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Renormalization of Bloch electrons in coherent light
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Separation of the coherent parts of the electromagnetic field modes from the vacuum-fluctuating
parts leads to a new picture of single-particle excitations in crystals. We discuss the effects of this
renormalization on simple band structures.

I. INTRQDUCTIQN

In quantum theories which are concerned with the gen-
eration and propagation of light in crystals, one generally
holds with few exceptions to the physical picture in
which the elementary single-particle excitations are the
Bloch electrons, whose fundamental characteristics are
not directly influenced by the coherence of any elec-
tromagnetic field mode. Among the fundamental charac-
teristics of a Bloch electron are its energy-momentum re-
lations for different bands, its parameters such as band
gaps and effective masses, which enter into the energy-
mornentum dispersion relations, and its charge and other
coupling coefficients. In the conventional physical pic-
ture, these parameters are not affected by the coherence
of any field mode. Of course, under intense light excita-
tions, many mobile carriers can be created in crystals,
which in turn affect, for example, band gaps, effective
masses, and the screening of the electronic charge. How-
ever, such renormalizations are associated with in-
coherent processes involving nonequilibrium carrier pop-
ulations and their relaxation via Coulomb scatterings,
phonon emissions, and phonon absorptions. For such
processes, the coherence or incoherence of field modes
are not relevant. In fact, one need not use light to obtain
a given reparametrization; any other excitation source
which causes real transitions and creates the same degree
of nonequilibrium in the crystal would do. In the
description of real transitions and nonequilibrium pro-
cesses, one still holds on to the basic Bloch-electron pic-
ture.

One exception is, of course, Hopfield's theory of polari-
tons. ' Hopfield wrote the Hamiltonian of a classical
dielectric in terms of the potential fields A and P, and the
polarization density P. He then quantized A, P, and P
by imposing appropriate commutation relations such that
P is a transverse boson field. The quanta of the polariza-
tion field are of two types. One type is similar to photons
of the radiation field A and was named polaritons by
Hopfield. For optical or near-optical frequencies, polari-
tons correspond to excitons. The other type of the polar-
ization field quanta is associated with the decaying elec-
tromagnetic waves above the plasma frequency. As ele-
mentary excitations, polaritons represent a significant irn-
provement over Bloch electrons when excitonic lifetimes
are long. The drawback of the polariton picture is that
many essential processes of photoexcited solid-state plas-

mas (Auger processes in semiconductor lasers, phonon
absorptions and ernissions, impurity-defect scatterings,
etc. ) require description in terms of single-particle excita-
tions rather than electron-hole pairs. One therefore rap-
idly reverts back to the Bloch-electron picture in many
practical and theoretical problems.

However, the Bloch-electron picture is in fact incom-
plete for single-particle excitations in coherent light. If
an electromagnetic Geld mode in a crystal is in a coherent
state, the fundamental parameters of a Bloch electron are
altered due to the coherence of the mode. ' The
modifications induced by the field coherence in the elec-
tronic band structure, coupling coeKcients, etc. , depend
on both the intensity and the phase of the coherent mode.
The effects of such coherent-field renormalizations are
determined by means of two unitary transformations. If
a set of coherent modes (the reference set) is postulated, a
transformation T separates the coherent parts of the
modes from the vacuum fluctuating parts. As this sepa-
ration is carried out, the electronic part of the Hamiltoni-
an becomes nondiagonal because of the coupling between
electrons and the coherent-field modes. A second trans-
formation U rediagonalizes the new Hamiltonian, yield-
ing the renormalized electron operators. The new ele-
mentary excitations still refer to single-particle excita-
tions unlike polaritons. However, they take into account
the correlations induced by the coherent modes. The
new picture is developed completely within the quantum
theoretical framework. Therefore, the electronic states
obtained from the coherent-Geld renormalization are dis-
tinct from the electronic states obtained from the usual
classical treatment of the electromagnetic field.

