 1. Energy difterences E;—Eo (i =1,2, 3) as a function
of the Jahn-Teller energy E»&, for a vibronic model with a sin-
gle phonon, fico& =25 cm

The infrared-absorption spectrum of Fe + in ZnS,
arising from the electronic transitions between the initial
E and the final T2 states of Fe +, shows a sharp peak at

2945 cm ' followed by a very rich structure extending in
energy until about 3850 cm '. The very high intensity of
the first line with respect to the other ones suggests the
supremacy of the spin-orbit interaction over the Jahn-
Teller coupling, and consequently a Jahn-Teller energy
weaker or of the same order as the spin-orbit-coupling
constant. This prediction will be confirmed by the de-
tailed calculations made in Sec. III. However, many pho-
nons of different energies and symmetries can be coupled
with the Tz excited states, as can be seen from the
dispersion curves of ZnS, measured by different au-
thors. '"' A useful scheme of the various phonon
branches and their symmetry is reported in Ref. 1.

%'e have already discussed the difficulties of the stan-
dard diagonalization procedures to take into account
more than one phonon at a time (unless a perturbative
approach is justified). This is the essential motivation for
using the recursion procedure, which is appropriately im-
plemented here to vibronic systems including two modes
of symmetry I 3 and different energy. Notice, further-
more, that the application of the concepts of parallel
computing' makes it possible to treat even more compli-
cated vibronic models and will eventually reveal further
perspectives in the theoretical interpretation of the
wealth of experimental spectra concerning localized im-
purities in solids. In a cluster model, ' the mode of sym-
metry I

&
is also Jahn-Teller active; however, all the pre-

lg
0.20—

T

100
l l

200

(cm- i

1

300

vious works, ' ' concerning the Jahn-Teller effect in the
infrared-absorption spectrum of this and similar systems,
take into account only the coupling with lattice vibra-
tions of I 3 symmetry. This is justified on the basis of
model calculations, " which show no drastic difference
between the effect of the two different symmetries.

The Hamiltonian of the vibronic system T2 (I 3+ I 3)
can be explicitly worked out by appropriately generaliz-
ing the treatment of Ref. 3; thus only a few comments are
given here. The total Hamiltonian consists of the sum of
the electronic contribution including the spin-orbit in-
teraction (throughout the present paper the spin-orbit-
coupling constant is that of the free ion, ' i.e., A, = —100
cm ), the lattice Hamiltonian, and the linear coupling of
the electronic part of two two-dimensional I 3 phonons,
of frequency co& and co2 and Jahn-Teller energy EJ» and
E&T2. The basis functions of the vibronic model can be
indicated as

@(J i~ „p—= lQ;S, )lm, np) . .

Here ~g;) (i =1,2, 3) are the many electronic wave-
function partners for the irreducible representations T2
of the group Td (usually labeled d „d„„d„);~S ) are ap-
propriate combinations of spin functions for S =2 and S,
from +2 to —2; (I, m) and (n, p) are the occupation num-
bers for the partner modes of energy Ace, and Aru2, respec-
tively.

The number of basis functions (1) is the very large
quantity 15 XX

&
X%2, where X

&

—1 and Xz —1 (both
numbering = 10—20 in the calculations of the present pa-
per) are the number of phonons included in the basis; any
direct diagonalization of the Hamiltonian is thus hope-
less. The problem is thus handled by transforming with
the recursion method the initial and large sparse matrix
into a manageable tridiagonal one, whose dimension is

FIG. 2. Intensities W(E;,fo) of the lowest four lines as a
function of the Jahn-Teller energy E»1 for a vibronic model
with a single phonon %co& =25 cm '. X,~, O, A in the order
for the first four lines ( X is for the first line).
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TABLE I. Energy differences E; E—o (i =1,2) and intensities W(E;,fo) calculated with the recur-
sion method and a single-mode vibronic model of frequency A'co& =25 cm . The reference energy Eo
has been taken equal to zero. Notice that the experimental oscillator strength for Lo, L&, and L2 are
approximately in the ratio 100:4:1.

EJT1
(cm ')

Eo
(cm ')

W«o fo)
(10 )

E, —Eo
(cm ')

W(Ei, fo)
(1o ')

Eq —Eo
(cm ')

W(E2 fo)
(10 )

50
60
70
80
90

391
387
383
379
373

22
21
21
20
19

6
8

10
13

43
42
40
39
38

the number of iterations performed (in the present case,
of the order of 50, with tests up to 100). The hierarchical
ordering of states follows the standard iterative pro-
cedure. Let Ifc), If, ), . . . , If ) denote the first v+I
normalized functions of the recursion hierarchy; the
IF +, ) (unnormalized) function is evaluated through the
three-term recursion relation '

(2)

The generic state IF,+, ) of the hierarchy can be written

i& j&5
0~1,m, n, p ( oo

c,". i"„ Ig,s il mnp) (3)

and the recurrence relation (2) can be transformed into an
appropriate recurrence relation of c' +",c' ', and c'
The significant parameters b +& and a + &

are given by
the normalization of IF +, ) and by the expectation value
of the Hamiltonian; after renormalization of IF +t ), a
new iteration is started.

