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We have presented a method for an exact calculation of the quasiharmonic (which allows for the
volume dependence of the phonon frequencies) and the two lowest-order, cubic and quartic, anhar-
monic contributions to the Debye-Wailer factor (DWF) or atomic mean-square displacement of an
anharmonic crystal in the high-temperature limit. Although the method is applicable to any mon-
atomic cubic crystal, specific results are presented for a nearest-neighbor central-force model of a
fcc crystal for any two-body potential P(r) The . method requires a knowledge of seven Brillouin-
zone (BZ) sums and the first four potential derivatives of P(r) evaluated at the nearest-neighbor dis-
tance appropriate for the temperature T K. The BZ sums are calculated to a high degree of accura-
cy and presented for a ratio parameter a „which depends on the first and second derivatives of P(r),
in the range 0~ a& ~0. 1 in steps of 0.02. We have also presented a highly accurate exponential fit
for each of the seven BZ sums. The argument of the exponential is a polynomial of degree 5 in the
variable a&. We have applied this method to the calculation of the DWF for Al using a three-
parameter and a four-parameter Morse potential function. We have also assessed the validity of the
leading-term approximation introduced earlier, in such calculations, by Maradudin and Flinn. In-
troduction of this approximation gives a negative anharmonic contribution to the DWF. The exact
calculation gives a positive contribution. We have also performed calculations with the Harrison
modified point-ion pseudopotential with 13 neighbors in the harmonic interaction and 8 neighbors
in the anharmonic interaction at 0 K volume. A comparison of the theoretical results of the DWF
with their experimental values in Al shows that the agreement with experiment is good up to 500 K.
The theory and experiment differ by 16% at the highest temperature, 900 K. We ascribe this
difference to the limited applicability of the Morse potential and the fixed volume dependence of the
pseudopotential.

I. INTRODUCTION

Since the first calculation of the lowest-order anhar-
monic contributions to the atomic mean-square displace-
ment (u ) or the Debye-Wailer factor (DWF) by Mara-
dudin and Flinn, which was done in the leading-term ap-
proximation for a nearest-neighbor central-force (NNCF)
model of a fcc crystal, many exact calculations of ( u ) of
DWF have been reported in the literature. For exam-
ple, (u ) or DWF has been calculated for all the bcc al-
kali metals by Shukla and Mountain and Shukla and
Heiser. These authors employed a long-range sixth-
neighbor interaction potential derived from a pseudopo-
tential theory. The adequacy of the lowest-order (A, )

perturbation theory (PT) was tested by comparing the
(u ) results with those of the molecular-dynamics (MD)
method for the same potential function because the latter
method presumably includes alI anharmonic contribu-
tions. The results for (u ) by both methods agreed quite
well, and thereby showed the adequacy of the X PT for
the alkali metals. For short-range interactions, such as
the 12-6 Lennard-Jones (12-6 LJ) potential applied to the
NNCF model of the fcc crystal, (u ) was calculated by
Heiser, Shukla, and Cowley by the A. PT, MD, and the
Monte-Carlo (MC) method, which also gives all anhar-
monic contributions. This calculation demonstrated the

adequacy of the A, PT only up to —,
' of the melting tem-

perature ( T ). More recently it has been shown by Shuk-
la and Hiibschle that the MC results for (u ) can be
adequately represented up to T for the 12-6 LJ NNCF
model of the fcc crystal when the anharmonic calcula-
tions of ( u ) are carried out by a Green's function
method.

Clearly, the methods used in the above calculations
of (u ), as well as an earlier calculation by Wolfe and
Goodman for a model of a fcc Cu crystal, are geared to a
particular potential and a range of neighbor interactions.

