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Rigidity of randomly intercalated layered solids
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We set up a harmonic spring model that describes both the layer rigidity and the size and stiffness
of the intercalant species. In certain limiting cases, when {1)the layers are either perfectly fIoppy or
perfectly rigid and {2) the stiffness of the two intercalant species are the same, the model can be
solved exactly. We also give an effective-medium solution that reproduces all the known exact re-
sults, and agrees well with numerical simulations in other cases. These simulations are performed
for both one- and two-dimensional systems. If the two intercalant species have the same spring con-
stant, Vegard's law is recovered. We compute the probability distribution of the various interlayer
distances and apply the results to two-dimensional alloys of Li and vacancies in graphite, and to K
and Rb in graphite.

I. INTRODUCTION

All crystalline solid solutions show a composition
dependence of the average unti-cell volume ( V) which
increases with the concentration of the largest constitu-
ent. ' Simple examples of such systems are binary alloys
of the type 3& 8 in the quenched limit when the
species 2 and 8 are randomly distributed, and ternary
systems of the type 3& „8 C. The linear variation of
( V) with x is the well-known Vegard's law, although
most solid solutions do exhibit a complex nonlinear (su-
perlinear, sublinear, sigmoidal) behavior. The x depen-
dence of ( V) depends, at the microscopic level, on the
competition between local and global energies associated
with forming a solid solution. These energies depend
upon the relative size and compressibility of the different
atomic species and overall rigidity of the system.

To address the question of the x dependence of both
the average volume ( V) and fiuctuations in the unit-cell
volume from site to site, it is somewhat simpler theoreti-
cally to consider either systems of reduced dimensionality
or those with large anisotropy in physical properties. For
example, there is a considerable variety of ternary layered
intercalated compounds of the form 3, B„L, with
o ~x ~ 1 [where B (A) is the larger (smaller) intercalant,
and L denotes the layer] where the major expansion takes
place along the direction perpendicular to the layers,
denoted as the c axis.

In the past, several attempts have been made to study
the nonlinear x dependence of the c-axis expansion within
two quite distinct types of models. One is referred to as
the rigid-layer model ' in which the layers are assumed
to be Hat, i.e., perfectly rigid against transverse distor-
tions. In this model the nonlinearity in the c-axis expan-
sion arises from the finite but different compressibilities
of the two intercalants 2 and 8. The second is referred
to as the layer-rigidity model, ' in which the layers are
assumed to be deformable but the intercalants are taken
to be perfectly incompressible but having different sizes.
This model has been solved in the case where there are

only two allowed heights and gives a simple functional
form that seems to fit the observed layer thickness we11 in
some compounds such as Cs„Rb& vermiculite. ' '"
The second model has also been solved using an elastic
continuum approximation' ' in the low —defect-
concentration limit (i.e., x close to 0 or 1). Simultaneous
inclusion of the effects of both the local ionic compressi-
bility and the finite layer rigidity on the c-axis expansion
has not been possible until the present time. In this pa-
per, we rectify this shortcoming by studying in detail a
model which incorporates both the above effects.

In Sec. II we introduce the spring model and in Sec.
III we present results of exact calculations in certain lim-
iting cases. In Sec. IV we develop an effective-medium
theory and test its accuracy by comparing the results
with the exact calculations. In Sec. V numerical simula-
tions are compared with the effective-medium-theory re-
sults and finally in Sec. VI we make some general re-
marks and compare our simulation and effective-
medium-theory results with available experiments in
graphite intercalation compounds.

II. THE MODEL

Consider a layered ternary system with composition
B„L, where I represents the host layer such as

graphite, dichalcogenide, or vermiculite. 3 and 8 are
two different types of intercalants which are assumed to
occupy (randomly) a set of well-defined lattice sites (see
Fig. 1). The total energy of the system can be approxi-
mated by a sum of two major contributions; one associat-
ed with the interaction between the intercalants and the
host and the other between host atoms themselves. Since
we assume the intercalants to be frozen (i.e. , quenched),
the direct interaction energy between the intercalants
does not play any role in the layer distortion. In a real
ternary which consists of many layers, the experimentally
measured average interlayer spacing will, to some degree,
depend on the interlayer correlation. The latter results
from large intercalant ions in the adjacent galleries repel-

40 10 294 1989 The American Physical Society



40 RIGIDITY OF RANDOMLY INTERCALATED LAYERED SOLIDS 10 295
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where h (x,y, t) is the height, V =(BIBx,a/By) is the
two-dimensional gradient operator, and p is the mass
density. From Eq. (3), we see that the isotropic layer
dispersion relation at long wavelengths is

1
[(z5 l2d)KTq +(z5 l2d) KFq ], (4)

where q is the wave vector.
One can define several average heights for this prob-

lem. These are {h ), {h „),and {hs ) where

=1
1

FIG. 1. Top view of a hexagonal lattice host layer where the
intercalants form a triangular lattice.

where h-. is the gallery height at the site i where an inter-

calant (either A or 8) sits. The angular brackets in the
second summation are to indicate that each bond 5 is
only counted once. The terms involving the spring con-
stant KT and KF describe, respectively, the transverse
and Aexural rigidity of the layers.

