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In a thin fiber of radius R, the long-range elastic dipolar interaction between two dipoles at a
distance r from each other is modified from Vce I/r to Vcx:exp( —r/R). This offers opportuni-
ties to test the recent theory of tunneling systems in glasses based on the long-range interdefect
interactions. Several possible experiments are proposed.

At low temperatures the thermal, acoustic, and dielec-
tric properties of glassy materials can generally be under-
stood on the basis of the tunneling-system or two-level-
system (TLS) model. ' In this model it is assumed that
there exist atoms (or clusters of atoms) each with two po-
tential minima. The, tunneling motion between the two
minima constitutes the low-temperature dynamics. Based
on a few simple and plausible assumptions about the
broad distributions in energy splitting between the two
levels and in the tunneling rates, the TLS model provides
a satisfactory phenomenological interpretation of the
low-temperature behavior of glasses.

In the form of the TLS model as it was originally pro-
posed and generally accepted, the tunneling entities are
regarded as primarily noninteracting objects and essen-
tially independent of one another. The interaction be-
tween the TLS is considered important only in special
contexts, such as in causing level broadening and spec-
trum diffusion. While the existence of the inter-TLS
interactions is not questioned, their importance is often
underestimated if not entirely overlooked.

Recently, Yu and Leggett proposed that such interac-
tions could well be the key to a deeper understanding of
the low-temperature properties of glasses. It is suggested,
for example, that the near-Bat distribution in energy split-
ting (fiat density of states) may be a consequence of the
long-range (& I/r ) interdefect elastic dipolar interac-
tion. " According to the theory, the interaction renders
the density of states essentially Bat and slowly increasing
with energy, as it has been generally observed. Such a
scenario is consistent with the results of both numerical
and approximate analytical calculations. " It is further
speculated that the interaction theory may explain a num-
ber of long-standing puzzles about the TLS. Consider, for
example, the acoustic attenuation in glasses at low tem-
peratures. It is found that the dimensionless ratio X/1,
where X, is the wavelength of sound and l its mean free
path, is essentially independent of material and roughly
equal' to»0 . Within the TLS model this quantity is
given by, up to numerical factors, y n/pv„where y, the
deformation potential, measures the coupling strength be-
tween a TLS and the local strain, n is the TLS density of
states, p the mass density of the glass, and v, the speed of
sound. All four quantities vary from one glass to another,
but the combination y n/pv, show much smaller varia-
tions. Within the noninteracting TLS model this can only
be attributed to a curious coincidence. It becomes more

natural in the interaction theory, where the coupling
strength y and the density of states n are determined by
the interdefect elastic interaction and are therefore not in-
dependent of the elastic modulus pv, . This was suggested
by Freeman and Anderson' ' and has received tentative
support both from preliminary calculations based on the
interaction model' and from numerical simulations. '

Although the interaction theory is still in its infancy, it
has already provided refreshing insight into many familiar
results of. the TLS model. It shares some attractive
features with the recently proposed microscopic theory of
the tunneling systems in KBr:KCN. ' On the other hand,
so far, the theory has been built to interpret the existing
experimental data; it has yet to make new predictions that
can be used to discriminate itself from the conventional
noninteracting TLS model. In view of the success and
promise of the interaction theory, it is of urgent interest to
design and perform experiments that can test the basic
premise of the theory, namely, that the long-range inter-
defect interaction is vital to the formation and the proper-
ties of the TLS.