We choose as the initial state for starting the recursion
procedure the dipole-carrying state appropriate for the
transition starting from the lower E state. Such a state
is the particular linear combination of dipole-allowed
states, with coeScients proportional to the matrix ele-
ments of the dipole operator. When such a state is
chosen as the initial one, all the states generated by the
recursion procedure are dipole free. Thus, the Green's
function projected on the initial state gives directly the
absorption band of the vibronic system.

III. RESULTS AND COMPARISON
WITH THE EXPERIMENTAL DATA

The infrared-absorption spectrum of Fe + in ZnS ex-
hibits a strong line at 2945 cm ' (referred to herein as
Lo), followed by two weak lines at 2964 and 2984 cm
(L, and L2). There are then four rather broad intensity
lines at 3051, 3129, 3182, and 3241 cm ' (L3, L4, L5,
and L6); after some other structure the absorption spec-
trum again increases at =3500 cm ' because of the
spin-orbit partner band (see Table III and Fig. 5 of Ref.
4). The absorption lines are indicated in the literature
with different notations, but for convenience throughout
this paper they are indicated with L,o,L „1.2, . . . in in-

creasing energy order.
From the dispersion phonon curves of ZnS, there are

several phonon modes (of I"3 symmetry) of different ener-

gy that may become candidates in the vibronic model.
On the other hand, even with the powerful recursion
method and with expected moderate Jahn-Teller energies,
we can treat no more than two phonon modes at one
time. Thus we have to decide which modes to embody in
the vibronic model and the corresponding coupling pa-
rameters.

To settle a reasonably satisfactory criterion for this
problem, we begin to observe that the range of energy
phonons involved in the experimental absorption data
seems to be rather different. The energy differences
E(L; ) —E(Lo) for the lowest lines are, respectively, 19,
39, 106, and 184 cm '. These energy differences, taking
into account the well-established evidence that L, 2 is a re-
plica of I, support the qualitative remark that the boson

TABLE II. Energy differences E; —Eo (i =1,2) and intensities W(E;,fo) calculated with the recur-
sion method and a single-mode vibronic model of frequency Aco2=125 cm '. The reference energy Eo
has been taken equal to zero.

EJ+z
(cm ')

70
100
130

E()
(cm ')

W(Eo fo)
(10 ')

386
380
369

E —E
(cm')

104
95
86

W(E, ,fo)
(10 ') (cm')

201
185
171

W( E~ )fo )

(1o ')

9
16
25
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TABLE III. Energy, intensity W(E;,fo), and convergence parameter W(E;,fz) calculated with the recursion method and a
single-mode vibronic model of frequency Aco2= 125 cm ' and Jahn-Teller energy EJT2 130 cm '. The energies are referred to the
lowest electronic level, 'T2. (a) Cluster of 20 phonons and 20 recursions, (b) cluster of 50 phonons and 50 recursions, and (c) cluster
of 20 phonons and 50 recursions.

Energy
(cm ')

(a)
W(E;,fo)

(10-')
W(E;,f~) Energy

(cm ')

(b)
W(E;,fo)

(10 )

W(E;,f~) Energy
(cm')

(c)
W(E;,fo)

(10 )

W(E;,f~)

—209.607
—123.849
—38.07S

56.626

133.700
226.259

313.536

369
8

28

13
30

401

0.6x10-'
0.5 X 10
0.6x10 '

0.6x lo-'

0.2x 10-'
0.2x10-'

0.2 x10-'

—209.607
—123.858
—38.882
—29.298

53.117
70.779
90.011

148.289
202.259
278.445
307.129
326.213

369
8

25
3
5

0.4
5

9
16
31

230
157

0.6x10-"
0.1X10-'4
0.2X 10
0.6X 10
0.6X 10
0.7X 10
0.6X 10
0.3 x10-'
0.6X 10
0.1 X 10
0.1X 10
0.1 X 10

—209.607
—123.858
—38.882
—29.298

53.117
69.574
89.910

148.230
200.332
274.656
304.043
324.194

369
8

25
3
5
04
5

9
16
21

199
198

0.3 X
0.8 X
0.2 X
0.5 X
0.7 X
0.7 X
0.5 x
0.3 X
0.8 X
0.3 x
0.2 X
0.1 X

10
—21

10
—15

10-'
10-'
10-'
10
10-4
10-4
10-4
10
10
10

frequencies of interest are reasonably difFerent. When
this is the case (and provided that the electronic state is
nondegenerate), the boson modes are expected to relax in-
dependently and the correlation function in the time
domain is the product of the correlation functions of the
contributing modes; however, in our specific problem in-
terference efFects may become important. Thus we begin
to consider the energy and the intensity of the first lowest
lines supposing only one phonon-active mode; later we
refine the vibronic model by considering interference
effects, automatically included in a multimode vibronic
model.

