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Re8ection of light at a Sat interface under normal incidence:
A renewed macroscopic description
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We consider a cubic crystal, layered orthogonally to the incident wave vector, with some arbi-
trary refractive-index profile. The local electric field experienced by a crystal molecule may be cal-
culated in the macroscopic limit, using a set of linear equations. To evaluate the amplitude
reflection coefficient R, we use first- and higher-order Born approximations, and then show that R is
the sum {R&+R3+ . ) of coefBcients related to paths presenting one extremum, three extrema,
etc. This approach gives a new physical insight into the reAection of light in terms of scattering and
nothing but scattering. It also leads to an improved evaluation of the interfacial re6ectivity. The
diFerent approximate formulas that are derived are compared numerically for a dissymmetric
refraction-index profile.

I. INTRODUCTION

The reAection of light by plane interfaces has been used
extensively to gain the structura1 information needed for
the optical description of these interfaces. ' Three main
techniques have been developed: ellipsometry,
re6ectometry, ' and surface-plasmon oscillations. ' '"
To analyze the experimental results obtained using these
techniques, namely the reAection coef5cients, several
theories are available ' they proceed by integration
of the macroscopic Maxwell equations. In a recent pa-
per, we proposed a self-consistent method to determine
the reAection coe%cient of a Aat interface by solving the
microscopic Maxwell equations. This approach involves
the resolution of a set of linear equations. In the present
paper we determine the refiection coe%cients, in the mac-
roscopic lixnit, by solving this set of equations with the
Born approximation method. ' This analysis provides a
better insight into the mechanism of light reAection: It
shows in terms of scattering, and nothing but scattering,
how light is rejected from a medium of variable refrac-
tive index. It also leads to new approximate formulas for
the evaluation of the reAection coeScients with the physi-
cal explanation of these approximations. We restrict our
present analysis to the case of normal incidence. In a
forthcoming paper, this approach is planned to be ex-
tended to any incidence angle, for both s and p waves.

plane location number l (l&N, see Fig. 1). In other
words, we consider a layered crystal with some arbitrary
refractive-index profile. The set of self-consistent equa-
tions allowing the calculation of the local electric field
E(l), applied to any molecule of the crystal plane l, may
be written [Eq. (15) of Ref. 20]

—exp(jpkoa)= g S &(l)P(l)
1=0

with ko=2m/A, +jri, 1, being the wavelength of light in
vacuum; q is supposed to be positive and represents a
small absorption of the material; P(1) is defined by

a (l)E(l)/4+a =P(l)E, ,

Z QQ

Z=2Q

II. GENERAL EQUATIONS
FROM THE SELF-CONSISTENT EQUATION

TO THE PATH DESCRIPTION

I.et us consider a plane interface between vacuum and
a crystal of molecules positioned on a cubic lattice of
characteristic lattice parameter a. The polarizabilities of
the molecules, a (l), are only functions of the crystal

FIG. 1. Schematic representation of a cubic lattice and its
crystalline (X, F) planes layered orthogonally to the incident
wave vector ko', a is the fundamental repeat period and E; the
incident electric field.
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where E; is the incident electric field at the position
1 =z =0. For pal, the parameter S~ &(l) characterizes
the interactions between one molecule within the plane p
and all the molecules of the plane I. In the macroscopic
approximation, its value is given by

S~ i(I) =S~ I =2~jakoexp( jako ~p
—I

~ ) for pal,
So(l)= —

I 4m l[n (I)—1]I+2m jako,
n (l) being the macroscopic refractive index (Lorentz in-

dex) of the plane l. The system (1) can be rewritten in
the form

P(p)=[ —S (p)] ' exp(jk ap)+ g S &13(l)
I&p

Vp EN . (3)

We can solve this set of linear equations using a Born
method. We then obtain for the successive degrees of ap-
proximation

P' "(p)= [—So(p)] 'exp( jkoap),

/3' '(p)=[ —So(p)] 'exp(jkoap)+ g [—So(p)] 'S~, [ —So(l)] 'exp(jkoal),
I&p

p' '(7)=[ So(P—)] 'exp(jkoaP)