The host-intercalant interaction is approximated by a
harmonic spring of strength K-,. (=K„or Ks) and equi-

librium height h-, (=h& or hz). The energy associated
with host layer deformation has two types of contribu-
tions common to layered solids. The first one, propor-
tional to KT, is the transverse layer rigidity, and the
second one, proportional to KF, is the flexural rigidi-
ty. ' ' For binary systems, i.e., AL or BL, all the h's are
equal and the gallery height (or equivalently the inter-
layer spacing) is h = h ~ or h =hs.

In a continuum model, the terms involving KT and KF
in Eq. (1) give an energy density

1 [(z5 12d) K(TV )h+(z5 l2d) KF(V h) ], (2)

where a is the area per atom, z is the number of nearest
neighbors, and d is the dimension (d = 1 or 2 in this
work). This leads to an equation of motion,

ling each other, and other similar effects. This effect is
likely to be important in the limit of a small concentra-
tion x of the large ion. In the present paper, we neglect
this correlation and consider a single gallery bounded by
two host layers with intercalants randomly occupying lat-
tice sites inside the gallery. It is possible that the inter-
layer correlation effects can be largely taken care of by a
proper redefinition of spring constants.

The total energy of the host layer-intercalant system
can be written as

E =—'QK-. (h-. —h-) + —' g K (h-. —h-. -)
(i,s)

+ —,'QK„Q(h-,. —h- -)

with similar expression for {h „) and {hs ) with the
averages restricted to sites occupied by 3- or B-type
atoms only. To obtain various averaged quantities of in-
terest, one has to minimize the energy E given in Eq. (1)
with respect to the heights h-,. for a given realization of
the random variables K-, (=K~ or Kz) and h-. (=hz or
hz). We can then calculate {h ), {h „),{hs ), the aver-
age energy per site c.=E/N, the Auctuations in height
{(h —{h ) ) ), etc., as functions of x, Kz, Kz, h~, hz,
KT, K„, and the structure of the host lattice by averaging
over different configurations.

One simplifying aspect of the harmonic model with
uniaxial displacements, which we will refer to as the sca-
lar case, is that we can scale the heights and the energy
by hs —h~ and (h~ —h~ ), respectively. If we define a
local dimensionless height d-,. such that

h-,. = h ~ +d-,. ( h s —h „),
where d-,. =0 or 1, then the energy D can be rewritten as

E =—'(h —h„) y K (d-,. —d-,. )

(i, s&

+ gK~ g(d-, d-, +s) ''2. — .

i 5

+g "K„d++g K~(1 d-,)—.

(7)

Here the superscripts 3 and B on the summations means
that the sums go over only the 3 sites or over the B sites.
In the harmonic model the actual value of the difference
hz —hz is not relevant for the physical properties of the
system as it scales out. This is because all the displace-
ments are in the same direction. The diagram accom-
panying this scaling transformation is shown in Fig. 2.
The particles are attached to the lower or upper surface
depending on whether they are 3 or B. These surfaces
are rigidly separated by unit distance and the particles
are constrained to move only in a direction perpendicular
to the planes. In more complex geometries, such as those
in 3d mixed semiconductors, ' the arguments leading to
Eqs. (6) and (7) are only correct for small values of the
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sponding fiuctuations are given by ((hd) ) = (d )—(d) =x(1—x), and ((Ader) )=((ddt) )=0 be-
cause a11 the 3 sites have dimensionless height zero and
all the B sites have dimensionless height 1.

In the limit of infinite layer rigidity (i.e., when Kz.
and/or K+ —+ oo ), the energy E is minimized by having all

the d-,. equal (d „=d~ =d). Here the energy per site,

s= —,'(1 —x)K„d + ,'xK~—(1—d)

is minimized by

(12)

d=1 (13)

d=o

FIG. 2. Side view of the intercalants from Fig. 1, showing a
larger B intercalant and two smaller 3 intercalants. In (a), the
separations between the layers are given by the variables h;,
whereas the diagram going with the corresponding dimension-
less variables d; is shown in (b).

natural length differences hz —hz. The average height
given in Eq. (5) becomes

Note that by definition

giving an energy

E =
—,'x (1 x)K„K~—/[xK~+ (1—x)K~ ]

and fluctuations in all the three heights vanish in this lirn-
it. In earlier theoretical studies dealing with the gallery
expansion using discreate lattice models, all the d-,. 's were

assumed to be the same (rigid-layer model ' ) even for
systems with finite layer rigidity. In this approximation,
the non-Vegard's law behavior was determined complete-
ly by the compressibility ratio E~ /Kz of the two inter-
calants. At small x, Eq. (13) becomes (d ) ~(Ks /K~ )x.
If the larger ion 8 is highly incompressib1e compared to
3, i.e., Ks ))K&, one finds a large deviation (superlinear)
from Vegard's law behavior which continues for all x.
On the other hand, if the larger ion is more compressible
than the smaller ion, then (d ) shows a deviation from
Vegard's law but with sublinear behavior. If K~ =K&,
then one observes a Vegard's law behavior even for an
infinitely rigid layer. Later, we will show that within our
model, Vegard s law is obtained for arbitrary layer rigidi-
ty as long as Kz =Ez.

«&=(1— )&d, &+ «, &. (9)

(1—x)K„(d~ ) =xKs (1—ds ) . (10)

Thus if we know any one of the three quantities (d ),
(d~ ), and (d~ ), the other two can be found using Eqs.
(9) and (10). The fiuctuations in d, d~, and ds are related
by

((d —&d & )'& =(1—x)((d„—(d„))')

+ ((d —(d ) )'&

+x(l —x)(&d„)—(dz &)

which follows directly from the definitions.