In this paper we discuss the coherent-field renormaliza-
tion and its effects on simple band structures. In Sec. II
we discuss the renormalization transformations and the
meaning of the physical picture they produce. We
demonstrate that the renorrnalization trahsformations
redefine the vacuum state. The transformation T maps
the coherent state of the electromagnetic field, as
represented by the modes in the reference set, onto the
vacuum state. If a state of the field is partially coherent,
T maps it onto a superposition of a finite set of number
states for photons. There is a close analogy between this
redefinition of the vacuum state and the redefinition of
the vacuum state for the ideal electron gas. In the
electron-gas problem the vacuum state is redefined to
coincide with the ground state of the electron gas by in-
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troducing a hole field. In the present problem the trans-
formation T redefines the vacuum state so that it contains
a set of coherent modes. The energies produced by the
transformation U are the actual single-particle energies.
We demonstrate this by considering the coupling between
the electron system and a field mode which is not includ-
ed in the reference set. This result contrasts with the
semiclassical theories, where one deals with time-
dependent Hamiltonians and interprets certain frequen-
cies as quasienergies. ' We also give the formal expres-
sions for the renormalized Bloch functions. If the photon
momenta associated with the reference modes can be
neglected relative to. electronic crystal momenta, then the
renormalized Bloch functions remain periodic in the re-
ciprocal lattice space and one readily obtains the momen-
tum Bloch functions. One also obtains an expression for
the renormalized Fourier coeScients of the periodic crys-
tal potential from the relation between this potential and
the momentum Bloch functions. The renormalized crys-
tal potential may be used as the starting point for investi-
gations of crystal structure in the presence of coherent
fields. In Sec. III we discuss the effects of the coherent-
field renormalization on two-band and four-band models.
For these simple band structures, the renormalized elec-
tron energies and the matrix elements of the transforma-
tion U are calculated exactly under the assumption that
the photon wave vectors of the reference modes are negli-
gible relative to electronic wave vectors. One finds that
band gaps and effective masses are altered and that these
alterations are experimentally observable. A band gap
which is direct in the bare band structure may become in-
direct when the band structure is renormalized. The po-
sitions of the band edges shift in the Brillouin zone (BZ).
If the bare bands are degenerate, this degeneracy may be
removed partially or completely in the renormalized
bands. The calculations carried out in this section are
quite similar to those in Kane's band theory, except that
in the present problem various coupling parameters de-
pend on the intensities and the phases of the reference
modes. The renormalization effects appear mostly in
terms of the ratio (fiQz/EG), where QE is similar to a
Rabi frequency and EG is a band gap. The coherent-field
renormalization is enhanced either by increasing the in-
tensities of the reference modes (AE is proportional to the
square root of essentially the sum of these intensities) or
by decreasing the band gap. Thus, the renormalization
effects are particularly significant in narrow-gap crystals.
Section IV includes a few concluding remarks. The re-
normalization effects may be observed in excite-probe ex-
periments ' when excitation and probe pulses overlap.
In such experimental configurations, coherent excitation
modes constitute the reference set. Probe pulses then
couple to coherent-field-renormalized electrons and
holes. The picture of single-particle excitations presented
in this paper should be especially useful in semiconductor
lasers. When one or more intense coherent modes are ob-
tained in these devices, couplings between different lasing
modes and their fluctuations are most accurately ana-
lyzed in terms of the coherent-field-renormalized elec-
trons and holes, or the excitons formed from the renor-
malized electrons and holes.

II. COHERENT FIELD RENORMALIZATION

This section presents a general discussion of the trans-
formations which effect the separation of the coherent
parts of the field modes from the vacuum fluctuating
parts and the rediagonalization of the electronic Hamil-
tonian.

Let a set of complex numbers [a„j represent the
coherent state of the electromagnetic field:

n

I Ia„j ) = + e " g ", ~n„), (2. la)
(ap)

P
()1/2 P

a =(N )' ~e
p p (2. lb)

(2.2b)

One can separate the coherent parts of the modes from
the vacuum fluctuating parts by means of the transforma-
tion

T=exp g (a*a„—a„a„)
P

(2.3)

Using the fact that if [A,B] is constant for two operators
A and 8, then

AeBeA +Be I A~B]/2 (2.4)

one readily sees that T is a unitary transformation:

TT =E.
When T is applied on the photon operators, it yields

(2.&)

TQ p T =Q p +Exp,

TQ T =Q +o.'P P P

(2.6a)

(2.6b)

These equations follow from the fact that for two opera-
tors 3 andS,

e Ae = g C{SAj,1

o n!

where the C"'s are the nested commutators

(2.7a)

C IS, A j=A,
O'IS, 2 j =[S,A],
C IS, A j =[S,[S,A]], etc.

From Eq. (2.4),

—g a„at g a,at
Ta„T =e a„e

(2.7b)

(2.8)

When one sets A =a„,S = —g„a a, and uses (2.7), one
sees that only C =a„and C'=o.„are nonzero and ob-
tains (2.6a).

Here, X„ is the average number of the quanta in the
mode p, . P„ is the phase of the mode. ~n„) is a number
state. Let a and a„be the photon annihilation and
creation operators.

~ Ia„j ) is an eigenstate of a„:
(2.2a)
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The meaning of the separation in (2.6) can be discerned
from the effects of T and T on the vacuum state. T
operating on the vacuum produces the coherent state

—+la l /2 ga a —ga a

T lvac)=e " e " e " vac)
—+la„l /2 ga a

=e " e" vac

Tl+. &=p..T(".)-T"Tl[a, I &

=p, (a.*+at) lvac&

m mt=p.m X
I =o (m l)!(l!)

(2.13a)

If the mode v is not included in the reference set [a„I,
that is if a =0, then T maps a number state onto itself as
far as the mode v is concerned:

P

p

(2.9)

T
l
ip, &

= (m! ) '/2(a t
) l

vac &
=

l m. & . (2.13b)

Finally it should be noted that the original vacuum state
is mapped by T onto a coherent state which has its mode
phases shifted by ~:

From the unitarity of T it follows that T acting on the
coherent state

l [a„I ) produces the vacuum state T lvac) =
l [

—a„I ) =
l
[a„e' I ) . (2.14)

Tl[a I
&= vac& . (2.10)

This implies that the transformation T induces a
redefinition of the vacuum state. If we view (2.6) as a
canonical transformation into a new Hilbert space, the
vacuum state in the new space is redefined in such a way
that it incorporates a reference set of coherent modes
given by [a„I. This can be seen more clearly by operat-
ing with T on (2.2a). Let the transformed operator be
designated as 3„:

A„=Ta„T~ . (2.11a)

From (2.2a),

Ta„l [a„I ) =a„Tl [a„I),
Tl[a { &=a„Tl{a I &,

A„lvac) =a„lvac& .

