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A theoretical investigation has been made of the interaction of surface-optical phonons and sur-

face space-charge waves (SSCW's) in a solid-state plasma, namely, doped GaAs. In obtaining the
dispersion relation, the specular-reflection approach of Kliewer and Fuchs [Phys. Rev. 172, 608
{1968)]was used. Dispersion curves have been obtained both neglecting and taking into account
carrier damping. The results indicate that amplification of the slow SSCW occurs for a frequency
range beginning at the transverse-optical-phonon frequency and ending at the surface-optical-
phonon frequency. There are corresponding threshold and termination wave vectors. Since slow

SSCW s are negative-energy waves, they can lead to an amplifying instability by coupling to a
positive-energy optical phonon.

I. INTRODUCTION

Surface electromagnetic-wave instabilities in doped
semiconductors have been the subject of many theoretical
and experimental investigations over the last two decades
or so (see the representative references 1 —14, and cita-
tions therein). Of interest in the present paper are surface
space-charge wave instabilities associated with their in-
teraction with optical phonons. ' ' This subject was
considered previously by Tajima and Ushioda, ' who ob-
tained the dispersion relation by assuming an isotropic
dielectric tensor and ignoring off-diagonal elements. In
addition, carrier damping was not taken into account.

Tajima and Ushioda reported that varying the plasma
frequency, which is proportional to the square root of the
carrier concentration, has an effect on the
electromagnetic-wave —phonon interactions. Specifically
they found that for co (roT, where co is the plasma fre-

quency and co&- the transverse-optical-phonon frequency,
there is an amplifying instability, while for co & coT, there
is none. The latter result differs from that reported in the
present paper.

In what follows, we obtain the surface-electro-
magnetic-wave dispersion relation for polar semiconduc-
tors including retardation and the presence of a dc
current. The spectacular-reflection boundary condition
of Kliewer and Fuchs' is used. Numerical results are
then presented for doped GaAs, both with and without
carrier damping taken into account. In addition, the re-

suits of an analysis of the dispersion instabilities obtained
are discussed. A comparison is made with previously
published results, and conclusions are presented.

II. THEORY

Consider a semiconductor which is infinite in the x and
y directions, semi-infinite in the z direction, and charac-
terized by a wave-vector- and frequency-dependent
dielectric tensor e &(k, ro) when a dc current associated
with the drift velocity Vo of the charge carriers is present.
The other half-space is filled by a dielectric with dielec-
tric constant ed. In what follows, we use the nonlocal
Maxwell equations for this geometry to obtain expres-
sions relating the field and dielectric-tensor components.
The specular-reAection technique of Kliewer and Fuchs is
used to obtain the dispersion relation.

To obtain e &, we proceed by linearizing the transport
equation for the motion of an average carrier in the semi-
conductor. The nonlocal conductivity tensor thus ob-
tained is'

Voo. p(k, co)=Noq M tt(k, ro)+ g krM p(k, co)
o) —k V0 y

(2.1)

where Xo is the equilibrium carrier density, q is the
charge of a carrier, Vo is the drift velocity, and the matrix
M is given by

lgM=-
8

co —(K Vo +k, Vo, )

k Vo

k, Vo„

k Vo

co —(k Vo„+k, Vo, )

k, V

k Vo,

k Vo,

co —(k„Vo +k Vo )

(2.2)
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The quantity a is given by a =m *co(co —k Vo+iv), where
rn * is the carrier efFective mass and v is the carrier damp-
ing frequency. The components of the dielectric tensor
are given by

4~i
e &(k, co)=5 &e„+ cr &(k, co), (2.3)

E(r, t)=(O, E (z), E,(z))exp[i(k y cot) j, — (2.4)

where k is the wave-vector component in the direction
of propagation, and co is the frequency. The drift velocity
Vo is also taken in they direction: Vo=(0, Vo, O). Only p
polarization is considered, i.e., the situation where the

I

where 6 & is the Kronecker delta and e is the high-
frequency dielectric constant of the semiconductor.

The dielectric tensor specified by Eqs. (2.1)—(2.3) is for
the case of a dc current interacting with surface polari-
tons in a nonpolar semiconductor. We now consider the
case of a polar semiconductor, where the interaction with
optical phonons must be taken into account. This is
quite easy as far as components of the dielectric tensor
are concerned: one merely needs to add the term

(cot —coT)/(coT —co ) to the diagonal elements. In this
expression col is the longitudinal-optical-phonon frequen-
cy and coT is the transverse-optical-phonon frequency.