In this paper we discuss this question from the theoreti-
cal point of view. We show that experiments performed
on glass fibers are potentially useful in testing the interac-
tion theory. Here we assume a 6ber to be a homogeneous
rod of glass with a radius R on the order of microns. Fur-
ther, we assume the 6ber to be "glassy" in the sense that,
apart from its shape and size, it is indistinguishable from
bulk glass; in particular, it should have its share of TLS.
We 6nd that within such a 6ber, the interdefect interac-
tion is no longer rs 1/r but rather cx'exp( —r/R) for two
defects separated by a distance r &R. Thus, the long-
range interaction is effectively turned off among those de-
fects that are more than R apart. If the interaction theory
is correct and the long-range nature of the interaction is
indeed responsible for the properties of low-energy TLS,
then the behavior of TLS in a fiber should be very
different from that in the bulk, at least in the low-energy
limit. If, on the other hand, the long-range interaction is
unimportant and the conventional picture is correct, then
no such difference is expected. This is because the con-
ventional theory implicitly assumes the size of a TLS to be
of the atomic scale. Since the radius of a 6ber is much
larger than the intrinsic size of a tunneling system, the be-
havior of a TLS should not be affected by the size of the
6ber.

Neither the conventional TLS theory nor the interac-
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tion theory discusses the microscopic nature of the TLS;
instead, both assume the existence of some "defects" '
or "tunneling centers. " Our discussion bypasses this issue,
but assumes that the defects are fairly strongly localized
objects, involving atoms within a sphere no larger than a
few tens of angstroms at most, and possibly much smaller.
There are at least three possible types of long-range in-
teractions between two such defects. First, there is the
elastic dipolar interaction to be discussed in detail below.
Second, if the defects have nonvanishing electric dipolar
moments, ' there is also an electric dipolar interaction.
Finally, in metallic glasses there is an interdefect interac-
tion mediated by the electrons. All three interactions are
essentially ~ 1/r, with possibly complicated angular
dependence and oscillating signs. In the interaction the-
ory, it is the 1/r nature of the interaction that is primari-
ly responsible for the properties of the TLS. Accordingly,
we will focus on the long-range aspect of the interaction.

The elementary entity in elastic interaction is an elastic
dipole. ' (There is no such thing as an elastic mono-
pole. ) Unlike an electric dipole, an elastic dipole is a
second-rank symmetric tensor k;J (i,j 1,2, 3), general-
ly with a nonvanishing trace corresponding to the frac-
tional change in volume caused by the dipole. It couples
to the local strain u;j so that the energy of an isolated elas-
tic dipole in a uniform strain is A, ;J.u J. (Repeated indices
are always summed over. ) In an in6nite medium, it is
straightforward to show that the interaction between two
dipoles k ' and A, goes like 1/r . Consider, for exam-
ple, an isotropic medium with a Young's modulus Y and a
Poisson ratio cr. The dipolar interaction is given by

V A, 'X
8+I (1 —cr) 8x; 8xt

P

(3 —4a)8;J + &r&k (1)
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Results of this type are well known' and can be easily ob-
tained using the classical theory of elasticity. ' More con-
veniently, we can use the following technique. We note
that the elastic interaction is fundamentally the result of
the exchange of virtual phonons, in exact analogy with the
electrostatic interaction, which is the result of virtual pho-
ton exchange. We can write down the Hamiltonian of the
combined system of phonons plus two dipoles located at 0
and r, eliminate the phonons, and identify the r-dependent
part of the energy with the static interaction between the
defects. To illustrate, we consider a model system of
scalar phonons coupled to two vector dipoles and write the
total Hamiltonian as

8- a."'Vu(0)+X"' Vu (r)
P

+ d'x & u +—(Vu)
1 8 K
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Since the Hamiltonian is quadratic in the phonon degrees
of freedom, we can immediately integrate out the phonons
to find the static interaction between the dipoles to be

~(])~(2),7 4 k j l gyp'kk
" (2x)' Kk'

Carrying out the Fourier transform, we have

()) (2) 1 jl 3&j&l (4)