(2.1 lb)

In other words, the vacuum state is an eigenstate of the
annihilation operator 3„,if p is included in the reference
set (that is a„&0). This is a characteristic of a coherent
state. In the new Hilbert space, the vacuum state itself
becomes a coherent state of the electromagnetic field. If
we choose to express the transformed field operators in
terms of the old operators, that is, if we use a„+a„in-
stead of a new label 2„, then after the transformation T,
a„and a„operate either on the vacuum state or on pure
number states in the Heisenberg picture, the coherent
parts being separated by c numbers.

These statements are also demonstrated by operating
with T on partially coherent states of the field. An exam-
ple for a partially coherent state is

H =H, +H +H +H

H'= & EI'n'n
P

H', = g Ace„a ta„,
P

(2.15a)

(2.15b)

(2.15c)

HI = g cf3 p. g (glop. a +gp@0 p p

PP' p

(2.15d)

HII = g cpc&. g [d&& (q„+q„)a„a„
PP' pp'

+dI (q„—q„)a„at

+dI (
—q„+q, )a„a„

+d~gp (
—q„—q„.)ata„] . (2.15e)

It is worthwhile to point out the similarity between the
redefinition of the vacuum state above and the
redefinition of the vacuum state for an ideal electron gas.
For an ideal electron gas at zero temperature, the single-
particle states are filled up to a Fermi energy. The corre-
sponding many-body state gives the ground state of the
noninteracting electrons. Other states of the system are
associated with an electron (or more) crossing the Fermi
surface. One can go to a new field description of this sys-
tem by redefining the vacuum state so that it coincides
with the ground state of the system and by introducing a
hole field. The transformation T produces a similar kind
of redefinition of the vacuum state for the coherent states
of photons.

Let us consider the Hamiltonian which represents
Bloch electrons, photons, and their coupling:

I q,.& =p..(a'. )-I[,I &,

where p is the normalization constant:

—1/2

(2.12a)
Here the P's designate the Bloch states: P=(nk), where
n is the band index and k is the electronic wave vector.
cP, cP~ are the anticommuting electron operators. EP is
the Bloch energy. g&P. represents the p- A coupling be-
tween electrons and photons. It is given by

2 —2i

1=0 [(m —l)!] I! (2.12b) g ~pp.
= ( e /'mc)A „(n k

l
e " e„.p l

n 'k' ), (2.168)

T transforms this state into a superposition of the vacu-
um state with a finite set of number states for the mode v:

1/2
2nhc

2V,1n„m„
(2.16b)
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c„and q„are the polarization and propagation vectors
for the mode p, p is the momentum operator, n„ is the
index of refraction, V» is the quantization volume, co„ is
the photon frequency, and d)P&. represents the A cou-
pling and is given by

T transforms H into
H=TH T =H +H +HI+

where

(2.18a)

d(q)=(e /2mc )A+„(nk~e'q'"~n'k')(e„e„) .
(2.17)

H, = g h p»c pep
PP'

i I

hp» =Ep5p»+ g (g pp a„+g(pp a*)+ g [d~g&. (q„+q„)a„a„.+d pp (q„—q„.)a„a„*
P pp

+d~&p)' ( q„+—q„)a„'a„+dIp& ( —q„—q„)a„*a„*],
Hy= +fico (a„a„+a„a„+a"a„+~a„~ ),

)fc

HI= g cpc» g [(gipp. +d Ip»)a +(g)pp+d ~pp)a ],
PP' p

(2.18b)

(2.18c)

(2.18d)

(2.18e)

d )pp
=2 g [d(ppl' (q„+q„)a„+d pp. (q„—q„)a„*] . (2.18f)

Cp= g Uppcp
P'

[Cp, Cp I =5pp. .

CP and Cp are the renormalized electron operators-
Then,

(2.20a)

(2.20b)

H, = g EpCpCp,
P

(2.21)

where EP is the renormalized energy. The transforma-
tion U also affects HI and Hll. The renormalized
electron-photon coupling which is linear in photon opera-
tors becomes

H = g CpCp(Gapa„+G~ppa„),
PP'p

Gpp = g Up)(gi. i. +d),i. ») p .
u, '

(2.22a)

(2.22b)

The electron-photon coupling which is quadratic in pho-
ton operator becomes

In (2.18e) and (2.18f) we used the symmetry in the
definition (2.17) that dl, (q) =d g (q) and dlppj' (

—q)= [dg&(q)]*. The last term in (2.18d) is a c number and
may be omitted.

It is seen from (2.18b) and (2.18c) that the electronic
Hamiltonian is now nondiagonal and depends on the
coherent mode amplitudes in the reference set. Let U be
a unitary transformation which diagonalizes (h pp ):

( Uh U )pp =5pp Ep . (2.19)

Let also

One can express the eigenvalue equation for the renor-
malized energies compactly in terms of an infinite expan-
sion matrix

hPhP.
Zpp(E)=hpp+ g (E —h )

py y7 rj9'h h h

, (E —h )(E —h„)
where

(2.24a)

hpp. =(1—
5pp )hpp

EP's are given by the solutions of the equations'

E=Zpp(E) .

(2.24b)

.(2.25)

For a given P, this equation provides many solutions.
The appropriate solution for a Bloch state can be picked
out among the many solutions by requiring

lim EP=EP .
Ia I~o

(2.26)

then

Ut —(. . . g(P) g(P') . . . ) (2.28a)

One can also express the matrix elements of U in terms
of Z. Let the matrix (hpp, ) have normalized column
eigenvectors g so that

h g(P) =E g(P) (2.27)

If we form a matrix from these column eigenvectors,

HII=HII(d pI Dpp»0

pp (q)= X Up). d5(q»~p .