In seeking solutions to the Maxwell equations, it is as-
sumed that the electromagnetic waves propagate in the
y direction and that the Cartesian components of the
electric field E have the form

1+
~ ~d ~ Tzz

2

KC AO Tzz Tyy T
(2.5)

where ao is the decay coefficient for the dielectric given
by

2= 2 CO&o=k
C

(2.6)

and the quantities in the integrand of Eq. (2.2) are given
by

COT = e (k co) —k, ,
C

(2.7)

T„= e„(k,co) —k
C

(2.8)

COT, =T, = e, (k, co)+k k, .
C

(2.9)

Using the above tensor elements and Eq. (2.2), one ob-
tains the dispersion relation

electric vector lies in the sagittal plane defined by the
direction of propagation, and the normal to the surface.
For this configuration, the field variables do not depend
on x, and the wave vector k in e &(k, co) can be taken to
be k=(O, k, k, ).

Following the Kliewer-Fuchs specular-reAection ap-
proach, we have derived the surface polariton dispersion
relation, which can be expressed as

2
Ct)p

ed ~ (co —k Vo)(co —k Vo+iv)

1/2e„e co Vo/c1—
~~ —e (co —k Vo)(ci) kVo+iv)— CXO

(2.10)

where o. is the decay constant for the semiconductor
specified by

2 2COT+ &~COL
COT + CO

1+&
=dos~ (2.16)

E~Q)2
2 —I 2

2

2 2
COI

2 2
CO T CO

4~&oe'
CO

e m*

2
COp CO ky VO

co k V +Lvy 0
(2.1 1)

(2.12)

(2.13)

Cgp
E

(co —k Vo)(co —k Vo+iv)
(2. 14)

Neglecting damping and solving for the wave vector
k, one obtains the result

co& E (cor M )
2 2

+
Vo Vo ~', +~„~,' —~'( I+e„)

1/2

(2.15)

where has been taken to equal unity corresponding to
vacuum. For frequencies in the range

It is of interest to investigate the dispersion relation for
the nonretarded limit ( i.e., c ~ co ):

CO

k, ="+ '
VO VO 1+e

(2.17)

the dispersion relation for surface space-charge waves

the expression under the radical in Eq. (2.15) is negative
and hence k consists of complex-conjugate pairs. For
the + sign we have an exponentially decaying wave in
the direction of propagation, while for the —sign, we
have an exponentially amplified wave. Note from Eq.
(2.15) that the gain for the amplified wave increases with
increasing plasma frequency co, i.e., with increasing car-
rier concentration. When the frequency co lies outside the
range given by Eq. (2.16), there are no amplifying or de-
caying waves. Equation (2.16) essentially defines the
threshold and cutofF' frequencies, the latter being the lim-
iting surface-optical-phonon frequency for large wave
vector, cats&, defined as the positive square root of the
fraction in Eq. (2.16). There are also threshold and cutofF
wave vectors, which can be obtained from Eq. (2.15) by
looking at frequencies where dk„/des =0.

In the absence of optical phonons, Eq. (2.15) reduces to
1/2
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(SSCW's). Here the wave vector is real; hence, it is the
presence of optical phonons that gives rise to amplifying
instabilities for the geometry under consideration here.
The slow and fast SSCW's can be thought of as, respec-
tively, negative-energy waves (co (k Vo ) and positive-
energy waves (co) kVo). A negative-energy wave can
cause an instability by coupling to a positive-energy
wave, e.g. , an optical phonon as in Eq. (2.15), as well as to
a dissipative medium, e.g. , the resistive wall of Birdsall
et al. 2O

Taking the limit Vo =0 in the dispersion relations gives
the coupled surface-plasmon —surface-optical-phonon
modes. For example, in the nonretarded case, Eq. (2.14),
the coupled-mode dispersion relation is

COL CO
2 2

2 2
COT CO

2
E ~COp = —1. (2.18)

III. RESULTS AND DISCUSSION

= 1.09 . (3.2)

A. Nonretarded limit

For the nonretarded limit, the dispersion relation,
neglecting carrier damping, is given by Eq. (2.1S). This
equation was used to obtain the dispersion results shown
in Fig. 1 ~