III. LIMITING CASES AND EXACT SOLUTIONS

There is no net macroscopic force on the system in equi-
librium which leads to the relation

B. One-dimensional chain with E„=El~

To calculate the average quantities exactly for the
one-dimensional (1D) chain, it is slightly more convenient
to work with the h variables, rather than the dimension-
less d variables. One reason for studying the 1D chain
problem is that the effective-medium theory which we
have developed for this problem (to be discussed in Sec.
IV) can be worked out analytically for the 1D case and
compared with the exact calculations to test its accuracy.
The energy for the 1D chain is given by

E,D= —,'gK;(h; h; ) +2K@—g(h; —
hi;~r )

+ 2KFQ(2h; —h;+, —h, , )

A. Completely Soppy and infinitely rigid limits

If the layers are completely floppy towards transverse
distortions (Kz =K+=0), then the energy E is minimized
trivially. In this limit, we have ( d ) =x; the usual
Vegard's law with (dz ) =0 and (ds ) =1, The corre-

Minimizing Eio with respect to the h;, we find

Mh=g, (16)

where M is a tridiagonal matrix with random diagonal
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matrix elements, i.e.,

M;; =K;+2K~+6KF,

M;;~( = K~ 4KF, (17)

Thus we recover (d ) =x, i.e., Vegard's law behavior, for
all values of Kz. However, the site-specific-gallery
heights (d„) and (d~ ) do depend on the layer-rigidity
parameters Kz, KF through the relation

~i i+2=KF

h=(h„hz, . . . , hiv), P =(K,hi, K2h2, . . . , Kivhiv) .

(18)

(d„)=x [1—W(K)]

(d~) =1—(1 —x)[1—W(K)] . (22)
In Eqs. (15)—(18), all quantities are real. When both K,
and h, are random variables, which is the case when
K„AK&, the problem is difficult to solve analytically.
Our numerical solutions in this case will be discussed in
Sec. IV. However, when K~ =K~=K, one can obtain
the h s by diagonalizing the M matrix, which is no
longer random. In this case, the results can be worked
out analytically. In this limit, the eigenvalues A, and
eigenvectors g (i) of the matrix M are given as (d„)=x[1—(1+4K'./K) '~ ] (23)

The Watson integral W(K) is discussed and calculated in
Appendix A. Note that the expressions in Eq. (22) obey
the general relation in Eq. (10). As the general expression
for W(K) given in Appendix A is rather complex, we
give the results here for KF =0. We find

A, =K+2K& [1—cos(q, 5)]+4K~[1—cos(q5)]

and

(19)
and

(d~ ) =1—(1—x)[l —(1+4Kr/K) '
] . (24)

1
Pq(n) = —exp(iqn)

&N
(20)

(h ) =—g (M '))P, =—g g itiq(i)itiq(j)hj
lj q i,j

gh; =xhii+(1 —x)h~ .
l

(21)
I

with q =2mr/N with r =0, 1,2, . . . , N —1. Then we
have

Clearly when Kz-=KF=O, i.e., in the Aoppy layer limit,
these results [Eqs. (23) and (24)] become (d„)=0 and

(d~) =1 and when Kr or KF= co, i.e., the infinitely

rigid-layer limit, (d„)= (d~ ) =x. Thus, in the limit

K„=K', when (d ) shows a Vegard's law behavior the
transverse layer-rigidity effects are seen in the x depen-
dence of (d„) and (dz ). This point will be discussed in

more detail later.
The energy and the fluctuations in d, d~, and dz can

also be calculated in this limit. We obtain

e= —,'Kx (1 —x)[1—W(K)]= —,'Kx (1 —x)[1—(1+4K /K) '
]

((d„—(d ))') =((d —(d )) ) =x(1—x)[W, (K) W(K) ]—
=x (1— )[x(i+2K&./K)(i+4K& /K) 'i 1]/(1+4K'/—K),

((d —(d ) )2) =x(1—x) W, (K)=x (1—x)(1+2Kr/K)(1+4K'/K)

(25)

(26)

(27)

where the explicit results in Eqs. (25)—(27) have K+=0
for simplicity. From the above equations we see that the
fluctuations are maximum when x =0.5 and K&=0 as
would be expected. Note that the expressions for the
fluctuations in Eqs. (26) and (27) obey the general result
Eq. (11). The results for a linear chain with K„
=K~ =K =K~ and KF =0 are shown in Fig. 3 together
with simulation results obtained by the method described
in Sec. V.