(2.23a)

(2.23b)

UhU~=hD, (2.28b)

where hD is diagonal with matrix elements EP. The ma-
trix elements of U are therefore given by
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—g(a)

From Lowdin's theorem, '

(2.28c) periodic potential can be written as"

VG = g E„(k=0)(t „(—Cx)p„(0) . (2.35)

g(a)
p

if a=P
Z (E)9a pa a

(E —
hpp)

'

(2.29a)
Postulating the same relation for the renormalized quan-
tities, for the component of the renormalized pseudopo-
tential one obtains

where

izp. (E.) i'
1+

p(~ ) (E hpp)

VR —y E (0 )ORB( G )ORB(0 )

Using (2.34) and

g U„*„(0)E„(0)U„„.(0)= ( U hD U)„-„

(2.36)

Using Zp (E)=Z p(E), one obtains

if P=P'
U ' &pZpp (Ep)

if PAP' .
(Ep hp p—

=[h (0)]„„
(2.30) one finds

Vo=Vo+ g [5h(0)]„, P„. ( —Cx)PB„(0),
n'n"

(2.37)

(2.38a)

i/p(x) = (xicpivac) = (vacii/(x)cpivac), (2.31)

In the next section we use the Z matrix to evaluate the re-
normalized energies and the matrix elements of U for
simple band structures.

The transformation U renormalizes the Bloch func-
tions. To obtain the renormalized Bloch functions, we
note that a bare Bloch function is given by

where

[5h (0)]„„=h„„(0)—E„(0)5„„,. (2.38b)

The transformation U affects all other electronic cou-
plings such as the Coulomb coupling and the coupling to
phonons. For example, writing the bare Coulomb cou-
pling in the form

where i/)(x) is the field operator. Therefore, a renormal-
ized Bloch function is given by

u (pp'p"p"')c13c &cp-cp„, ,
pp'p"p"'

(2.39)

i/)p (x)=(vac~i/r(x)Cp~vac)

= g Upp1p(x) .
p'

(2.32)

one finds from (2.20) that the renormalized Coulomb cou-
pling becomes

u (PP'P"P'") = g U pU)p, iu( )A(, 'A, "X'")U)„pUi„.p. -

qB (x) g e (k(G+) x(/iB(k+ G ) (2.33)

where the Cx's are the reciprocal lattice vectors. Expand-
ing Eq. (2.32) as in (2.33), one infers that the renormal-
ized momentum Bloch functions are given by

(k+G)= g U„*„.„,„P„,(k'+Ex)
n', k'

= g U„*„(k)(/„(k+Cx) .
n'

(2.34)

The last step follows from the fact that hpp 6zz. when
photon wave vectors are neglected.

One may use (2.34) to demonstrate the renormalization
of the periodic crystal potential. In the case of normal
momentum Bloch functions, the components of the

Upp depends on the electronic wave vectors through the
matrix elements of (hpp. ). If one can neglect the photon
momenta in (2.16a) and (2.17), as in the case of optical
wavelengths, then (hpp. ) is periodic in the reciprocal lat-
tice space, as are U and the renormalized Bloch func-
tions.

The momentum Bloch functions" can be inferred from
(2.32) under the periodicity assumption. The bare Bloch
functions and the momentum Bloch functions are related
by

(2.40a)

H, = g u(PP'P"P"')CpC pCp-Cp-
PPIPl IPl I I

(2.40b)

Some consequences of (2.40) were investigated in Ref. 3.
The main conclusion is that the charge of the Bloch elec-
tron which is concentrated at a point is transformed into
a charge cloud that can couple to itself. The overall
effectiveness of the Coulomb coupling is reduced, result-
ing for example in lower excitonic binding energies. Re-
normalized electron-phonon coupling will be discussed
elsewhere.

The transformations T and U deal with the quantum
kinematics of the electron-field coupling problem. The
dynamics of the problem is determined by the Heisenberg
equations of motion for the renormalized operators.
These equations of motion determine the deviations of
the system relative to a fixed set of coherent-field modes.
The equations further demonstrate that the renormalized
energies Fp are the actual single-particle excitation ener-
gies in coherent fields. For instance, taking just the cou-
pling given by HI, one finds
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i fi —%co„a,= fuo a,+ Q G p pC pCp, (2.41a)
III. RENORMAI. IZATION OF SIMPLE

BAND STRUCTURES

iA Ep —Cp= g (Gapa„+Gapa„)Ctt .
dt pt

In the interaction representation,

a„(t)~e "0' (t),
Cp(t)~e P Cp(t),

and the equations of motion become

(2.41b)

(2.42)

d ia)„t i (,%co +Ep —Ep, )t/R
iA a =co cz„e "+ e ~ ~ G&&C&C&,dt PP'

g,"i, ,i,
—-5k), (e&„/mc)e .P;„(lt),

h, i, ,i,
——5),i, ()rt/m)K/ P„(k),

where

(3.1a)

(3.1b)

In this section we discuss the effects of the coherent-
field renormalization on two-band and four-band models.

A particularly simple form of the transformation U re-
sults when we consider a two-band model with a conduc-
tion and a valence band. We assume that (ger ~

&& )d gtr(
and neglect the d coupling. %'e also assume that photon
wave vectors are negligible compared to electronic wave
vectors. One then has, for interband transitions,

d — i(Ep Fp —i)co —)tlat

pP'

(2.43a) K/=(2e/Pic) g e+„Rea„.