+ g [—So(P)] '(Sp i)[ So(l)—] 'exP(j koal)
I&p

+ g g [—So(p)] '(S~ I)[—So(l)] '(SI )[ —So(m)] 'exp(jkoam) . (4)
I&p m&l

The parameter P"'(p) represents a solution of the set of equations (3) in the first Born approximation. It is proportional
to the dipolar moment of a molecule in the p plane, induced by the incident electric field and by the field of all other di-
poles within the plane p. In the same way, it can be shown that P' '(p), which is the solution of Eq. (3) in the second
Born approximation, represents the sum of P' "(p) and of parameters proportional to the dipolar moment induced in a
molecule of the p plane by all the dipoles located within the plane l and having a dipolar moment proportional to 13"'(l),
etc.

From Eqs. (4), we can determine the amplitude reffection coefficient R using Eq. (19) of Ref. 20. This leads to

R =exp(jkoa) g exp(jkoap)(S z)[ —So(p)]
p=0

+ g g (S )[—So(p)] '(S I )[—So(I)] 'exp(jkoal)
p =0 I&p

g g (S )[ —So(p)] '(S I )[—So(l)] '(Si )[—So(m)] 'exp(jkoam)+
p =0 l&p m WI

Let us now introduce the parameters D'" defined by

exp( jako /p
—l

/

)D'"= (S I )[—So(l) ]

Relation (2) shows that D'" is indeed independent ofp. The amplitude reffection coefficients R may be rewritten

exp( jkoa)R = g e—xp(2jkop)D'~'
p=o

+ g g exp[jkoa(p+ ~p
—l~+l)]D'~'D'"

p =0 l&p

+ g g g exp[jkoa(@+ ~@
—l~+~l —m~+m)]D'~'D'"D' '+

p =0 l&p mal
(7)

It is important to observe that D™is proportional to the
electrical field resulting from the di8'usion by the plane m
in the z & 0 or z & 0 directions. The length
a(p+ ~p

—1~+ ~l
—m~+m) is equal to the length La of

the path (p, l, m). Consequently, relation (7) is interpreted

as a sum over dift'erent paths starting from —and coming
back to—the plane z =0, and takes the closed form:

exp( —jkoa)R = g exp(jkoLa) +D'~',
ajl p

paths
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where La is the length of the path and where p represents
the planes along the path on which diffusion occurs. In
the case of normal incidence, the value of D'p' is simply

2~jak0D(p)
4~/[n (p) —1]—2~jako

(9)

where n (p) represents the macroscopic refractive index
in the crystal plane p. We are here mostly interested in
the limit a ~0. Then, Eq. (9) leads to

a 0 —X
(a)

a ~La

31

fl

II

X
(b)

Z'

I(
X

1K

il

ii X
j IL

{c)

———a - a/2

i(
a ~ (p-1)a

i4

L ~ P&

(p-l+m)a

D'~'= jako[n (p) —1]/2 . (10)

The calculation of the reAection coefficient as a sum, over
all the paths, of the quantity exp(jkoLa)11 D'~' can be
conducted as follows.

We first calculate the contribution R1 to the amplitude
reffectivity of all the paths with only one extremum. This
is illustrated by Fig. 2. The number of such paths of
length 2La is 2 . Each path can be represented by a set
of numbers. For example, the contribution of the path
(p, q, n, L,p) will be

exp(jkoLa)D'~'D'~'D'"'D' 'D'~' .

Only the plane L must be taken into account for each
path of length 2La. Therefore, R1 is given by

exp( —jkoa)R,
L —1

=D' '+ g exp(2jakoL)D' ' g (1+D")
i=0

FIG. 2. Schematic representation of geometric paths involv-
ing one extremum and three extrema, the interface being locat-
ed at z = —a/2. (a) Corresponds to a path of length zero, with
one extremum, and thus to a backscattering towards the z & 0
direction by the plane located at z =0. {b) Presents a path with
one extremum of length 2La (L =6 in the figure). (c) Illustrates
a path with three extrema of total length 2(p+m)a (in the
figure we chose p =4, l =2, m =2). Note that symbols X, 0,
and $ introduce factors D' ', 1+D'"', and exp{jkoa), respective-
ly, in the expression of the refiection coefficient R [D'"' corre-
sponds to a plane numbered k and it is defined by Eq. (6)).