Here J, m 0, 1,2, . . . , is the mth Bessel function, the
constants P, are determined by the boundary condition
at r R which, in our scalar approximation, isJ' (P, ) 0, s 1,2, . . . . We have also introduced
e)j, (K/p)(k +P2, /R ), and the a's are complex
coefticients. Using this basis and repeating the calcula-
tions of Eq. (2) to Eq. (4), we can 6nd the static interac-
tion in a fiber. It is convenient to project the dipoles unto
their respective local cylindrical unit-vector basis. The
coupling between the two vector dipoles is then given by a
dyad. Consider, for example, its zz component. We have

~())~(2) $ dk kk
2«k'+p' /Z'
e' " "F(r(, r2, (S),pz) . (6)

Here F is independent of k. For large ) z )
—z2 ~, we have

(i)(2)
V„-— ' ' F(r(,r2, y(, yz)

x g exp( —P~s I z) z21/&) .
m, s

(7)

In Eq. (7) the root Po ( 0 is excluded from the sum. This
is because the k integral in Eq. (6) is one dimensional, and
the contribution from the term with Po & is simply propor-
tional to b(z( —zz) and has no long-range contribution.
Equation (7) is clearly dominated by the smallest nonzero
root of the Bessel function, given by P) ( = 1.8412. Simi-
larly, we can examine all the other components of the cou-
pling dyad and show that the interaction is always of short
range. Qualitatively the same result is found when the
tensor version of the calculation is carried out. The com-
plete result is somewhat complicated and will be published
elsewhere. In our calculation we have assumed the linear
elasticity theory to be valid and the elastic defects to be
pointlike pure dipoles with no high-order components.
Both assumptions are expected to be valid in the long dis-
tance, weakly interacting regime. The results are explicit-
ly presented here in the simple model of isotropic elastic
medium but are of general validity and are applicable to

A similar calculation using the vector phonons reproduces
Eq. (1).

We now consider an ideal fiber suspended in vacuum
with two dipoles located at cylindrical coordinates (r&,
P&,z&) and (r2, &2,zz), respectively. The boundary condi-
tion is that the force on the surface of the fiber must be
zero or 8a)~/8xg 0 at r R, where o;~ is the stress ten-
sor. We expand the displacement 6eld in terms of the
eigenmodes of the system under such a boundary condi-
tion. Making, once again, the scalar wave approximation
first, we have

u(r, y, z) -J g J (P,r/a)
l' dk

m, s

xfa), ,e' ~e' 'e ' ' '+c.c.l.



10058 YAOTIAN FU

anisotropic, crystalline fibers.
The physics of this result can best be understood using

an analogy with the electrostatic interaction. Since our
fiber is suspended in vacuum, the phonons in the Gber can-
not leak into the environment. There is therefore a total
internal reAection of acoustic waves at the surface of the
fiber, and the fiber behaves as an ideal acoustic
waveguide. Consider a waveguide for the electromagnetic
wave made of a good conductor. If we place two point
charges in the waveguide, the effective interaction be-
tween them is no longer the familiar I/r Coulomb interac-
tion. The image charges induced by the two point charges
largely cancel the direct interaction between the test
charges, leaving only a weaker, short-range interaction.
In the elastic case, the image elastic dipoles also act to
cancel the direct interaction, resulting in a similar short-
range interaction. To avoid confusion, we note that since
the dielectric constant of an insulating glass Gber is not
very different from that of vacuum, the electric dipolar in-
teraction is essentially unmodi6ed in a fiber. Fortunately
for our application, in glasses the elastic dipolar interac-
tion usually dominates; the electric dipolar interaction is
typically weaker by 2 orders of magnitude (see below) and
can be neglected as a first approximation. We have per-
formed calculations to show that in a metallic glass the
electron-mediated, Ruderman-Kittel-Kasuya- Yosida-like
interaction is also modi6ed in a fiber, just like the elastic
interaction. Its magnitude, though dif5cult to estimate re-
liably, is comparable to or less than that of the elastic in-
teraction. We conclude, then, that the dominant long-
range interdefect interactions are effectively turned off at
a distance greater than the fiber radius.