C. Two-dimensional lattice with X& =X&

The average energy, average gallery heights, and the
corresponding Auctuations can also be calculated exactly
for 2D systems in the limit Kz =K& =K. One has to re-
place A in the Watson integrals used in Sec. III 8 by

=K+Krz (1 y-)+KF[z(1 ——y-)] (28)

where

ye iq 5 (29)
q z

6

and z is the number of nearest neighbors (z =4 for the
square lattice, z =6 for the triangular net). Clearly the
geometry of the lattice will determine A and hence the

q
layer distortion characteristics. The results are formally
the same as for the linear chain, except that the appropri-
ate Watson integrals from Appendix A for two dimen-
sions must be used in Eqs. (22) and (25)—(27). The aver-

age height obeys Vegard's law in this limit for all lattices.
We will compare these exact results with numerical simu-
lations in Sec. V.
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FIG. 4. Illustrating how the equivalent spring K, is deter-
mined within effective-medium theory.
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FIG. 3. Showing (a) average height, (b) fluctuations in height,
and (c) the energy in units of 2K(hz —h & ), for a one-
dimensional chain with K~ =K&. The solid lines are exact re-
sults and the solid dots represents simulation results.

single spring IC, as shown in Fig. 4(b). The problem is
now reduced to just two springs as shown in Fig. 5. One
of these springs is K, where o. can be either 3 or 8 with
probability 1 —x or x, respectively. The other spring is
K,'=K, —K, formed by removing the spring K which is
in parallel. The total energy per site c for a single impuri-
ty is given by

IV. EFFECTIVE-MEDIUM THEORY

M'

Bho

where the energy E is given in Eq. (l). The right-hand
side of this equations is linear in the Ih; I and can be in-
verted to give the diagonal term

(3l)ho = 8'(K)F,
where the effective spring constant for this kind of dis-
placement E, is given by

K, =K/8'(K) (32)

and ~(&) is the same Watson integral that we used in
the preceding section. The whole system is replaced by a

In this section we develop an effective-medium theory.
The work in this section follows the general ideas of
Feng, Thorpe, and Garboczi. ' The effect of the layers
on the intercalant atom is contained within an effective
layer spring constant K, . This can be found by applying
a force F to a single site 0 in the nonrandom system
where K =IC„=K~ as shown in Fig. 4(a). The equation
of motion is

qr

F
FIG. 5. Showing how the local rigidity is determined within

effective- medium theory. Here K,'=K, —K and o.= 2 or B.
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c, =—,'K,'(h —h, ) +—'K (h —h ) (33) ~ l I I I I I I I I I ~ V ~ I l I I Ii.

h =(K,'h, +K h )/(K,'+E ) . (34)

Substituting this back in Eq. (33) gives the energy for a
single impurity

where h, is the effective height which like the effective
spring constant E, is to be determined self-consistently.
We are considering only a single impurity spring K in
Eq. (33). We minimize the energy e with respect to h and
obtain the local height h,

1.0

KgKq = 0.05
(1) K,/K, = o.o
(2) KT/Kq = 0.1
(3) KT/Kg = 1.0
(4) Kg/Ks = 10.0

E= —,'(h, —h ) K,'K /(K,'+K ) . (35)

Because the springs have different lengths, the post factor
in Eq. (35) comes from adding the two springs in series.
A general energy expression can be written down by sum-
ming over all the different types of impurities which in
the spirit of effective-medium theory are assumed to be
noninteracting:

e= —,'gp (h, —h )~K,'K /(K,'+K ) . (36) hd 0.5

This expression contains two unknown parameters, the
height h, and the spring constant K,' (or equivalently K,
or K). These are determined by two conditions. For the
first we minimize the energy c, with respect to h, to give

gp h K /(E,'+K )

h, =
gp K l(K,'+K )

(37)

This expression can be regarded as variational because a
minimization is involved. Unfortunately we have not
been able to derive a second condition variationally. In-
stead we use the following argument. Apply a force F at
the single impurity site. This produces a displacement
F/(K, '+K ) which when averaged over all sites is set
equal to F/K, to give the self-consistency condition

0.
0

I I I I I S 5 I s I l k I I I I I

0.3 0.4 0.6 0.8

FIG. 6. The spring constant E of the effective medium for a
triangular lattice is compared to the virtual-crystal result
xK& + (1—x)EC &.

(38)/(K,'+K )=1/K,
a

which for the case of interest here with two intercalants
A, B can be written as

x (K K~ )/(K,'+K~—)+(1—x)(K —K„)/(K,'+K„)=0 .

&d)=(h —h )/(h —h„)
xK~ /(IC,'+K~ )

xK~/(K, '+K~ )+(1—x)K„/(K,'+K„) (41)

Various solutions for K from Eq. (39) are shown in Fig. 6
for the triangular net and compared to the virtual-crystal
result, K =xK~+( I —x)K„. It can be seen that the re-
sults used here, which agree very well in simulations as
discussed in the next section, are very different from the
virtual-crystal result. Together Eqs. (37) and (38) provide
the effective-medium solution to the problem. Combin-
ing the two, we can rewrite Eq. (37) as

which after some manipulation can be put into the form

(d ) =x +x(1 x)Fd—
where

Fd = [K,K,'(Kii K„)]/[K(K,'+K—„)(K,'+Kii )] . (42)

Either directly, or using Eqs. (9) and (10), we can find
(d„) and &d~):

h, =gp h KK /[K, (K,'+K )] (40)
( d ~ ) =xK,K,'K~ /[K (K,'+K~ )(K,'+K~ )),
(d~ ) =1—(1 x)K,K,'K„/[K(K—,'+K„)(K,'+K~ )] .

which for the case of the two intercalants A, B of interest
here, can be written in terms of the dirnensionless heights
d as The energy can also be found by substituting Eqs. (39)
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Fd /F, =(Ks —K~ )/(K„Kii )'~ (46)

gives a useful relation as it is independent of any of the
effective-medium parameters. Although the derivation of
Eq. (46) is within effective-medium theory, it is in fact an
exact relation as can be proved using the Feynman-
Hellman theorem. ' In the present context, this theorem
states that