tion and partly higher-order Born approximation terms.
The contribution of the paths with two extrema is zero

because all the paths must begin and end at the plane
p =0. Thus, the next contribution to the reAectivity, R3,
comes from the paths displaying three extrema (see Fig.
2). Its value can be obtained by the method just
developed for R, :

where the (1+D") term arises from the fact that each
plane can or cannot be taken into account. This provides
a more general and better approximation than the second
Born approximation, because it takes. into account back-
scattering of higher order than only the second one. '

This means that R1 contains the second Born approxima-

00 0
exp( —jkoa)R3= g exp(jkopa) g (1+D") F(p)

p=1 s=p —)

(12)

with

p
F(p)= g exp(jkola)

x p —1

J =p 1+1
( I+D'J')

x g exp(jkoma)
m =1

p —I+1

k =p —1+m —1

(1+D'"l)exp[jako(p —I +m)]

x
p —1+m —1

n=0
( 1+D~"~)D ~P D~Pli~D ~P ~+i~i~ (12')

III. EXAMPLES

A. Fresnel interface

Let us apply these results to a Fresnel interface be-
tween vacuum and a medium of refractive index n, in or-
der to test how fast the development of R proposed con-
verges: we obtain from Eqs. (10) and (11) the relation

n —1
2

R1F=
2(n +1)

For n =1.6, the relative difference between R1F and the
Fresnel value of the amplitude reAection coefficient,
RF= —(n —1)/(n +1), is about 4.5 jo', the closer n is to
1, the closer R,F is to RF. For this special example of an
interface, we can also calculate R3F. From Eq. (12), we
derive.
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exp( —jkoa )R3F
oo p oo D 3

2 [(1+D) exp(2jkoa )]&+
~=il=i~=i (1+D)

with

n 1

2+ (20)

(14) Since ~y~ (1,we have

where D =D"'=j9' '=-
X(1+D),Eq. (14) leads to

With Q =exP(2jkoa) 2 1/2 n —1gR;F= ——+—(1—y )'
n+1 (21)

D3 Q
00

exp( —jkoa)R 3~ = g pQ'.(1+D)2 1 —Q

Using the identity

pQ Q
QQ 1 Q

5 Q

(15)

(16)

a result which is indeed the Fresnel formula. '

B. Refractive-index profile

Let us now apply this approach to interfaces having in-
dex profiles which are di6'erent from the Fresnel type.
Then, if we define cp by

we finally obtain
D Qexp( —jkoa )R 3~

=
(1+D) (1 —Q)

In the limit a —+0, R3F can then become

2
3

1 n 1R 3F 8 "2+1

(17)

(18)

D"=jacp(ia)

we have, in the limit a ~0,
1 +D"= exp[ jay(i a) ] .

Equation (11) leads to

L —
1

R
&

= g exp(2jkoaL)ajar&(La)exp 2j g ay(ia)

(22)

For n =1.6, the difFerence between (R &~+R3F) and the
real value RF of the amplitude reQection coefficient is less
than 0.5%. Thus, (R,F+R3~) provides already a very
good approximation for the reAection coefficient in this
particular case.

It may be checked that the total refiection coefficient
gR;F has the following development:

i =0

This can be rewritten in an integral form:

R, = f jy(z)exp(2jkoz)exp 2j f p(x)dx dz

with

(24)

(25)

gR;F=—
( —,')( —

—,')
1 1X2

q)(z)=ko[n (z) —1]/2 . (26)

(-')( ——')( ——')
2 2 2 5+

1X2X3
In the same manner, we can demonstrate that in the limit
a —+0, we obtain for R 3

R 3
= —f dz ) f dzz f dz3jp(z & )y(zz )p(z3 )

2

Xexp 2jf [ko+y(z)]dz 2jf [ko+y(—z)]dz+2j f [ko+q&(z)]dz
0 0 0

(27)

It is more convenient to express the reAection coefficient by introducing the space derivative of the refractive index,
dn ldz. Then, by an integration by parts, Eq. (25) leads to

R, = — exp 2j koz+ f y(x)dx dz+ . exp 2j koz+ f y(x)dx
d y(z) z

'
y(z) .