For frequencies co &co there are two SSCW branches
labeled a and b, where a corresponds to the fast SSCW
and b to the slow SSCW. At co=cuT, the two branches
merge to form the doubly degenerate branch ab having a
complex-conjugate pair of wave vectors, one of which
corresponds to an amplifying slow SSCW —optical-
phonon instability. The other complex-conjugate wave
vector corresponds to a decaying wave. At ~=cosQ,
branch ab terminates, and we recover the two SSCW
branches a and b. This is similar to behavior noted be-
fore in the absence of optical phonons, ' where a semi-
conductor with drifting carriers is placed next to a semi-
conductor having zero drift velocity, and is described by
a Drude dielectric function. For this case, the nondrifted
plasma wave associated with the Drude dielectric func-

The theoretical dispersion curves have been obtained
for surface waves in GaAs in the presence of drifting
current carriers. Some of the results include the e6'ects of
retardation, as well as the eAect of damping resulting
from the scattering of carriers. Optical-phonon damping
is neglected here because it is generally small compared
with carrier damping. In the first set of calculations, the
frequency co was taken as real and the dispersion relation
was solved for complex wave vector k =k&+ik2.

For GaAs, at 300 K, @0=12.85 and e =10.88. The
Lyddane-Sachs- Teller relation is

2
Eo COL

2
Q) z

so that we have
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FIG. 1. Dispersion curves in the nonretarded limit without
damping for co~ =ruT.

B. Retardation e8ects neglecting carrier damping

Next we consider the dispersion relation including re-
tardation [Eq. (2.10)]. This equation is of fourth degree
in wave vector, and thus there are four branches rather
than the two obtained in the nonretarded limit. The re-
sults were obtained numerically using real values of fre-
quency as input and calculating values of wave vector. In
these calculations, Vo/c =0.001. Figures 2 and 3 show
dispersion curves for negative and positive values of wave
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FIG. 2. Retarded dispersion curves without damping for
~~ =coT and negative wave vector.

tion plays a role analogous to that of the optical phonons.
For frequencies beyond the instability termination point,
msQ, the a and b branches approach one another and then
become parallel as shown in Fig. 1.

The vertical dashed lines in Fig. 1 indicate the range of
reduced wave vector encompassing the convect. , '-sta-
bility. This in turn defines the threshold and terminatsoii
drift velocities for arnplification.

The frequency dependence of the imaginary part of
each wave vector for branch ab is of interest. The gain
(or decay) increases with increasing frequency from
co=coT, until it reaches a maximum and then abruptly
drops to zero at co=cosQ. In fact just below msQ the gain
becomes infinite, but only because carrier damping has
been neglected.
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FIG. 3. Retarded dispersion curves without damping for
co~ =coT and positive wave vector.

FIG. 4. Retarded dispersion curves with damping for
co~ =coT and negative wave vector.

vectors, respectively. As before we have taken co =co&-.
Note that, compared with Fig. 1, the form of the reduced
wave vector has been changed from k~ Vo/coT to ck~/coT.

For frequencies co & coT, we have the SSCW branches a
and b as in the nonretarded case. In addition, we have
the polariton branches 1 and 2, which result from taking
into account retardation. For negative wave vectors (Fig.
2), one sees that as co increases, branch 1, a polariton
mode, couples with branch a, the fast SCW mode, to give
the degenerate branch la, an evanescent wave which ter-
minates at ki =0. Further investigation of this branch
shows that for very small values of k„ the branch bends
upward and terminates asymptotically at k& =0, at which
point the decay constant ao is pure imaginary, and we no
longer have a surface mode. However, the inclusion of
carrier damping restores the surface modes (the decay
constant is no longer pure imaginary at k, =0). The
eff'ect of damping is discussed in the next section (III C).
This type of behavior also occurs in the absence of pho-
nons. When co =coT, another polariton mode, branch 3,14

begins and moves to the left with increasing frequency.
For ~ ~ ~so, a phononlike mode, branch 4, moves in to-
ward branch 3. They couple, forming another evanescent
branch, 34, that behaves similarly to branch la discussed
above. In addition, the coupled plasmon-phonon modes
in the absence of a dc current are indicated.

Consider next Fig. 3, the situation for positive wave
vectors. For ~ 0.8m, branch 2 is polaritonlike, but be-
comes phononlike as co approaches coT. At coT, branches
2 and b come together to form degenerate branch 2b,
which terminates at the frequency ~so. One of the de-
generate modes of branch 2b is a convective instability—
here the slow SSCW (branch b) and the optical phonons
(branch 2) interact, producing amplification of the slow
SCW, in essentially the same manner as a resistive medi-
um produces slow SCW amplification. ' The optical
phonons behave as positive-energy waves, as discussed
previously.