(47)

where the energy c=E/X depends on some parameter p.
From Eq. (1), we see that p can be set equal to hz or hz,
which leads to Eqs. (9) and (10) and also allows us to
demonstrate that Eq. (46) is an exact result. Of course
effective-medium results are exact in the limit of single
impurities where the linear terms in x or 1 —x are given
correctly in all quantities that we have calculated. Expli-
cit results in this limit can be found from Eqs. (41)—(46)
and for small x are

and (40) back into Eq. (36), and using the probabilities ap-
propriate to two kinds of sites. We find

s= —,'(K~Ks )' x (1—x)(hs —h „)F, ,

where

F, = [K,K,'(K~Kii )'~ ]/[IC (K,'+K~ )(K,'+Ks )] . (45)

The effective spring constants K, K, =K,'+K are deter-
mined by Eq. (39). We note that

(d ) =x (IC~/IC„)/[1+(Kii/K„—1)W(K~ )],
( d „)=x (Kii /K „)

X [1 W(K„)]/[1+(K /K„—1)W(K„)],

(d~ ) =(Kii/K„) W(K~ )/[1+(Ks/K„—1)W(K~ )],
e =

—,'K~x (hei —h )

X [1—W(K~ )]/[1+(K~/K„—1)W(K„)] . (48)

Similar expressions for small 1 —x can be found by re-
placing x by 1 —x, d by 1 —d, and interchanging 3 and B
in Eqs. (48).

The effective-medium results derived in this section
contain the previous, exact results as special cases. For
infinitely rigid layers, when Kz- or Kz are infinite as dis-
cussed in Sec. III A, Eq. (39) becomes K =xICs
+(1—x)K„and the effective-medium results of this sec-
tion reduce to Eqs. (13) and (14). When K„=Ks=K,
using Eq. (32) that relates IC, to the Watson integral
W(K), we recover the results of Sec. III B and III C for
(d ), & d~ &, & d~ &, and e.

The fluctuations cannot be easily calculated within
effective-medium theory. However, they can be obtained,
through the back door, using the Feynman-Hellman
theorem Eq. (47), with p set equal to IC~ and Kii, respec-
tively. Using the effective medium Eq. (39) and
differentiating (24) with respect to IC„, we find after con-
siderable algebra

&(d„—&d„) )'& =

2K„K~K,2x(1—x)
K(K,'+K„) (IC,'+K')

[W(K)]2 (K —K„)(K Ks)—
Wi(K) —[W(K)] (K,'+Kq )(K,'+ICii)

(49)

and a similar expression for ((dz —( dpi ) ) ) with A and B interchanged in Eq. (49). Using Eq. (49), the fiuctuations in
d can be found using Eq. (11). We write

((d —(d ) )'& =

2

[ W(K)]
W, (K)—[ W(K)]

K~ K~K, W, (K)
x(1—x)

K (K,'+K„)(K,'+K~ ) Wi(K) —[ W(K)]
(IC —K„)(K—K~ )

(K,'+K„)(K,'+ICii )

(50)

We note that in the limit Kz =K~ =K, the exact results
Eqs. (26) and (27) are recovered. Thus the use of the
Feynman-Hellman theorem allows us to extract the Auc-
tuations in d. Without the use of this theorem it would
not be possible to obtain these Auctuations in an
effective-medium theory. In the next section, we test how
good the efFective-medium approximation is in general,
by comparing results with numerical simulations. We
stress that in the appropriate limits, the effective-medium
results derived in this section reproduce all the exact re-
sults of Sec. II. In particular, the completely Aoppy
(Kz. =K& =0), the infinitely rigid (Kz.=KJ;~ ~), and the
K„=K~ cases are all given correctly.

V. NUMERICAL SIMULATIONS

In this section we describe our numerical simulation
procedures and analyze the results obtained. We will also
compare these numerical results with the same quantities
from our exact solutions when K~ =K& and from the
eff'ective-medium theory when IC„WKJi. The problem of
finding the stable structure of the random alloy can by re-
garded as an optimization problem for the energy func-
tion Eq. (1). To find the equilibrium structure, the total
energy is minimized with respect to the variables [h;].
At zero temperature, the minimization procedure we
have used is based on the conjugate gradient method. ' '
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FIG. 7. A configuration of a relaxed triangular layer with
K& /K& = 1.0, K&/K& = 1.0 and x =0.2. This result is obtained
from simulation.

We have found that this method is more powerful in
terms of computer time and accuracy compared with oth-
er methods such as direct matrix diagonalization or the
relaxation method. ' We have performed extensive stud-
ies for the triangular lattice were typical lattice sizes used
were X =50X50=2500 nodes with periodic boundary
conditions. We have chosen the values of our parameters
to be close to those of Li and vacancies in graphite, ' and
K and Rb in graphite. ' The details of the numerical

procedure consist of the following steps for each concen-
tration x.

(a) First an initial configuration is generated. This was
done by generating a two-dimensional triangular network
of X nodes with each node labeled sequentially and as-
signing vertical springs Kz and local heights hz at each
node. Then we randomly select an 3-type node and re-
place it by a vertical spring K~ and local height hz until
the total number of B-type nodes is Nz =xX. All
nearest-neighbor horizontal springs are uniform and
given by Kz (and KF).