A vibronic model with one phonon mode has two ad-
justable param. eters, i.e., %co& and E&T&,

' the relative ener-

gy position of the lowest lines LO, L „Lz and the relative
order of magnitude of their intensity pose quite restric-
tive constraints and allow us to fix with satisfactory accu-
racy A~, and EJT&. The low-frequency phonon Ace, =25
cm ' is found to be in the region of TA branches inside
the Brillouin zone, in agreement with previous authors.
In Fig. 1 we show the behavior of the energy difFerences
E; —Eo, i'=1, 2, 3, versus the Jahn-Teller energy EJT„
with the choice of %co&=25 cm '. The crystal-field pa-
rameter ~Dq ~

has been chosen, here and throughout the
whole paper, in such a way to fix the first spectral line at
2945 cm '. The parameter ~Dq ~

(of the order of about
300 cm '), although slightly dependent on EJT, is the less
relevant aspect of the model, since its effect is merely to
shift rigidly all the transition energies; it does not
infIuence the energy difFerences and intensities of the
lines.

Figure 2 is the counterpart of Fig. 1 for what concerns
the behavior of the intensities W(E, ,fo) versus EJT of
the first four lines of the model. The quantity W(E;,fo)
is given by the modulus square of ('0;

~fo ), where ~%', } is
the eigenfunction of the vibronic model, and is obtained
by diagonalization of the chain recursion Hamiltonian
(after convergence is reached). We recall that, choosing

as an initial state
~ fo ) of the recursion the dipole-

carrying state, the projected density of states
~ ( 4; ~fo ) ~

is proportional to the absorption spectrum. The most re-
markable feature of Fig. 2 is the significant quenching of
the intensity of the first line when EJT, increases. A simi-
lar behavior is also found for all the other phonon fre-
quencies we have examined. Since the experiments give
evidence of a very strong first line with respect to the rest
of the spectrum, the region of possible Jahn-Teller cou-
pling is strongly restrained. From Figs. 1 and 2 we
deduce that acceptable values for EJT, are in the range
50—100 cm ' (more accurate results on the intensities
could further limit this range). In Table I we report
E; Eo (i =1,2)—and W(E;,fo) calculated with Ac@&=25
cm ' for some values of EJT&, and we see that a satisfac-
tory understanding of the experimental lines LO, L„Iz,
both for what concerns their relative energy and their rel-
ative intensity, is achieved.

From the above calculations it is evident that the inter-
pretation of higher lines in the spectrum, and in particu-
lar L3 and L4, requires phonons of completely different
energy. We begin to neglect interference effects and
select a phonon of intermediate frequency Ace

&

= 125
cm ', corresponding to a TA(K) phonon of ZnS. As be-
fore, we examine both the behavior of E; —Eo and that of
W(E, , f&&) at different values of EJT2. In this way we can
individuate a good zone for the parameter EJT2 in the
range 70—130 cm '. In Table II we report some of the
results obtained for E; Eo and W(E, ,f—o) at different
values of EJT2.

Our desire is now to refine the vibronic model by
studying simultaneously the efFect of two two-
dimensional phonons; but before doing this we have to
discuss some numerical aspects of the simpler one-
phonon-active vibronic model in order to find a computa-
tionally workable procedure.

To check the accuracy of the single-mode model we
have varied the dimension of the phonon cluster and the
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FIG. 3. Energy differences E; —Eo as a function of the Jahn-
Teller energy EJT2 for a vibronic model with two phonons. The
parameters are Ace&=25 cm ', E», =50 cm, and Aco2=125

—I

cm

number of the recursions made, allowing also for some
overrecursions. The convergence of the eigenvalues has
been tested by calculating the quantity W(E;,fz),
defined as the projection modulus square

~ ( ~I';
~ fz ) ) of

the chain eigenfunction 4,. on the last available chain
state fz. The quantities W(E;,fz) give an indication of
the localization and accuracy of the eigenvalue E; after X
recursions. Notice that in the literature' ' ' the "accura-
cy parameter" is often provided via the alternative quan-
tity p(E;,f&), called the "residual vector" and defined as
p(E;,fz)=~(%';~f~)bz+&(. In Table III we summarize
the results obtained, for instance, for Ac@2=125 cm ' and

E~T2 =130 cm ', using (a) a cluster of 20 phonon and 20
recursions, (b) a cluster of 50 phonons and 50 recursions,
and (c) a cluster of 20 phonons and 50 recursions. For

convenience of comparison the theoretical energies re-
ported in Table III do not include the crystal-field-effect
shift. An analysis of Table III (and other similar tables)
shows that 20 recursions are not enough for calculating
more than three eigenvalues or so; instead, a cluster of 20
phonons and 50 recursions gives results very similar (at
the lower energies practically identical) to those with no
overrecursions, at least in the 400-cm ' energy range fol-
lowing the first eigenvalue. In considering a multimode
vibronic model, we consider still manageable clusters of
20 phonons (for each type and partner) and perform 50
recursions.