However, it is possible to carry out an exact calcula-
tion of the anharmonic properties for a model of a fcc or
bcc crystal and present the final results in a form which is
applicable to any short-range model potential. This type
of exact calculation of the lowest-order anharmonic con-
tributions to the Helmholtz free energy F, which is fun-
damental in the calculation of the equation of state, has
been carried out for the NNCF model of the fcc crystal '

and the nearest and next-nearest (NNNCF) model of the
bcc crystal. ' The final results are expressed in terms of
potential derivatives and a certain number of Brillouin
zone (BZ) sums which are tabulated as a function of a pa-
rameter a&. The parameter a& depends on the first and
second derivatives of a two-body potential N(r) and
characterizes the volume dependence of the BZ sums.
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The Helmholtz free energy to 0 (A, ) and O(k ) (where 1
is the Van Hove perturbation expansion parameter) of
the above fcc model has been calculated by Shukla and
Shukla and Wilk, and Shukla and Cowley, " respectively.
The equation-of-state results have been obtained for the
Lennard-Jones, Morse and Rydberg potentials in rare-gas
solids' employing the A, PT and Morse and Rydberg po-
tentials for several fcc metals' ' for the A, PT. For the
above bcc crystal model the free energy and the equation
of state results for the A, PT have been obtained by Mac-
Donald, Shukla and Kahaner for the alkali metals and
by MacDonald and Shukla' for the transition metals.

A similar exact calculation of the anharmonic contri-
butions to ( u ) has not been carried out although it
would be worthwhile to do so. ( u ) enters in the calcu-
lation of the Debye-Wailer factor (DWF) which appears
in the temperature dependence of the intensity of the
Bragg x-ray and elastic neutron scattering and in the
Mossbauer fraction. It also is important in theories of
melting based on the Lindemann criterion.

The objective of this paper is to develop an algebraic
method from which exact numerical results for the har-
monic and anharmonic (cubic and quartic) contributions
to (u ) can be obtained for any N(r) like the Lennard-
Jones, Morse, Rydberg, and other model short-range po-
tentials. The method presented in this paper for the
anharmonic calculation of ( u ) is similar in spirit to that
of the calculation of I'. The algebraic expressions for the
harmonic and anharmonic contributions to ( u ) are de-
rived for the NNCF interaction model of the fcc crystal.
The expressions contain a number of BZ sums which de-
pend on al, and the potential derivatives of &b(r). From
these expressions ( u ) can be calculated at any tempera-
ture ( T) and volume ( V). Although the method is applic-
able only to the NNCF model of a fcc crystal, it is valid
for any 4(r) such as those obtained from pseudopotential
theory, but only in approximation.

As mentioned earlier, the first calculation of the DWF
or ( u ) was carried out by Maradudin and Flinn' for a
NNCF model of the fcc crystal. The harmonic and the
lowest order (cubic and quartic) anharmonic contribu-
tions to DWF were evaluated by these authors in the
leading-term approximation. How good this approxima-
tion is in the calculation of ( u ) is not known. Because

the results obtained by Maradudin and Flinn have been
used by several workers, ' ' it will be useful to assess
the validity of the leading-term approximation (LTA).
The present work will assess the validity of LTA.

In Sec. II we present a summary of the high-
temperature (T )023, Oz is the Debye temperature) ex-
pressions for the harmonic and the two lowest-order ()l. )

anharmonic contributions to ( u ) and the details of their
calculation. In Sec. III we present the final expressions
which can be used for the calculation of any P(r). The
LTA is discussed in Sec. IV. The results and discussion
are presented in Sec. V. The conclusion of this work is
presented in Sec. VI.

II. CALCULATION
OF THE DEBYE-WALLER FACTOR (DWF)

Maradudin and Flinn' have derived the high-
temperature limit expressions for the anharmonic contri-
butions to DWF in the lowest order (A, ) of perturbation
theory by retaining the cubic and quartic terms in the
Hamiltonian. They found four anharmonic contribu-
tions: two of these were isotropic and proportional to ~q~

(q is the wave vector) and the other two were nonisotro-
pic and proportional to ~q~ . They evaluated both isotro-
pic contributions in the leading-term approximation and
the two anisotropic contributions in the Ludwig and the
leading-term approximations for a NNCF model of a fcc
crystal. A test of the validity of these approximations in
DWF calculations has not been reported in the literature.
In the context of Helmholtz free-energy calculations, the
leading-term approximation has been shown to be poor.