(b) The system is relaxed using the conjugate gradient
total energy minimization method. ' ' A final
configuration characterized by heights t h; I is obtained.

(c) The average height, fiuctuations in height and aver-
age energy, etc. , are obtained at the equilibrium
configuration.

(d) The above steps are repeated 1000 times to obtain
an ensemble average.

These numerical simulation procedures were carried
out for several values of K„,Kii, and Kz- (while keeping
KF =0). Figure 7 shows a typical configuration of the re-
laxed layer at x =0.2. One sees the relaxed layer is not
Aat, but rather has the appearance of "waves on the
ocean. " As Kz~~, the layers do become Aat as dis-
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FIG. 8. Showing (a) average height, (b) fluctuations in height,

and (c) the energy in units of —'K(hz —h & ), for a triangular net
with K& =K&=K&. The solid lines are exact results and the
solid dots represent simulation results.

FIG. 9. Showing (a) average height, (b) fluctuations in height,
and (c) the energy in units of

~
K (h& —h „),for a triangular net

with K~ =KzAKz. The solid lines are exact results and the
solid dots represent simulation results.



10 302 M. F. THORPE, W. JIN, AND S. D. MAHANTI 40

cussed in Sec. III A. The simulation results of the aver-
age heights, average fluctuations for both the 2 and B in-
tercalants, and the energy are shown as solid dots in Figs.
8 —11. These figures are all for the triangular lattice. In
Figs. 8 and 9, the simulation results are compared to the
exact solution. The agreement is excellent for all quanti-
ties, thereby giving us confidence in our simulations in
that we are using large enough lattices, etc. In Figs. 10
and 11, the solid lines are the effective-medium results for
the above quantities. The effective-medium results pro-
vide excellent fits to the simulation results. Indeed the
quality of the fits is almost as good as for the exact results
in Figs. 8 and 9, except perhaps for the fluctuations in d
(with a= A, B) where there appear to be small systematic
differences. The effective-medium results are exact for
small x and small 1 —x. However, effective-medium
theory is only an approximation in general as shown in
Appendix B. Nevertheless the quality of the agreement
in Figs. 10 and 11 is excellent and means that effective-
medium theory can be used with considerable confidence
in interpreting experimental data.

When Kz =K+, the average heights (d ), (dz ), (ds )
show straight line behavior; with (d ) obeying Vegard's
law. The Auctuations and average energy are symmetric
about x =0.5. The difference

1.0

(51)

is independent of x, as can be seen from Eqs. (22) and is
illustrated in Figs. 8 and 9. This difference depends
strongly on the transverse layer-rigidity parameter K~
and decreases as the rigidity of the layer increases. In the
limit of a single 8 impurity in an 3 host, we have
(ds ) = W'(E) from Eq. (22). Thus for rather stiff layers,
as in Fig. 8, this intercept is quite small -0.2, whereas
for rather floppy layers, as in Fig. 9, the intercept in-
creases to —0.65. For infinitely rigid layers 8'(E)=0
and for perfectly floppy layers W(K)=1. Thus we can
say that W(K) is, through (51), a direct measure of the
"fIoppiness" of the lattice with 0& 8'&1. Conversely
1 —8'may be regarded as a measure of the rigidity of the
lattice. Note that the strain energy c in the lattice, given
in Eq. (25), is also directly proportional to the rigidity of
the lattice. For a completely Aoppy lattice, the strain en-

ergy is zero as the lattice can accommodate any impurity
at no cost in energy.

When IC& &K& (Figs. 10 and ll), the average height
shows superlinear behavior and the partial heights associ-
ated with 3 and B intercalants are no longer linear. The
average energies and fluctuations are peaked at x &0.5,
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from efFective-medium theory and the solid dots represent simu-
lation results.
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and no longer symmetric about x =0.5. Effective-
medium theory reproduces the simulation results quite
accurately when K~ WKs.

The nature of the disorder effect in the structure of
random alloy can be better determined by the partial
probability distribution functions of the heights for the
3- and B-type intercalants. The height probability distri-
butions P (d), P (ds ), P(d„) are defined by

P(d)= —g 5(d —d;)N, .
(52)

A

P(d )= g 5(d —d, ), a=A, B . (53)

We plot these distribution functions obtained from the
simulation in Figs. 12 and 13. Figures 12 shows the prob-
ability distribution at x =0.4 for a system with
Kz =K& =KT. One sees that P(dz ) and P(dz) are sym-
metric around the average values (d„) and (d~ ). The
line shapes of the two peaks are close to Gaussian, since
from the simulation results, the moment ratio
((hd ) )/((Ad ) ) =2.8+0. 1, which is close to the 3
which would be obtained for a Gaussian. The result can-
not be exactly a Gaussian, as the distributions are bound-
ed, whereas the Gaussian distribution is unbounded.
When K~ =K&, it is possible to calculate the low mo-
ments exactly as shown in Sec. IIIB, but we have not
been able to obtain the complete distribution function
analytically. Figure 13 shows the probability distribu-
tions at x =0.4 for a system with Kz =K& =0.1K~. It is
very clear that P (dz ) and especially P (d „)are not sym-
metric in this case.