In addition to branch 2b of Fig. 3, another polariton
branch, namely 5, begins at co=~T and, with increasing
frequency, becomes a coupled plasmon-phonon mode. It
then bends upward, becoming parallel to the recovered
branch b, which moves in from large wave vectors.

C. Retardation effects with carrier damping

Figures 4 and 5 show dispersion curves for the situa-
tion where damping is included and co =co T. The pres-
ence of damping makes noticeable changes in branch be-
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FICx. 5. Retarded dispersion curves with damping for
co~ =coT and positive wave vector.

In comparing Fig. 1 with Figs. 2 and 3, one notices
that the inclusion of retardation —with the resultant ad-
dition of two more branches —complicates the branch in-
teractions. Because the branch coupling that results in
amplification is of most interest, we will comment on this
first. In Fig. 1, the slow SSCW interacts with the optical
phonons to produce an amplifying instability. With the
introduction of retardation (Fig. 3), the same coupling of
the SSCW and optical phonons produces amplification.
In addition, however, there are two evanescent branches
for the retarded case. The evanescent branch la of Fig. 2
is similar to that found in the situation without optical
phonons for the geometry described in Sec. III A
above. '

In the region of the convective instability, the wave
vector is sufficiently large so that the decay constants
given by Eqs. (2.3) and (2.11) are nearly equal to the w'ave

vector k . Consequently, the electromagnetic surface
waves are very localized near the surface, i.e., their
penetration depth is small.
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FIG. 6. Retarded dispersion curves with damping for
co =0.5cor and positive wave vector.

FIG-. 8. Frequency dependence of the imaginary part of the
wave vector with retardation and damping included for m~ =coT
and v=0. 1ruT.

havior. For example, consider negative wave vectors
(Fig. 4). Here branches a (fast SSCW) and l (polariton)
cross, but do not interact to form an instability. Note,
however, that in the vicinity of the crossing point, branch
1 does exhibit backbending. In contrast to the situation
shown in Fig. 3, branch 2 (polariton branch) in Fig. 5
does not bend over to interact with branch b (slow SSCW
branch); instead, it is branch a (fast SSCW branch) that
crosses branches 1 and 2 and joins branch b at the point
where the degenerate branch ab starts. One of the modes
of branch ab is a convective instability. The degenerate
branch (ab) terminates at co=coso, similar to what we
have seen in Fig. 3. The behavior of the low SSCW,
namely branch b, is essentially the same in both Fig. 3
and Fig. 5.

In Figs. 4 and 5 for co ~ ~L, one sees that, for negative
wave vectors, branch 4 moves in from large negative
wave vectors, crosses branch 1, and proceeds into the re-
gime of positive wave vectors, where it crosses branch 2
and then bends upward in the vicinity of branch b. This
behavior is to be compared with the same frequency
range in Fig. 2. There branch 4 interacts with branch 3
to produce an evanescent wave.

Next we consider the low plasma density case, namely,
co =0.5coT. The dispersion curves are shown in Fig. 6.
Here the behavior of the branch interactions is qualita-
tively the same as that shown in Fig. 5, and exhibits an
amplifying branch ab.

Finally we consider m =3.0coT (Fig. 7), the high plas-
ma density case. Again there is behavior similar to that
of Fig. 3, namely, an amplifying branch ab. This is in
contrast to the results of Tajima and Ushioda, who found
no instabilities for m )~T.

In comparing Figs. 5, 6, and 7, we note that the fre-
quencies associated with the convective or amplifying in-
stability always lie in the range between mT and ~so.

Figure 8 shows the frequency behavior of the imagi-
nary part of the wave vector associated with the amplify-
ing instability of Fig. 5. Similar results for Figs. 6 and 7
are not shown. We see in Fig. 8 that the gain (or loss) be-
gins at ~=coT, and increases with increasing frequency.
The gain increases more rapidly as co approaches coso,
and then drops to zero.