In order to present our calculations clearly for any P(r)
and a cubic crystal it is necessary to present here the
basic expressions for the harmonic and anharmonic con-
tributions to DWF. In the classical high-temperature
limit (T )Oz), these contributions can be obtained from
Maradudin and Flinn. ' We represent the harmonic con-
tributions, or more appropriately with volume depen-
dence of phonon frequencies the quasiharmonic (QH)
contribution to DWF by 2M&&(q), and two isotropic A,

contributions to DWF by 2M, (q) and 2M2(q). Expres-
sions appropriate for cubic crystals are summarized here
from Shukla and Mountain. These are given by

iqi'(k, T)
2M'~(q) =

3JVM . a32(qlj, )

rr2M, q= —
~q

6JV M q q ~ J co (q,j, )co (q2j2)

kB T
g + + @ 'qlil 'q2J2 'q3j3 + 'qlJ1 12i2 'q3i3

2 2 ~ 46~ M q, q q J',i,i ~ (qlil )~ (qi2)~ (q3j3)

(2)

(3)

The various symbols appearing in Eqs. (1)—(3) have the following meaning: M is the atomic mass, kB is the
Boltzmann constant, T is the temperature, and X represents the number of unit cells in the crystal. The delta function
b, (ql+q2+ . . +q„) appearing in Eq. (3) is unity if (q, +q2+ ' +q„) is zero or a vector of the reciprocal lattice (~)
and zero otherwise. The 4 functions appearing in Eqs. (1) and (2) are the Fourier transforms of the third- and fourth-
order atomic force constants. In general, the Fourier transform of the nth-order tensor atomic force constant P p. . . (l)
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is defined by the following:

@(qadi, q2jz, . . . , q„j„)= g' g p p. . . (l)XE (q j, ) . s (q„j„)(1—e .
' ')(1 —e ' ') . (1—e " '), (4)2M" l P. . .„

s (qj)Ep(qj)S p(/)=g
~ (qj)

Ey(qj)(s&(qj)
Tys(/) =g

co (qj)

cos(q r, ),

cos(q r, ), (6)

which can be numerically evaluated, for any direct lattice
vector rl by transforming the whole BZ sum appearing in
the right-hand side of Eqs. (5) and (6) to that over the ( —,', )

portion of the irreducible section of BZ. The
transformed equations for the diagonal and off-diagonal
elements of S & are derived in Shukla and Wilk. T &

can be obtained in a similar manner.
In terms of the above tensors, 2M, (q) can be written as

where the prime over the direct lattice vector (/) summa-
tion in the previous equation indicates the omission of the
origin point, and co(qj) and s(qj) are the eigenvalues and
eigenvectors, respectively, for the wave vector q and
branch index j.

Substituting for N(q, j„—q,j„q2jz, —q2j2) from Eq.
(4) into Eq. (2) we can separate the BZ sums over q& and

q2 and branch index summations ( j& and jz) in terms of
the two basic tensors

(kp T)
2M, (q) = —Iql'

24B (ro)

X g' g gP.p,,(/) [S.p(0) —S.p(/) ]
a/3 y5

X[Tys(0) —T s(/)],
where the factor B (ro) in Eq. (7) arises from scaling of
co(qj) to their dimensionless form A, (qj) via the equation
co (qj)=[2B(ro)/M]. B(ro) is the value of B(rI) at the
nearest-neighbor distance (ro) and is defined later.

The calculation of 2M2(q) is not so simple because of
the b, function contained in Eq. (2). However, the three
BZ and branch index summations can be separated by in-
troducing the following plane-wave representation of the
6 function:

1
b, (q, +q2+q3) = g—exp[i (q, +q2+q3). rI ] .

l

Once again substituting for N(q, j„q2j2,q3j3) from Eq.
(4) into Eq. (3) and using the representation (8) for b, we
can express 2M2(q) in terms of S p, T s tensors. The
final form arrived at is

(k~ T) g&'&' g &'P.py(/, )P,„.(/z)[S, (/) —S ~(/ —l, ) —S ~(/ —l )+S ~(/ —/, +/ )]
0 I l~ l2 apy Apv

X [Sp„(l)—Sp„(l —/) ) —Sp„(l —/~)+Sp (l —/, +l2)]
X[Ty (l) Ty (l /, ) Ty (l l2)+T (/ /, +l2)]

where the sum over I is over all direct lattice points and
l, , /2 are restricted to the neighbor sums of the lattice un-
der consideration.