F F

mental data precisely but a choice of Kz /Kz =0.1, and
KT/K~ =0.1 [see Fig. 10(a)] can semiquantitatively fit
the experimental data excepting for x =1 where anhar-
monicity effects may be important. The potassium-
rubidium ternary data, where the gallery expands from
5.47 A for x =0 to 5.68 A for x =1, shows nearly a
Vegard's law behavior. This can be understood if we as-
sume that Kz /K~ = 1 which seems physically reasonable.
In this case the strength of the layer rigidity can only be
determined from measurements of local quantities such
as (d„) and (ds ). We would very much like to see ex-
periments performed that couple to these local structural
parameters. This could be done using extend x-ray-
absorption fine structure (EXAFS) or NMR. ' The ex-
perimental situation is more advanced for mixed semi-
conducting alloys such as Ga„In& As, where many
compounds have been studied using both x-rays and EX-
AFS. The results for (d), (dz), and (dz) are re-
markably similar to those we have obtained in Fig. 9.
This will be further discussed in a subsequent publica-
tion.

The results obtained in this paper are more general
than the simple geometries and force constant models
that we have used. These have served our purpose in il-

VI. SUMMARY

We have set up a spring model that describes the prop-
erties of randomly intercalated layer materials. This
model incorporates both the layer rigidity and the
compressibilities of the intercalants. We have performed
computer simulations for a triangular net geometry.
When Kz =K&, the model is exactly soluble, and when
K„WK~, we have shown that effective-medium theory
gives very good agreement with the simulations.
Vegard's law is only obtained, within these models, when
Kz =Kz,' a situation that rarely occurs in practice.
When K~ =K~, the effective-medium solution repro-
duces the exact solution.

These 2D alloy systems provide an almost ideal arena
for studying competition between the lattice rigidity and
the natural local bond lengths favored by the 3 and B
atoms. To date there is very little dat@ in layered com-
pounds beyond the mean c-axis dimension ( h ) as deter-
mined by x-ray Scattering. The two ternary graphite in-
tercalation systems whose average c-axis separation can
be understood within our model are V& Li„C6 (Ref. 5)
(V is a vacancy) and K& Rb Cs. For the lithium ter-

0
nary, where the gallery expands from 3.36 A for x =0 to
3.78 A for x = 1, the 2 atom is actually a vacancy so that
Kz/Kz &&1. We have not attempted to fit the experi-

(b)

F F

F

K

F

FIG. 14. An illustration of the side view of a more complex
lattice than shown in Fig. 4. The equivalent spring K, can be
determined within eA'ective-medium theory if appropriate forces
I' are applied as shown.
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lustrating the kinds of behavior to be expected. Howev-
er, effective force constants can be defined for more com-
plex geometries as illustrated in Fig. 14. Here the inter-
calant atoms have many springs attached to common
points in the layers above and below. By applying a suit-
able force field, as illustrated, an effective force constant
K, can be defined that leads to the same local displace-
ments as in the actual system. This effective spring con-
stant K, can be written in terms of a suitably generalized
Watson integral for the lattice. This integral will contain
all the information that is necessary to describe the rigidi-
ty of the layers and can be computed if a suitable force
constant model for the layers is available. In practice the
Watson integral W(K) is not very sensitive to such de-
tails as can be seen from Fig. 15 which compares W(K)
for various lattices. Having obtained the effective spring
constant K, via the Watson integral W(K), the efFective-
medium equations developed in Sec. IV are quite general.

—4 4 e e X 4 W e 4 S S 4 4 4 I 4 4 r 4 ~ r 4 4 4gQ 1 t I I
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APPENDIX A

The Watson integrals W(K) used in the text are

W(K)= —g
q q

a J d
K

4~ K +KTz (1 y-)+—K~[z (1—y-)]

(A 1)

where the q integral is over the first Brillouin whose area
is [a/(2m )] and the factor y- is given in Eq. (29). The
dispersion relation for the vibrational modes is

co=—I (K +KTz (1—y-)+K~[z (1 —y-)] I /m (A2)

.e-
where rn is the mass of an atom in the graphite layer.
This dispersion relation corresponds to modes of vibra-
tion of the whole sample, containing many layers, in
which the wave vector is in the plane and the displace-
ments are all perpendicular to the plane. These modes
could be seen, for example, in inelastic neutron scattering
experiments.

It is convenient to introduce a Careen function g(x)
defined by

1 K a 1g(x)= —g = dq4~2 x —z (1—y-)
q q

from which can define a spectral weight p(x) by

1 1
p(x) = ——Img(x ) =—+6(x —z (1 —y-) )X

(A3)

(A4)

0.2

~

~

Q Q
4 $4 4 I 4

0 2
4 4 I 4 4 $4 I 4 4 $4 [ 4 4 4

4 e 8 10

K/(zK, )

K +KTx +Kpx
(A5)

The integral Eq. (A5) is well behaved as the denominator
contains no poles. Note that for large K »KT, KF

8'(K)~1

where x is real and p(x) is nonzero and positive definite
within the band 0 (x (2z. The Watson integral Eq. (Al)
can now be written as an integral over this spectral
weight:

FIG. 15. The Watson integral 8'{K) and its derivative
8'& {X)are shown for various lattices as a function of E/{zE&),
where z is the number of nearest neighbors. Here z =2 is the
linear chain, z =4 is the square net, and z =6 is the triangular
net.

as we would expect. For small K (&KT, KF the Watson
integral is dominated by the small x behavior, depends
only on the ration K!Kz, and goes to zero as K goes to
zero in the 1D and 2D cases of interest here.