For intraband transitions,

(3.1c)

e i (Ep Ep —f—iso„)t/s
p'p (2.43b)

If the mode v is not included in the reference set (or if it
is not coherent at all), then a, =O and (2.41a) and (2.43a)
are identical in form to the equations of motion without
the renormalization. Equation (2.43a) shows that, as far
as a probe field is concerned, spectral resonances are at
the renormalized energy differences. This is essentially
an operational definition of the energy difference between
two distinct states. E&'s are therefore the actual single-
particle energies in the presence of a coherent field. They
differ from quasienergies obtained in classical treatments
of the electromagnetic field. ' We emphasize again that
the coherent-field renormalization differs fundamentally
from the semiclassical theories of the electron-field cou-
pling. The coherent-field renormalization transforma-
tions are carried out at a fixed moment in time. One
deals with a Hamiltonian which is not explicitly time
dependent. The electromagnetic field is treated complete-
ly within the quantum-theoretical framework. The for-
malism is capable of handling partial coherence. The re-
sults we obtain and their interpretations are different
from those when the electromagnetic field is treated clas-
sically.

gi'z. „i,, ——5),i, ,(eA /cA)e„V),E„k., n =c,u

i.),;.), =5),);(En) +K/ ~) E'k) .

(3.2a)

(3.2b)

&v& =m '&nk~p~nt& =A 'V„E„'„. (3.3)

Consider now Z„(E). It is clear from (3.1), (3.2), and
(2.24b) that only even powers of h„appear in the sum in
(2.24a):

Z„(E)=h„+ +
(E —i „,) (E —a„„)z(E—a„)

(E —h„) (E —h„)
(3.4a)

Regrouping,

The matrix elements (3.1) and (3.2) do not couple
different electronic wave vectors. Therefore in the fol-
lowing, we will sometimes omit explicit references to k s.
The form of Eq. (3.2a) follows from the fact that'2

(E —h„„) (E -h„)(E—h„„) (E -h ) (E -g )z

fa,„f'(E—i „)
[(E—h„)(E—h„„)—fh„/ ]

(3.4b)

Replacing h„by h,„ in (3.4b) yields Z,„(E). Using (2.25)
we obtain the eigenvalue equation

(E —h„)(E—h„, )
—2li „I'=O,

which has solutions

E=—,'(h„+h,„)k—,'[(h„—h„) +8~h,„~ ]'~z .

Define

ei, = —(it„h„,) [+(h„——h„„) +8ih, „i2]'

(3.6)

(3.7)
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E, =h„+ek/2,
E„=h,„—ek/2 .

The same solutions are obtained from E =Z„,(E).
For convenience, let us also define the quantities

(3.8b)

fiQE=2v'2lh„l =4 2(elmc) QA&e&. P,„Rea„

The renormalized conduction- and valence-band energies
are given by Z„(E,) = (E, —h„)(E,—h„) .

h,„

Using (3.8), these equations can be rewritten as

4h„ek
Z„(E,)= " (E, —h„),

fz QE

4h,*,ek
Z„,(E, )= — (E, —h„) .

A' OE

(3.13b)

(3.14a)

(3.14b)

(3.9a)

5W„k=Kf VkE„k =(2e/cA) QA„(Rea„)e„VkE„k .

One sees from (3.14) and (2.29b) that the normalization
constants for the conduction and valence bands are iden-
tical:

(3.9b)

QE is similar to a Rabi frequency. ' It is slightly different
from the usual definition of a Rabi frequency in that P„
appears in (3.9a) instead of a genuine dipole moment, and
there is a phase factor cosg„coming from Rea„ for each
coherent mode in the reference set. With the definitions
(3.9a) and (3.9b), ek, E„and E, can be written in more
explicit forms:

ek = —(E,k E„k+—5W, k
—5W„k)

+[(E,k E,k+5W, k
——5W„k) +A' AE]'i, (3.10a)

E,k= —,'(E,k+E,k+5W, k+5W„k)

Define

AGE

(2e +A' 0 )'

4h, „ek

AQ

Ucc ~k& Ucv Ik~k ~

Uuc elks k ~ Uvv

Note that

n'(I+ la I') =1

From (2.30), the matrix elements of U are given by

(3.15)

(3.16)

(3.17)

(3.18)
+ —,

' [(E,k E,k +5 W,—k —5 W„„) +A QE ]' i

(3.10b)
and U is properly unitary. We may now write the trans-
formation (2.20) as

E,k= —,'(E,k+E„k+5W,k+5W, k)

—
—,'[(E,k E„k+5W,k 5W—,k) +A QE]'—

C~k 9k(C~k+ kkCUk)

C k Qk( kkC k+C k)

(3 10c) Conversely,

(3.19a)

Next, consider Z„(E) in order to determine the matrix
elements of U. From (2.24a), (2.24b), and (3.1), one has
(for a given electronic wave vector)

C,k
—'rh(Xk C,k+ C,k) .