The quasiharmonic contribution to DWF can also be
evaluated from the diagonal elements of the tensor S p(l)
evaluated at I =0, i.e.,

B(rI)f py(/) =, C( y( )+ ( a(5py+/3, 5 +y, 5 p)Py 1 ya l o.P

al/ I V I5l
4

/q/'(k, T)
2MoH(q) = [S,(0)+S (0)+S„(0)].

3AM
(10) +(aI~I5 s+~»i5.s+arrI5ps

Equation (10) is equivalent to Eq. (1) because of the nor-
malization property of the eigenvectors.

At this point in the calculation the only things left to
be spelled out in the calculation of 2M, (q) and 2M2(q)
are P p (l) and P p s(/). We present here complete ex-
pressions for these tensors for the exact calculations of
2M, (q) and 2M2(q) as well as for the discussion of the
leading-term approximation. For any P(r), these expres-
sions are given by

C(r, )
+a1515py+/3i5i5 +)'I5i5 p)

yl'

+(5 p5ys+5p 5 s+5 5ps)
I"l

(12)

where a, P, y, 5 are each assigned the values of x,y, z, re-
spectively, and a&, P&, etc. are the corresponding com-
ponents of the direct lattice vector rl. B,C,D are com-
binations of derivatives of P(r) evaluated at r&=~rI~.
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These are defined as

8 (r, ) = P"(r) —P'(—r)
1

r
(13)

C(r, ) = P"'(r) —
(t
"—(r)+, P'(r) (14)

D (r, ) = P'"(r) —P"'—(r)+, P"(r) , —P'(r)6 „, 15 „15
(15)

There are convergence problems in the numerical eval-
uation of S &(l) and Tr&(l). T s(I) converges much more
slowly than S &(l) for any choice of the mesh size. This
is due to pi (q ) in the denominator of Eq. (6). We have
used a simple cubic mesh to fill the —,', portion of the irre-
ducible section of BZ, viz,

l q„ l
+

l q l
+

l q, l

1 ~ lq I

~
lq~l

~ lq, l
~0, say, for a fcc lattice. It does not

matter how many points are used in the calculation, the
convergence of individual tensors T~& remain slow com-

pared to S &. The weighting (or contributions) from
points close to q-=0 is important. However, what enters
in the calculation of 2Mi (q) and 2M2(q) is the difFerence
of these tensors which converges much better than the in-
dividual tensors. The problem remains in the calculation
of 2M&H(q). To solve these convergence problems we
used a graphical extrapolation procedure in our calcula-
tions. After computing these quantities for a large num-
ber of step lengths (L), a graph was plotted versus 1/L
and extrapolated to a step length corresponding to
L —+ ~. The above method is valid for the DWF calcula-
tion of any monatomic cubic lattice (sc, bcc, and fcc). In
the next section we specialize it for the NNCF model of
the fcc crystal.

III. EXPRESSIONS FOR 2M i (q), 2M& (q), AND 2M&a
FOR A NNCF MODEL OF A fcc LATTICE

We substitute Eq. (12) into Eq. (7) and Eq. (11) into Eq.
(9). After some lengthy algebraic manipulations the
equations for 2M, (q) and 2M2(q) can be reduced to the
following form for application to any P(r):

2Mi(q) =—

lq'l3k, T
2MoH = SoH(a, ),68 rp

lql'(k, T)' C(rp) 8(rp)
D(rp)S4g(ai )+ S g(a )+ S4c(a i)38'(rp) rp ro

Iql'(k, T)' 28(rp)C(rp) 8 (rp)
2M&(q)= 4 C (rp)S3&(ai)+ S3&(a&)+ z S3c(a&)F (rp) ro rp

(16)

where in the above equations 8 (rp), C(rp), and D (rp) are
evaluated from Eqs. (13)—(15) at the nearest-neighbor dis-
tance corresponding to temperature T and the BZ sums
S4~,S4~,S4C', S3+ S3+ S3C and S&H are evaluated at the
same temperature for the ratio a, =P (rp)/[rpP '(rp)

P'(rp)]. F(rp)=P"(—rp)+(1/rp)P'(rp). These sums are
presented in Tables I—III as a function of a, .