The results presented thus far show that slow SSCW's
interact with optical phonons to produce an amplifying
instability. It is therefore of interest to consider the situ-
ation where no optical phonons are present. In our previ-
ous work"' on silicon in which neither optical phonons
nor carrier damping are included, an evanescent mode
was found similar to the evanescent mode la in Fig. 2.
We have made calculations in which we include carrier
damping but neglect optical phonons. The results are
shown in Fig. 9 for negative wave vectors. We see that
branch a, the fast SCW, crosses branch 1 without interac-
tion, and that branch 1 undergoes backbending as it
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FIG. 7. Retarded dispersion curves with damping for
co =3.0~ - and positive wave vector.
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FIG. 9. Dispersion curves including retardation and darnp-
ing, but without optical phonons, for v=0. leo~ and negative
wave vectors.
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FIG. 10. Dispersion curves including retardation and damp-
ing but without optical phonons, for v=0. leo~ and positive
wave vector.

crosses branch a. For positive wave vectors, Fig. 10
shows that branch a crosses branch 2 without interaction,
and that branch 2 undergoes backbending as it crosses
branch a. Because of the absence of optical phonons,
there is no convective instability. In other respects the
results presented in Figs. 9 and 10 are quite analogous to
those in Figs. 4 and 5, where optical phonons are present.
The backbending of the polariton branches near the
crossing points with the fast SSCW is a consequence of
the damping, as discussed by Kovener et al. '

In the results presented above, the dispersion relation
was solved by taking the frequency cu to be real and then
calculating the wave vector k which, under certain con-
ditions, turned out to be complex. We have also carried
out calculations for the nonretarded case without damp-
ing in which the wave vector was taken to be real and the
frequency was determined. For a certain range of re-
duced wave vector k Vo/co&-, a complex-conjugate pair of
frequencies results. One mode of the pair corresponds to-
a convective instability.
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I.O

0.0
0.0 0.2 0.4 0.6 0.8 I.O

(d~ /QJT

FICx. 11. Wave-vector range for instability as a function of
plasma frequency.

0.0
0

k V /(uT

FIG. 12. Imaginary part of the frequency as a function of
wave vector for various plasma frequencies: (a) co~ =0.1coT, (b)
co~ =0.SENT, (c) ~p =coT, (d) cop =1.Scop.

The range of reduced wave vector for which the insta-
bility exists is plotted in Fig. 11 as a function of the plas-
ma frequency. We see that both the width of the range
and the positions of its boundaries increase with increas-
ing plasma frequency. The value of the magnitude of the
imaginary part of the frequency, ~co2~, is plotted against
reduced wave vector in Fig. 12 for various values of the
plasma frequency. For the situations presented in Fig. 12
it is evident that the peak value of m2 increases with in-
creasing plasma frequency. We also see that the range of
wave vector for which an instability exists increases with
increasing plasma frequency, in agreement with Fig. 11.

It was mentioned previously that Tajima and Ushio-
da' have considered the problem of optical-phonon in-
teractions in a semiconductor. They obtained dispersion
relations both taking into account and neglecting a drift
current. To take into account the presence of a drift
current in their dispersion relation, they simply replaced
co /co by co„/(co —kVo), where ro is the plasma fre-
quency and Vo is the drift velocity. As can be seen from
our formulation, this procedure neglects some of the ten-
sor elements of e &, which are nonzero when a drift
current is taken into account. Furthermore, they did not
incorporate a condition such as the Kliewer-Fuchs
specular-reAection boundary condition into their formu-
lation. Consequently, their dispersion relation differs
from ours. In the nonretarded limit, however, the two
dispersion relations become the same if the thermal ve-
locity of the electrons is neglected, as has been done by us
and by Tajima and Ushioda in their surface-mode calcu-
lations.

IV. CONCLUSIONS

Dispersion curves have been calculated for SSCW's in-
teracting with surface-optical phonons in GaAs, both
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with and without carrier damping. In both cases an am-
plifying instability for the slow SSCW begins at ~„, the
transverse-optical-phonon frequency, and terminates at
cosQ the limiting surface-optical-phonon frequency. The
slow SSCW acts as a negative-energy wave and couples
with the positive-energy optical phonons, thus forming
the amplifying instability. This is analogous to the situa-
tion where the slow SCW couples with a dissipative medi-
um such as a "resistive wall" or with a stationary plas-
ma 22

Since the frequencies associated with the amplifying in-

stability lie between coT and cosQ, they therefore corre-
spond to infrared frequencies. By introducing a coupling
device such as a grating, it may be possible to exploit the
instability to produce a source of infrared radiation.
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