(3.19b)

Thus,

h,„h„h„
(E —h,„)(E—h„)

+ h,„h„h„h„h„
2 2+(E —h,„) (E —h„)

GO l2n

„=0 (E —h„)"(E—h„„)"
(3.11)

The renormalized Bloch functions are given by

e.k (")=&k[&.k(x)+ ~k e.k(x) ]

P k(x) /k[ ~kP k(x)+0 k(x)]
(3.20)

2 2
0 6 Ak

Let us go back to the renormalized energies. It is clear
from (3.10) that the effects of the renormalization vary as
one moves to different regions of the BZ. Let E, , near
the center of the BZ be given by

h,„(E—h„)(E—h„„)
Z,„(E)=

[(E—h„)(E—h,„)—lh„ l']
(3.12)

Z„,(E) is obtained by replacing h„with h„, =h;, in
(3.12). Because E, and E„satisfy (3.5),

E
EO

uk

Define also

Ak
2m,p

(3.21)

Z,„(E,) = (E,—h„)(E,—h„„),
h„

(3.13a)
mpmp

v c
cu 0 0Pl Pl

(3.22a)
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m'm'
V C

m'+m' '
U C

(3.22b)
8 E„

m„*;=A lirn
Bk.

(3.27)

g2k2 /2k. Kg
E, , (k)= +4m„2mcv

A k.K+' f202+ Eo+"" + f
2 E G 2m, m,

(3.23)

From (3.10), the renormalized energies in the vicinity of
k=0 are given by'

1 1 ~n

m . 2m 2m„+E

A E~;1+ 0 (2—I /y@ )
2m, Eg

(3.28a)

where

Consequently the sign of the renorrnalized effective mass
can be positive or negative according to this definition,
although the unrenormalized masses m, and m, are posi-
tive quantities. From (3.23) one obtains

Let us estimate the size of the various terms in (3.23).
For this purpose let us assume that only one mode desig-
nated by p=0 is coherent. For practical semiconductors
like the III-V compounds, typical parametric values are

~P„~/fi-2X10 cm ', EG —1 eV, m, -Q. lm .

1 if n=c
0 —1 if n=U

y~ =[1+(fiQ~/EG ) ]'

(3.28b)

(3.28c)
(3.24a)

m 2EO ~ gk2
(3.25)

These numbers are chosen so that they are consistent
with the approximate f-sum rule for the two-band model:

If fi K&, /2m„-EG, for example for extremely narrow
band gaps, then the renormalized effective masses become
directional. The increased inertia induced by yE is par-
tially compensated by the K&; term. If fi Kf /2m ((EG,
then the effective masses are isotropic and one can omit
the subscript i:

Let

Acro- 1 eV, no -4, No/V& —10' cm

This photon density corresponds to an intensity

Io =Rcooc(no) 'Xo V, ~

' —10 W/cm

(3.24')

(3.24")

2m om oyE

mo+m, '+(m,' m, )—y0~
'

2mv mc PE

[—(m, +m, )+(m„—m, )yz]

If m, « m, , then

(3.29a)

(3.29b)

For these numbers, one finds from (3.1c) and (3.9a) that

and

8e/P„/ mANo

2nomoV

1/2

—10 ' eV (3.24"')

PE
mc ~2mc

m,*=2m,' YE
U C

(3.30a)

(3.30b)

1/22ne No' ' I"-.V.2
-5X10' cm '. (3 24/II/)

If m, »m, , then

m — 2m„0 0

yE 1
(3.3 la)

Equation (3.24'") shows that the energy shifts and the
changes in the density of states brought about by the re-
normalization are significant and experimentally observ-
able. The value of ~K/~ is comparable to Fermi wave
vectors. Consider the Fermi wave vector for an electron
density N, —10' cm at zero temperature:

o o
mv 2mv

gE

If m, =mv =m, then

(3.31b)

(3.32)

k =(3m X )' —3X10 cm (3.26)

This is only six times larger than ~K/~.
One can obtain the renormalized effective masses from

(3.23) by taking appropriate derivatives. Some care must
be shown in the definition of the renormalized effective
masses, since the renormalized bands are not parabolic.
Near the BZ center we define the effective mass in the ith
direction as

E,(0) E„(0)=EGyF . — (3.33)

Thus, the band separation at the center of the BZ is in-

Consider the band separation at k=0. This separation
need not be the actual band gap for the renormalized
bands, since the maximum and the minimum of the con-
duction and valence bands, respectively, need not be at
k=0. From (3.23),
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(k;+KI;)

A Kf.k
EG+ +

2m~ m~

AK .kf202+ Eo+ + f
2m m„

creased by the coherent fields.
Equations (3.30) and (3.31) show that the signs of the

curvatures of the renormalized bands may be changed
relative to their original signs if the two bands have vast-
ly dift'erent e6'ective masses. The unrenormalized band
curvatures are, from (3.21), m, )0 and —m„&0. Ac-
cording to (3.30), if m, «m, , then the renormalized
band curvatures are both positive near k=0 (in the plane
perpendicular to K&). This implies a coherent-field-
induced depression in the band around k=0, as illustrat-
ed in Fig. 1(a). Conversely, if m, ))m, , then according
to (3.31) a hill forms in the renormalized conduction band
near k=0 in the plane perpendicular to Kf, as shown in
Fig. 1(b). If the bare bands are symmetric, the renormal-
ized bands remain symmetric, although the renormalized
effective mass increases as indicated in (3.33).

More quantitatively, the extrema of E, , can be ob-
tained from (3.23) by setting BE, „/Bk, =0:

r

A' Eicos 8 (m, —m, ) ROE
& 1+0„

2m„E 2(m, m, )' EG
(3.36)

where 8 is the angle between k and KI. If (3.36) is
satisfied, then there are two more extrema for each band:

k
$ 2 EfcosO+ Efcos 0

(m„—m, ) AA~

2(mm )' E

E„(k)= ~n 2k2
' 2 1/2

F2~2 + EO+ + f
2 m m'

(3.38)

(3.37)

If (3.36) is not satisfied, there is only one solution given
by (3.35), where E, is minimum and E„ is maximum. If
(3.36) is satisfied, E, has a local maximum at k= —KI,
and E, a local minimum. E, is minimum at k&'z, E„ is
maximum at k', "2'. Thus, whenever (3.36) is satisfied, the
renormalized band structure has an indirect band gap.