From these tables, one can either interpolate the value
of these sums for a„whose value lies in between the in-
tervals given for a „or some fitted functional form can be
used. In Table IV we present the coefficients of one such
fitted functional form, viz. , f(ai)=exp[P(ai)], where
P(ai)=g~ pb„(ai)", for each of the seven BZ sums.

These fits reproduce the numerical values of the BZ sums
almost exactly.

IV. LEADING- TERM APPROXIMATION (LTA)

P pr(l)=, P"(r, ),
ri

(19)

As mentioned in the Introduction, the results of DWF,
first derived by Maradudin and Flinn, have been used ex-
tensively by several workers in the past. This approxima-
tion amounts to only retaining the highest-ordered radial
derivative in the Cartesian tensors P &r and P &rs. Thus
from Eqs. (11) and (12) we get

TABLE I. Dimensionless sum SQH for different values of a &.

TABLE II. Dimensionless sums, S4&,S4&,S4c for different
values of ai.

a&

0.10
0.08
0.06
0.04
0.02
0.00

SQH

0.588 17
0.624 69
0.666 52
0.714 97
0.771 91
0.840 01

0.10
0.08
0.06
0.04
0.02
0.00

S4~

0.116319
0.137 603
0.164 875
0.200 566
0.248 484
0.314 891

S4~

1.342 787
1.599 144
1.930 325
2.367 725
2.960 975
3.792 513

S4c

2.756 750
3.328 538
4.079 325
5.088 750
6.485 275
8.486 788
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TABLE III. Dimensionless sums S»,S»,S3c for different
values of a&.

a&

0.10
0.08
0.06
0.04
0.02
0.00

0.028 267 4
0.030 714 2
0.033 761 6
0.037 642 4
0.042 719 8
0.049 590 0

0.098 027 8
0.106 085
0.116088
0.128 779
0.145 308
0.167 553

S3c

0.544 704
0.592 583
0.652 358
0.728 713
0.829 022
0.965 503

~ll I 1 I~I
(()agyS(&) —= 4

P'"(ri ), (20)

and

&(r, )=—P"(ri) . (21)

The expressions for 2M, (q), 2M&(q), and 2MQii(q) in
the LTA simplify to

~q~'(k, T)'y'"(r, ) „„2M, (q) = — S4L~TA,
3I:(()"(ro ) l'

(22)

l4"(ro) f'

I q I '3kii T
QH I 6~yii( ) ~

QH

(23)

(24)

where in obvious notation we have put the superscript
LTA in the three BZ sums 54&, S3&, and S&z, respec-
tively. All these sums are evaluated at a

&
=0.

In the calculation of 2MQii(q) the volume dependence
comes from the BZ sum S&z and the B factor in the
denominator in Eq. (18). Maradudin and Flinn did not
allow the variation of S&z with volume, but B was al-
lowed to vary with volume. In introducing the LTA first
B (r) was approximated, as given by Eq. (21), and then ex-
panded in powers of e where r =ro(l+e). e was deter-
mined by minimizing the sum of the quasiharmonic free
energy (also evaluated in LTA) and the static energy.
This procedure led to an extra term in 2M&~ proportion-
al to (kiiT) . However, this procedure of evaluating
2M&& is inconsistent because of the neglect of the volume
dependence of S&z. As shown in Shukla and Mac-

Donald, ' the volume dependences of B and S&~ act in
opposite directions, at least in the calculation of c.. We
discuss the numerical results obtained from LTA in Sec.
V.

V. RESULTS AND DISCUSSION

The quasiharmonic and A, PT contributions to (u )
have been calculated at different temperatures and ap-
propriate zero-pressure volumes by Heiser, Shukla, and
Cowley (HSC) for the NNCF model of a fcc lattice with
the 12-6 Lennard-Jones potential. An obvious test of the
method presented in this paper is to calculate these con-
tributions to (u ) from Eqs. (16)—(18) and the BZ sums
presented in Tables I—IV for the above potential. We
have done these calculations and found that they agree
quite well with those of HSC with some minor differences
because the cubic contribution as calculated by HSC was
not fully converged.