'
z

0 2 ko+y(z) . o
0

(28)

The last term in relation (28) is equal to zero, because the imaginary part g of the wave vector is positive. R, then be-
comes

R, = — exp 2j koz+ f y(x)dx dz .
~ d y(z) Z

o dz 2 ko+yz 0

From Eq. (13), it follows that

(z)
2[k +y(z)]

(29)

(30)
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where R iz(z) represents the coefficient R i for a Fresnel interface. From this relation we finally obtain

dR iF dn, z
R, = f exp 2j koz+ f y(x)dx

0 dn dz . 0

In the same manner

dz (31)

T

R3=2f dz RiF exp 2j f dx(y+ko) f dzjyRF+ —', f dz R3~ exp 2j f dx(q&+ko)
0 dz 0 0 0 dz 0

Z Z 1—f dz R,F exp 2j f dx(y+ko) f dz, R,F exp —2j f dx(y+ko)
0 dz 0 0 dzi 0

oo Z2

X f dz, R,F exp 2j f dx(y+ko)
Z ] dz2 0

(32)

The foregoing formulas may also be applied for an inter-
face between two media (0) and (1); ko then represents the
wave vector in medium (0) and R,F and q& are computed
with the relative refractive index.

C. Approximations

Let us write the refractive-index profile into the form

n (z)=1+6,nf(z),

dR iF 5R iF
dn b, n

Thus, following Eq. (31),
QO ZRi=RiF f'(z)exp 2j koz+ f y(x)dx

0 0

If we further develop the wave vector,

dz

(35)

(36)

where An represents the refractive-index difference be-
tween the two bulk phases.

ko+y(z)=kon(z)+O((b, n) ), (37)

and write kon (x)=k(x), the reffection coefficient be-
comes

1. Approximation of the Webb type (Ref. 8j
Ri =R&Ff f'(z)exp 2j f k(x)dx

0 0
(3&)

Since the derivative of n (z) is

dO =b,nf '(z),
dz

the Webb approximation may be written as

(34)

Let us observe that RF and R iF dN'er only by a third-
order term in An.

2. Development ofdR is /dn in powers of hn

The equation

dR &F 1 b,n= ——+ f(z)+O((b, n) )
dn 2

(39)

leads to
2

R, = — " f f'(z)exp 2j koz+ f y(x)dx dz+ f (f }'(z)exp 2j koz+ f y(x)dx
2 0 . 0 4 0 0

dz+O((b, n ) }

(40)

or, by introducing k (x),
2

R, = — "f f'(z)exp 2j f k(x)dx dz+ f (f )'(z)exp 2j f k(x)dx dz+O((hn) ) .
2 0 . 0 4 0 0

(41)

Let us observe that R 3 =O((b, n ) ).

9. Comparison between fhe foregoing approximations

The development of R,F reads

2

(42)

The diA'erence between the formulas giving R, in Eqs.
(40) and (38) is then expressed by
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T

Xexp 2j koz+ f p(x)dx dz .
0

If the index profile is centrosymmetric

f (x)= —
—,'+u (z —z, ) where u is odd

J= f (u )'exp 2j koz+ f q)(x)dx
(b,n)

2 0 0

It appears that in the case of a centrosymmetric
refractive-index profile, J [then given by (44)] is practical-
ly negligible, and the Webb formula provides a very good
approximation to the interfacial reAection. This is not
the case for a nonsymmetric profile, unless An is very
small, as shown earlier through numerical evaluations.
Let us now illustrate this observation through a numeri-
cal example.

D. A numerical application

To check the validity of the approximation discussed
above, we consider an example taken from ion implanta-
tion experiments. Starting with a plane Fresnel interface
separating two homogeneous phases, one creates by im-
plantation a significant refractive-index perturbation
which is expected to relax exponentially from the inter-
face into the bulk material. We thus study the following
profile:

n(z)=1, z (0
n (z)=n2+bn exp( z/L), z )0 . — (45)

The thickness L represents the first moment (mean dis-
tance to the interface) of the refractive-index distribution
function. This is a highly nonsymmetric profile. Typical-
ly, when such a modified polymer material is put in con-
tact with a solvent like water, the difFerent refractive
indexes are ni =1.33 (solvent), n2=1. 5 (bulk polymer),
and b, n =0.2 (at the interface). The relative indexes are
therefore 1, 1.12., and An =0. 15, respectively.