If m, =m, =m, then

(m,'—m,')
+cr„

(m, +m, )
=0. (3.34)

The gap is direct, but the band edge has moved from
k =0 to k = —Kf, where the gap is given by

' 2 1/2

E, (
—K~) —E„(—K )= iri 0 + E m'

The first factor yields the solution

(3.39)

We can express Ef in terms of AGE when there is just
one coherent mode:

k= —Kf .

The second factor in (3.34) yields a solution only if

(3.35) mAE

which implies

(3.40a)

A' E
m'E,'

1

24

AQE

EO

AQE

EO

m EG

mo[p, f'

(3.40b)

(a)
The second step of (3.40b) follows from the f-sum rule
(3.25). One can thus rewrite (3.39) in the form

2

E(—K ) E(—K )=E —1+ AGE
c f v f G ]2 EP

G

1 E
4 1/2

+

(3.41)

(b)

Near the boundaries of the BZ, typically k —10 cm
Comparing this with (3.24""),one sees that ICI « k and

FIC». 1. Indirect-gap formations. Kf VkEO(k) =Eo(k+Kf) —Eo(k) . (3.42a)



RENORMALIZATION OF BLOCH ELECTRONS IN COHERENT LIGHT 10 227

Thus, near the BZ boundaries (or more generally, when-
ever k »Ef), one can set

E„k+6M„k-E—„(k+Kf ) . (3.42b)

The eigenvalue equation becomes

E —h„=2+ w; .

More explicitly,

(3 48a)

The renormalized energies become

E, „(k)= —,'[E, (k+Kf )+Eu(k+Kf )1

6—'[[E (k+K ) —E (k+K )] +A' n

No n Drool P,„ l

8~e'X
(3.44a)

(3.43)

Equation (3.23) and the equations following it are valid
if lg,„l » ld„„ l. For a single coherent mode, this implies
that

E' 'E(E —h„)—2 y lh„ l' =0 . (3.49)

(E —h„) Q (E —h..., ) =2& 'lh, . l'~ (E —h. . )
'

.
l J . l&J

(3.48b)

This is a biquadratic equation and can be solved exact-
ly. ' Rather than dealing with the complicated exact
solutions, let us consider a few special cases.

Case 1. Let h„, =0 (that is, the three valence bands
l l

are degenerate with infinite efFective mass). Equation
(3.48b) yields

which for the example of (3.24) becomes

No «2X10 cm, Io «2X 10' W/cm
ol

(3.44b)

Two of the renormalized bands remain degenerate:

Setting

(3.50a)

Thus, for most practical intensities, the approximation
stated at the beginning of the section is quite reasonable.

In useful semiconductors like the III-V compounds,
there is more than one valence band. Typically there are
three degenerate valence bands, if the spin-orbit cou-
plings are neglected. The spin-orbit coupling separates
and lowers one of these bands. Therefore a more realistic
band structure is the following four-band model. Sup-
pose that there are three valence bands and one conduc-
tion band which are coupled by the interband momentum
matrix elements P„, U, =1,2, 3. We allow these matrix

l

elements to be distinct. We also let P, „=0. The matrix
l J

elements h&& take the form

E' h„E 2—y lh,.—I'=0,
l

(3.51)

one finds

E., = ,'h„,' lh-„l'+—8—ylh,. l' '", (3.50')

E, = ,'h„+ ,' 'lh„-l'+8-y lh, „ l'''". (3.50")

Thus, one of the valence bands is no longer degenerate.
It now has a finite efFective mass. This is illustrated in
Fig. 2(a). Clearly, the total density of states per unit en-

hck u k ~kk' 'Kf cu (k)
7 m l

(3.45a) 4 J'.
h„k.„k.—5kk(E„k+Kf VkE~k)) n CyViyV2yV3

0 0

(3.45b)

i =1,2,3 i =1,2

i =3

Consider Z„(E). From (2.24),

Z„=h„+g w, + g
E ij CC

(a)

where

,Ji (E —h )
(3.46a)

E —h, ,
1 =1,2, 3 (3.46b) i=1,2

Thus,

Z„(E)=h„+
(E —h„) gw;

E—h„—gw,
(3.47)

i =3

FIG. 2. Removal of degeneracies by the coherent-field renor-
malization.
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ergy for the valence bands has been decreased.
Case 2. Let h„„=h„,=0, h, „%0.

1 l 2 2 3 3

(3.48b) yields

EIE(E —h„)(E—h. . ) —2lh, „ I'(E —h. „)

Equation
I et E, =h„„+a,Ia I «lh, „ I. Tben,

2h„, Ih„ I'

lh„h„„—h,', +2(lh, „ I'+ Ih„ I')]

—2lh„ I'(E —h, „)—2lh„ I'Ej=0 . (3.52)
(3.53c)

E =0.
U)

Let E,=h„+6, where 6 ((h„. Then,

(3.53a)

E, =h„+ '
&lh„ I'+lh, „ I )+ '

. &3.53b)
CC CC D3D3

Suppose lb, „ I
& h„and h„, &0. We solve the second

3 "3 3 "3
factor of (3.52) approximately. One solution for the
valence bands is

Fr~ally, let E„=b.",where Ib,
'

I &&h„, lh, „ I. Then,

—2h. .., ( lh...I'+ lh...I')

(h„h„, —2lh, . I')
(3.53d)

Thus, the degeneracy is completely removed. This is il-
lustrated in Fig. 2(b).