While this result is signi6cant in its own right, we are
primarily interested in its potential applications to glasses.
It is easy to estimate the interaction strength between two
defects in glass. Consider first the elastic dipolar interac-
tion, which can be estimated to be'0 V—g/r with g

y /pv, . Taking the values for Si02 we find g 1.2
& 10 ergcm . It is known that at least some TLS have
an intrinsic electric dipole moment on the order of p 0.5
D. ' The electric dipolar interaction can thus be estimat-
ed to be —p /r with p 2.5X10 ergcm and is
smaller than the elastic interaction by nearly 2 orders of
magnitude. In a fiber of radius R 1 pm, the long-range
elastic interaction is essentially I/r up to a distance of 1

pm, where it has a magnitude of —10 erg and corre-
sponds to a frequency of v—1500 Hz. Beyond 1 pm the
interaction decays rapidly and we have effectively no
long-range interaction weaker than h v with v on the order
of 103 Hz.

The number of experiments that can be carried out in a
Gber is fairly limited. First of all, to maintain the one
dimensionality of the fiber, the experiment must be done
on essentially isolated fibers (or a loose bunch of fibers),
not on a tight bundle. Second, the experiment must be
done at low temperatures, and the requirement of good
thermal contact with a refrigerator is in direct con6ict

with the requirement that the 6ber be isolated mechani-
cally from the environment. Notwithstanding these obvi-
ous dif5culties, we suggest several possible experiments.
It may be possible to measure the mechanical Q of a vi-
brating Gber, thereby determining indirectly the effective
phonon attenuation at the frequency of vibration without
having to attach a transducer to the fiber. The lowest
bending mode has a frequency23 co = 1.76(Y/p) '~ R/L2,
where L is the length of the 6ber. For a micron radius
6ber with a length L —1 cm, this is on the order of
100-1000 sec ' and is tunable to some extent by chang-
ing L. As we have estimated earlier, such a frequency is
of the same order of magnitude as the minimum energy of
I/r interaction in the same fiber, E;„(defined to be the
energy scale at which the I/r interaction crosses over to
the short-range regime), and is ideally suited for deter-
mining whether the near-universal value of X/I- », is
indeed a consequence of the long-range elastic interaction.
For if the interaction theory is correct, there should be a
change in slope on the Q vs co plot near co-E;„/6, sig-
naling a crossover from the bulk behavior to the one-
dimensional behavior. Such a result, if observed, would be
a strong support for the interaction theory. On the other
hand, because the frequency is low, the experiment is
effectively in the very-high-temperature limit. The es-
timated Q due to the resonant absorption of the TLS is of
the order of 150kT/hm or about 10 . Thus the damping
is likely to be dominated by other sources. A further
complication is the relaxational contribution of TLS,
which is expected to be large.

It may also be possible to perform an electric echo ex-
periment' on a loose bunch of 6bers. Since there is no
need of making mechanical contact with the sample, this
has some advantage over the acoustic measurements. On
the other hand, so far the interaction theory has not made
any predictions about the outcome of such an experiment,
and it is not clear what the signature of the interaction
model might be. Optical dephasing measurement is
another possibility. Here the complication is the coat sur-
rounding the fiber core, which makes the fiber much
thicker, with a radius generally on the order of 100 p. Fi-
nally, noise measurements in very small metallic-glass
samples can be used to monitor the motion of essentially
individual TLS. It will be interesting to study the correla-
tion of different TLS in the light of the interaction theory
to see if a signature can be found.

In conclusion, we have demonstrated that the interde-
fect interaction is of short range in a fiber for distances
greater than the 6ber radius. This offers intriguing oppor-
tunities for designing experiments to test the interaction
theory for the low-temperature properties of glasses.

I am grateful to Washington University for support and
Professor Clare Yu, Professor George Mozurkewich, Pro-
fessor Tony Leggett, Professor Jonathan Katz, and Pro-
fessor Phil Anderson for stimulating conversations during
the course of this work.
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