In order to clarify the role of interference effects in the
T2S(I 3+1 3) model, we begin by choosing the frequen-

cies A'cu&=25 cm ' and 6&@2=125 cm '. Taking a fixed
value for EJT, (E~T, =50 cm ') we have varied EJT2.
The results obtained are summarized in Fig. 3. We have
reported, for EJ r2 0, only the erst two values of the en-

ergy differences E; —Eo, because the intensity of the fol-
lowing lines are negligible with respect to the previous
ones. For EJT2&0 we see two low-intensity lines coming
from the phonon Ace&, slightly influenced by the phonon
Aco2, and corresponding to the experimental I, ,L, 2 lines.
Then we find two other lines of low intensity, separated
by about 20 cm ', coming from the phonon Aco2 and its
interference with the phonon %co&. It seems reasonable to
attribute these two lines at about 100 cm ' to the experi-
mental peak L, 3 at 106 cm ' from the first transition. At
about 180 cm ' from Eo we find two other transitions,
somewhat more intense than the previous ones and
separated by about 20 cm '. Also, this doublet is due to
the interference effects of the two phonons considered,
and corresponds to the experimental transition at 184
cm ' from I O.

In the Table IV we show, for EJT2=130 cm ' and
~Dq) =313.6 cm ', the experimental energy transitions
calculated, the intensities calculated, and the convergence
parameter. A reasonable interpretation of the transitions
up to about 200 crn ' from I.o is achieved, but for sti11

higher energy transitions it is apparently necessary that
we consider a vibronic model which includes a higher-

TABLE IV. Energy, intensity W(E;,fo), and convergence parameter W(E;,f~) calculated with the
recursion method and two-phonon vibronic model. The parameters are %co& =25 cm ', E»& =50 cm
fico2=125 cm ', EiTi =130 cm ', and ~Dq~ =313.6 cm '. Experimental data are also reported for
comparison.

Calc.

2945.0
2964.2
2983.7
3009.4
3033.2
3054.5
3112.7
3133.8

Transition energy (cm ')

Expt. '

2945
2964
2984

3051

3129

W(E;,fo)
(10 ')

336
12

8

1

9
12
12
10

W(E; fN)

0.1X 10
0.3 X10-'
0.9 X10-'
0.1 X 10
0.6X10-'
0.5 X 10
0.2X10-'
0.3 X 10

'Reference 4.
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energy frequency. We have thus considered a vibronic
model which contains an intermediate-frequency phonon
(Acoz=125 cm ') with one at higher energy (Pic@3=295
cm ') corresponding to a TO(L) phonon of ZnS. Al-
though this model neglects interference effects with %co&,

it is expected to be, nevertheless, of value. However, be-
cause of the absence of the weak energy phonon, we do
not expect to reproduce well the low-energy part of the
spectrum. At higher energy, calculations show that a
medium-intensity line occurs near 240—250 cm, far
from the first one. The prevalence of the L,o line again
limits the energy range of acceptable values of EJT3 to
50—80 cm '. Thus the whole spectrum can be interpret-
ed in a satisfactory way with a linear Jahn-Teller interac-
tion comprehensive of the contribution of more than one
phonon (a low-, an intermediate-, and a high-energy one)
of symmetry I 3, coupled with the motion of the electrons
with a Jahn-Teller energy lower (or the same order) than
the spin-orbit-coupling parameter.

IV. CONCI. USIONS

In this paper we have analyzed theoretically a mul-
timode vibronic model of the complex infrared-
absorption spectrum of iron impurities in ZnS; we have
found that low-, intermediate-, and high-energy phonons
are to be taken into account and we have estimated the
corresponding Jahn-Teller energy. The importance of
this study goes beyond the vibronic models examined
here, but it shows a flexible procedure whose systematic
use should allow a more satisfactory understanding of
vibronic systems where interference effects between pho-
nons of different energy are not negligible. Furthermore,
interesting perspectives are likely to b'e revealed by the
application of the concepts of parallel computing, which
should allow one to solve more complicated vibronic sys-
tems, and add to the present body of literature consisting
of accurate experimental data and interpretations of a
qualitative nature.
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