Consider the matrix elements of U. From (2.34),

h, ,h„h, ,h„h, ,h„
I J +

(E —h„) ~i (E —h„)(E—h„„)(E—h„)

j+ '+ +
(E -h„) (E —h„) (E —h„)'

h„,h„
l J

E h„—g w—
&

(3.54)

More explicitly,

Z„, (E)=
h„,h„Q (E —h, „,)

(E —h„)g (E —h„, ) —y lh„ I' g (E —h,„,„)
I 1 kXl

(3.55)

Using the eigenvalue equation (3.48b), one finds

Z, , (E„)=
h, ,h„+ (E„—h„, )

lh„ I g(E, —h, , )
1 k&1

(3.56)

The normalization constant g, is given by
l

lh, „ I'g Ih,. I' ' g (E, —h„... )
'

~+ jWi l&j

y 'Ih„l'~(E„—h, , )' '
1 k&1

" —1/2

(3.57)

Thus, fori =j,
U„, =q,

l l l

For iAj,

q„h, ,h„+ (E, —h„, )
l&J

'g 'lh, „l'~(E„—h, „)'
1 k&1

Similarly,

(3.58b)
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h„(E—h„) g (E —h„, )

Z,„(E)= (E —h„)+(E h—„„) g— ~h,„~ Q (E —h, „)
J j kwj

' —1/2

(3.59a)

(3.59b)

(3.59c)

and

rl, h,„ ff (E,—h„, )

J
~h, „f~ g (E, —h„„) (3.59d)

The degenerate states are significantly mixed. For ex-
ample, set h, „=0. Then, for i',

t l

(3.60a)

where

y [h
/

+ /h / y /h
(3.60b)

Interestingly, if ~h„~ is the same for all i, then the above

quantities in (3.60a) and (3.60b) are independent of
~ h„~:

l

3 1

(11)1/2 ' U;~J (11)1/2

On the other hand,

(3.61)

E,'+3[l,. /'

1/2
E2

3E,'+ 9
I
h„/'

(3.62)

Recalling that h„~K&.P„, one sees from the results

above that the amount of the degeneracy breaking, as
well as the separations induced between two distinct
bands, depends on the polarization directions of the
coherent modes. h,„can be made quite small or be made

l

to vanish by altering the polarization directions relative
to the crystal axes. This in turn afFects the mixing of the
valence bands (via their coupling to the conduction
band), hence the coherent-field-induced separations of the
bands.

The preceding calculations and results are completely
analogous to those in Kane's band theory. The only
difference is in the coupling coefficients. In Kane's
theory the coupling coefficients between different bands

arise from k p and spin-orbit coupling. In our problem
the coupling coefficients depend on the coherent mode
amplitudes and polarization directions. One can there-
fore adapt many of the results of the k.p method to the
coherent-field renormalization.

An important conclusion of the preceding calculation
is that the renormalization effects depend on the ratio
(fiQz/EG); they do not depend on the detuning between
the band gap and the frequency of a reference mode.
This is completely diff'erent from the result which would
be obtained from the classical treatment of the elec-
tromagnetic field. In semiclassical theories, the quasien-
ergies depend on the detunings between the mode fre-
quencies and the Bloch-electron transition frequencies.
We may say that the coherent-field renormalization is an
infinitely-many-photon-transition process, since by sum-
ming the Z matrices to all orders, we take into account
all possible virtual transitions. Therefore the renormal-
ization effects do not depend on the resonance properties
of a crystal.

IV. CONCLUDING REMARKS

Our estimates with the parameter values given in (3.24)
indicate that the effects of the coherent-field renormaliza-
tion on simple band structures can be substantial and ob-
servable in the excite-probe experiments of the type per-
formed by Mysyrowicz et al. ' When an intense
coherent excitation pulse overlaps with a weak probe
pulse, the probe pulse detects the electronic energies
which are renormalized by the excitation pulse. Also, as
we saw above, the renormalization effects involve the ra-
tio (fiQE/EG). Thus, the renormalization effects can be
enhanced either by increasing coherent-field intensities,
or by decreasing band gaps. Consequently, one would ex-
pect the renormalization effects to be much more readily
observable in narrow-gap crystals for a given coherent-
field intensity.

As we mentioned earlier, the coherent-field renormal-
ization significantly affects the electronic coupling
coefficients with photons and phonons, which may also
be observable. These efFects will be discussed in another
paper.

We expect the concept of the coherent-field-
renormalized Bloch electron to be particularly suited to
the analysis of the dynamics and statistics of semiconduc-
tor lasers in which one or more intense coherent modes
are built up. If the dynamics of an electron population in
a semiconductor laser is formulated in terms of the renor-
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malized electrons, various coefticients such as the rates
for Auger processes, exciton formation, diffusion, etc., be-
come dependent on the intensities and the phases of the
coherent modes in the reference set. Such a formulation
would be particularly useful for the study of fluctuations.
Of course, the numerical accuracy of the new picture de-
pends on the accuracy of the matrix elements of U. As
we showed in the preceding discussion, with reasonable
assumptions, one can evaluate these matrix elements ex-
actly for simple band structures. For more complicated

bands, one can adopt various numerical methods
developed in standard band-structure calculations.
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