To characterize the reAection properties of the
modified interface with respect to the initial one (before
implantation) let us introduce dimensionless parameters
6,- representing the relative di6'erence between reAection
coefficients (expressed as intensity ratios) calculated for
the modified interface and for the original Fresnel inter-
face. Keeping our previous notations, we define the 6, 's

by

Finally, we define the parameter 6„ in which lR, l
is re-

placed by lR i, l given by

IR i, I'= IRi I'+2IRi I' .

This formula was derived for a Fresnel interface [Eq.
(19)] and can be assumed to be a good approximation for
interfaces with a thickness small compared to the wave-
length. It takes rigorously into account all the paths with
one extremum and provides an approximation for
higher-order terms.

Figure 3 illustrates the variation of the diferent 6"s as
a function of the interfacial thickness L. Several observa-
tions are in order.

(1) With the given refraction-index data, the approxi-
mative formulas display fairly good results for interfaces
of thickness less than or of the order of 20 nm. Yet, as
the thickness increases, Webb's approximate expression
becomes progressively less satisfactory and, around
L =80 nm, it is even observed that lRii, l

exceeds the
reAectivity for the Fresnel interface n, /n3, a result which
is obviously erroneous.

(2) If we now focus our attention on the values b, „b,„,
and Az, it is seen that 6] becomes significantly lower
than Az when L is larger than 50 nm, even if it is a much
better approximation then Webb's formula. The two oth-
er estimates, A„and A~, remain almost equal through
the entire thickness range. The reason for the 6& depar-
ture is clear: one has to account for all paths. This can
partly be overcome by using the corrected reAection
coefficient lR„l .

Hence, practical conclusions are the following. (i) If a
nonsymmetrical refractive-index profile is anticipated,
the Webb formula should not be used, as soon as the
thickness becomes significant. (ii) The improved first-

300

150—

50—

5;=(lR;l —RF)/RF, i =A, W, l, lc . (46)

R~ is the exact amplitude reQection coef5cient of the
modified interface, calculated using the numerical Abeles
method; ' R ~ corresponds to the same coefficient calcu-
lated with the Webb approximation; R& is evaluated by
taking only the paths with one extremum into account
[Eq. (41)), with an additional approximation for the phase
integral to obtain simple analytical results in both cases

f k (x)dx = ko(n ~+ b n /2)z . (47)
0

L I10 A )

FIG. 3. Representation of the variation of the relative
reAectivity increments with respect to the unperturbed Fresnel
interface for various thicknesses. ——corresponds to Webb's
formula, ———corresponds to paths with one extremum only,

improves the latter with respect to higher-order terms,
and is obtained from the numerical Abeles method and
corresponds to the exact reflectivity. The horizontal line
represents the Fresnel interface corresponding to infinite I.
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order approximation we propose above, ( ~R |,~ ), is satis-
factory; however, if hn In& becomes larger, higher-order
terms have to be included explicitly. (iii) In a real experi-
ment, ~RF ~

and (Rz ~
are directly measured. Neverthe-

less, since there are two unknowns for the profile we just
studied (hn and I.), it is necessary to study re6ection at
difFerent angles to determine with confidence the couple
of values.

IV. CONCLUSION

In the present work, we calculated the reAectivity of a
stratified interface as a sum of contributions related to
difFusion paths at one dimension. Contributions of
geometric paths presenting one, three, etc extrema were
considered separately. When the refractive-index
difFerence between both homogeneous media is small

(typically if hnln &0.1), it appears that the diffusion
amplitude related to paths with one extremum provides a
good description for the interfacial reAection. The im-
provement with respect to the Webb formula, developed
for the case of centrosymmetric profiles where it appears
to be well adapted, is discussed and ascertained in some
detail. An explicit numerical calculation for a highly
nonsymmetric profile shows the weakness of the Webb
formula in such a situation, while our formula still works
well, even in its simplest form. The present approach can
be generalized to all incident angles, for both s and p po-
larizations; this will be shown in a future paper.
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