Another related quantity W, (K) that we require can be
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found directly from the Watson integral

2

~(K) 1 ~ K J&~ K p(x)
o (K+K,x+K,x')'

= —K [W(K)/K] .2a
aK

(A7)

p(x)=[x(4 —x)] '~ /vr

and the Watson integral is given by

(A8)

1. One-dimensional chain

In the case of one-dimensional chain, z =2 and
y = cos(q5), so that

W(K) =( I 1+(8KF/K)/[1+2KT/K + (1+4KT/K + 16KF /K)'~ ]]/(1+4KT/K + 16KF /K) )'~ (A9)

When K is small this result becomes

W(K) = ,'(K/K-, )'" (A10)

~(K)=
I [1+(1+16K~/K)' 2]/[2(1+16KF/K)]I '

(A12)

independent of KF as discussed above. For the case when
KF=0, the result Eq. (A9) simplifies to

The quantity W&(K) is found by di6'erentiation of (A9)
and for KF =0 is given by

8'(K)=(1+4K /K) (Al 1) 8')(K) =(1+2KT/K)(1+4K /K) (A13)

and when KT=0, the result Eq. (A9) becomes

- r ~ r r
I

r ~ r r
I

r r ~ r I r r s r
I

r r r rf Ar~

(1) K„/K
(2) K,/K, = &.O

(3) K,/K, = &O.O

(4) K /K

.S

For general values of K~/KT, we plot p'(K) in Fig. 16

2. Square lattice

For a two-dimensional square lattice z =4 and

yq= —,'[ cos(q„5)+ cos(q 5)] . (A14)

The spectral density can be written as an elliptic integral
and leads to a density of states p(x) given by

p(x) =~I [x (4—x)]'~ /2I /~ (A15)

for 0(x (4. Here ~(x) is the complete elliptic integral
of the first kind. In general the one-dimensional integral
Eq. (A5) must be done numerically. However if we put
KI; =0, the integral can be done analytically and we ob-
tain

4KT /K
1+4KT/K (1+4K,/K) . (A16)

lf KT »K, the result Eq. (A16) becomes

gr(K) = [K/(4~KT)] ln(32KT/K) .

For K =() we also have the result from Eqs. (A7) and
(A16)

p, (K)=—~ [(4KT /K) /(1+4KT /K) ]/(1+ 8KT /K)=2

(A18)
where & (x) is the complete elliptic integral of the second
kind.

s a a a I s s s ~ I s a s s I s a a a I a a ~ a

Q Q~ %$

Q 1 8
3. Triangular lattice

For the two-dimensional triangular lattice z =6 and

K y=——,
' [ cos(2aq 5)+2cos(aq 5) cos(bq 5)] (A19)

FIG. 16. The Watson integral 8'(K) for the linear chain, for
various values of KF /KT.

where a =
—,
' and b =&3/2. Carrying out the integral for

the spectral weight we obtain
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1 1g(x)= dx dy
0 0 x —z [1—

—,'( cos2x +2 cosx cosy)]
(A20)

leading to (1 —x)( 1+4KT/K)' =1—Ktt /K . (B1)

p(x) = (x —3) 'i tt[(1 —s)' ]= 1

2n

where

[(x —3)' —1] [(x —3)'~ +3]
S =

16(x —3)'i

(A21) Solving this for K and expanding the dimensionless
height to second order in x, we find that

(d ) =xKtt /(K~+2KT)

X[1+2xKT(Ktt+3KT)/(Ktt+2K) + . ] .

If KT ))K, the result Eq. (A22) becomes

W(K) = [K/(4trKT&3) In(72KT/K) .

The quantity JY, (K) can be found by differentiation.

(A23)

In general the Watson integral Eq. (A5) must be done nu-
merically over the spectral weight. If KF=0, it can be
done analytically to give

~(K)= gtc[(g/2)(9+K/KT )' ~] (A22)
K

4mKT

where

8

[( 9 +K /K )
I /2

1 ]
3 /2

[ ( 9+K /K )
t /2 + 3 ]

I /2

The exact expression can be developed as a power
series in x. The first term comes from a single defect.
The rest of the lattice is frozen with d, =0 because of the
infinite spring constant K~. The d of the defect site can
be found by minimizing the energy with respect to d to
give K~/(K~+2K )T. For two adjacent defects, both
have the same d, so that minimizing the energy for the
pair with respect to d leads to Ktt/(Ktt+KT). Thus the
exact ( d ) to second order in x is

(d ) =x(1—x) Ktt/(Ktt+2KT)

APPENDIX B
+2x (1 —x) Ktt/(Ktt+KT)+ .

which leads to

(B3)

In this appendix, we show that the eff'ective-medium
solution is not exact. At some stage we thought that it
might be exact, because it reproduced all the known ex-
act results and agreed extremely well with our numerical
simulations. However, this is not the case as can be seen
by the following counterexample.

We consider a one-dimensional chain, with KF =0 and
with K„=~. In this limit the effective medium Eq. (34)
for a linear chain becomes

(d ) =xKtt/(Ktt+2KT)[l+2xKT/(Ktt+KT)+ ],
(B4)

which demonstrates that the e6'ective-medium result Eq.
(B2) is different from the exact result Eq. (B4) in the pair
terms involving x .
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