Next we apply this method to the calculation of DWF
for Al between 300 and 900 K for two types of NNCF
Morse potential functions: the usual function with three
parameters whose values were determined in our earlier
work' and a modified form introduced by MacDonald
and MacDonald. ' The latter form has an extra parame-
ter (b) which is determined by calculating the thermal ex-
pansion c,(T) for several values of b and then requiring
that the initial slope near T=OD be in agreement with
the experimental values. In both calculations of DWF we
have included the exact volume dependence of the har-
monic and anharmonic contributions by employing Eqs.
(16)—(18) and the BZ sums presented in Tables I —IV.

The volume dependence comes from the BZ sums and
the derivatives 8, C, D defined in Eqs. (13)—(15), each of
which have to be evaluated at the appropriate r(T). The
values of r ( T) are the same as determined in the previous
work' ' by minimizing the total energy of the system for
these potentials. This total energy consists of the static
energy plus the harmonic and A. anharmonic (cubic and
quartic) contributions to the Helmholtz function.

We have also made these calculations for the Harrison
modified point-ion pseudopotential' which was used in
our earlier work on the specific heat of Al. ' But this cal-
culation of DWF is done for a fixed volume (0 K volume).
This is a long-range potential which required considering
13 neighbors in the harmonic interaction (for the calcula-
tion of phonon frequencies) and 8 neighbors in the anhar-

TABLE IV. Coefficients of the least-squares fit of the functions S«{a&), etc. , each fitted to the form
y =

exp [P (a, ) ], where P ( a, ) =g'„ob„(a, )".

S«

S4B
S4c
S3~
S3~
S3c

bo

—0.174 341
—1 ~ 155 53

1 ~ 333 03
2.138 51

—3.003 97
—1.786 46
—0.035 106

—4.454 94
—12.4982
—13.0698
—14.2170
—8.123 96
—7.763 36
—8.315 11

12.2157
35.4259
37.5063
41.4864
36.3668
34.9417
37.9244

—44. 1948
—141.374
—150.333
—165.353
—160.682
—155.390
—170.970

126.459
514.150
554.644
596.810
593.867
583.985
636.612

b5

—151.237
—1037.31
—1150.08
—1195.17
—1205.75
—1213.79
—1283.05
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0
TABLE V. Temperature dependence of Debye-Wailer factor (B) for aluminum in units of A .

Temp (K)

Morse 1 QH'

Morse 2 QH

Morse 1 QH
C+Q
(0 K vol. )

300

0.832
0.015

0.863
0.004

0.800
0.015

400

1.123
0.027

1.177
0.007

1.066
0.026

500

1.421
0.042

1.506
0.010

1.333
0.040

600

1.727
0.062

1.852
0.013

1.600
0.058

700

2.042
0.084

2.215
0.016

1.866
0.079

800

2.366
0.112

2.597
0.018

2.133
0.103

900

2.700
0.144

2.998
0.018

2.400
0.131

LTA 0.857 1.168
—0.022 —0.061

1.492 1.830
—0.061 —0.088

2.180 2.544
—0.119 —0.156

2.920
—0.197

Harrison QH
C+g
(0 K vol. )

0.732
0.043

0.976
0.076

1.220
0.118

1.464
0.170

1.708
0.232

1.952
0.303

2.196
0.383

'Quasiharmonic.
Cubic and quartic.

monic (cubic and quartic) interactions. This calculation
of DWF required employing Eqs. (1)—(4).

In order to assess the validity of LTA, described in Sec.
IV, we have made the calculations for the three-
parameter Morse potential at the fixed 0 K volume.

The results for all these different calculations are
presented in Table V and displayed in Fig. 1, along with

the experimental data for DWF. For convenience, the re-
sults are given in terms of the experimental DWF, B,
which is 8n times the theoretical DWF, viz. , 2M(q) of
Eqs. (16)—(18).

The Morse potential DWF with volume dependence
shows a nonlinear temperature dependence in the
quasiharmonic contribution. Partial cancellation of the

25—
04

C3
(0

0 2.0

l.5

l.0

0.5
300 400 500 600 700 800 900

TEMPERATURE (K)

FIG. 1. Temperature dependence of the experimental and calculated Debye-Wailer factor (B). Curves 1 and 2 are experimental
values: ~, Ref. 20;, +, Ref. 15; '7, Ref. 21; f, Ref. 17. Curve 3, modified Morse; curve 4, Morse; curve 5, leading-term approxima-
tion: LTA; curve 6, Harrison modified point-ion pseudopotential.
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cubic and quartic terms reduces the anharmonic contri-
bution to about 50% of the cubic term but leaves a total
positive anharmonic contribution. The anharmonic con-
tributions are seen to have a significant volume depen-
dence only above 500 K. The results for the fixed 0 K
volume show that most of the volume dependence of
DWF lies in the quasiharmonic term.

For the modified Morse potential (Morse 2 in Table V)
the cancellation of the quartic and cubic terms is almost
complete. At 900 K the sum of these terms is only 10%
of the corresponding sum for the Morse potential. The
quasiharmonic contribution is larger than for the Morse
potential. The results of the PT for these potentials are
shown as curves 3 and 4 in Fig. 1.

In the LTA at fixed volume the quasiharmonic portion
of the DWF is larger than the Morse PT results with
volume dependence. As shown in Table V, the cubic and
quartic contributions in LTA show cancellation and sum
to a negative value, in contrast to the positive sums for
the PT results. The net result, curve 5 for LTA has an
upward curvature but is lower than the PT results at all
temperatures.

The results for the Harrison pseudopotential exhibit a
weak upward curvature, as shown by curve 6 in the
high-temperature range. Partial cancellation between the
quartic and cubic terms is similar in magnitude to the re-
sults for the two Morse potentials and leaves a net posi-
tive contribution. The quasiharmonic contribution is
smaller than that of any of the other cases examined. A
realistic test of this potential would require the
redefinition of the parameters of the potential at each
volume and temperature.

Experimental measurements of DWF from 300 to 860
K by neutron scattering, from 295 to 800 K by x-ray
scattering, ' and from 300 to 900 K by scattering of
recoil-less y rays, ' show that the temperature depen-
dence contains linear and quadratic terms in T. A possi-
ble cubic dependence on T, discussed in the first two re-
ports ' is not confirmed in the third. ' These results
and some earlier results at the low end of the temperature
range ' are shown in Fig. 1 ~ Above 700 K the DWF
determined by scattering of recoil-less y rays, curve 2,
lies below the other results, curve 1. At 850 K the
difference is about 7%.

The calculated PT values of DWF for the Morse po-
tentials show a smaller upward curvature than the experi-
mental results. The agreement is good up to 500 K, but

the difFerence between the two sets rises to about 15% at
900 K. The whole set of experimental points can be fitted
to the form B(T)=2.3X10 ' T+2.0X10 T in units
of A . Similarly, the calculated points for the modified
Morse 2 potential can be fitted to the form
B(T)=2.65 X 10 ' T+0.77 X 10 T in units of A
The calculated anharmonic term in T is about 38% of
the experimental term while the quasiharmonic terms
agree to about 15%.

The experimental results can be reproduced more
closely if the parameters of the Morse potentials are al-
tered. However, the new form of the potential will not
necessarily be consistent with other properties of the sys-
tem. The well-depth parameter is one-sixth of the sub-
limation energy per atom at the 0 K volume. Esti-
mates ' of this energy vary by 30%. The well depth is
related to the exponential parameter through the Debye
temperature. When new self-consistent values of these
two parameters are chosen to match the range of sub-
limation energies the improvement in the fit to experi-
ment is slight.

VI. CONCLUSION

We have presented a method for an exact calculation
of the harmonic and lowest-order (cubic and quartic)
anharmonic contributions to the Debye-Wailer factor for
the NNCF model of a monatomic fcc crystal and applied
it to Al. We have also assessed the validity of the
leading-term approximation introduced earlier, in such
calculations, by Maradudin and Flinn.

Introduction of this approximation gives a negative
anharmonic contribution to DWF. The exact calculation
gives a positive contribution. A comparison of the
theoretical results of DWF with their experimental values
in Al shows that the agreement with experimental is good
up to 500 K. The theory and experiment difier by 16%
at the highest temperature, 900 K. We ascribe this
difference to the limited applicability of the Morse poten-
tial.
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