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We calculate the ripplon field contribution to the self-energy of an electron exterior to a liquid for
planar and spherical geometries. We compare the full dielectric calculation of the electron-liquid
interaction with the simpler alternative method consisting of integrating the electron-atom static-
induced-dipolar potential through the whole liquid volume. We obtain good agreement between
both methods for a nonpolar liquid such as *He but differences up to 40% for a polar liquid such as
water. We study the conditions under which the ripplon contribution to the self-energy is a pertur-
bation. For an electron moving parallel to a planar liquid surface, we calculate the ripplon contri-
bution to its stopping power. For this dynamical case, we conclude that the alternative method is a
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good approximation even for polar liquids.

I. INTRODUCTION

Long-range forces between charged particles and ma-
terial surfaces are usually attractive with dissipative com-
ponents and may result in the capture by the surface of
the passing charge moving near it. The existence of elec-
trons in surface states held near a liquid-helium surface
has been verified experimentally,"? and the two-
dimensional electron lattice formed at low-temperature
and high areal electron density has been extensively stud-
ied.*~7 Studies of free negatively charged water clusters
of the form (H,0),” have been reported,® ! and the
possibility of electron surface states on spherical water
drops has been recently studied by Ballester and An-
toniewicz.!! One may note also that aerosol transport
and accretion may strongly depend on the charge state of
the drops involved.

Because of the very strong repulsive short-range poten-
tial at the surface due to the exclusion principle, the
surface-state wave function is usually considered not to
penetrate inside the liquid. Nevertheless, the self-energy
of the bound surface state is very sensitive to the interac-
tion with ripplon excitations (surface shape oscillations).
Variation of the electron mobility coming from electron-
ripplon interaction and typical resonance effects from
phonon-ripplon coupling has been studied.>*!? Ripplon
excitations must also be included in order to obtain the
elastic reflection coefficients for *He atoms hitting a
liquid-helium surface.!3

The method usually employed in the literature to study
the particle-ripplon interaction is adequate for nonpolar
liquids like helium and consists in the integration of the
electron-helium atom potential through the helium
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volume to obtain the image potential, i.e.,

nae? f dt’
, (1)

V(F)=—
(T) 2 If‘f',4

where n and a are the atomic density and polarizability,
respectively, and e is the electronic charge. V(T) is a
good approximation to the image potential because the
induced electric dipole moment is small and screening
effects are not very important. For polar liquids, howev-
er, a new coupling term must be invoked because of their
atomic (or molecular) permanent dipole moment, inferred
from the large value of their static dielectric constant. In
this paper we perform a calculation of the image poten-
tial outside the dielectric liquid including the full charge
liquid interaction within a dielectric response model. We
follow the method used by Rahman and Maradudin!* in
their calculation of the effect of surface roughness on the
image potential and extend the work of Eguiluz et al., for
planar surfaces® and the work of Gras-Marti and Ritchie
for spherical surfaces'” to polar liquids such as water.

There is an old discussion about the validity of using
first-order perturbation theory for the electronic surface-
state ripplon interaction. This question was first raised
by Cole'® and later clarified by Shikin and Monarkha,?
who realized that the use of the adequate boundary con-
ditions at the interface guarantees the validity of the per-
turbation approximation for a planar liquid helium sur-
face. We study again the validity of the perturbation ap-
proximation for polar liquids and for different
geometries.

This paper is organized as follows. In Sec. II we obtain
the interaction Hamiltonian for a point charge in front of
a planar rippling surface. From that Hamiltonian we get
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the contribution to the self-energy of the point charge
due to its interaction with the ripplon field. For helium
and water, we compare the results obtained using this
Hamiltonian with the ones obtained using Eq. (1). The
spherical rippling surface case is treated in Sec. III. For
a fixed reference axis, we calculate the contribution to the
self-energy that comes from the charge-ripplon interac-
tion for an external electron in the z axis. The expres-
sions of the coupling coefficients for an electron in an ar-
bitrary position (which are needed for dynamical calcula-
tions) are given in the Appendix. Using the dipole-
induced potential and dielectric constant methods, we
calculate in Sec. IV the stopping power for a swift elec-
tron moving external and parallel to a planar liquid sur-
face of helium or water. Finally, some comments and
conclusions are drawn in Sec. V.

II. STATIC CHARGE RIPPLON INTERACTION:
PLANAR LIQUID SURFACE

We consider a static charged particle in front of a
semi-infinite liquid bounded by a planar surface. The rip-
pling of the surface is treated as a small perturbation to
the flat surface and in all the calculations below we shall
only keep first-order terms in that perturbation parame-
ter. An incompressible liquid will be assumed in all that
follows.

A. Interaction Hamiltonian

In the absence of the rippling perturbation, the liquid
is taken to occupy the half space z <0. We define p(x,y)
as a two-dimensional vector parallel to the equilibrium
planar liquid surface and §(5) denotes the amplitude of
the surface deformation at g produced by the presence of
the rippling perturbation [see Fig. 1(a)]. We introduce
the two-dimensional Fourier transform of the surface dis-
placement, £({), according to the equation

§p)=0"1"2 3 &(qe?, 2)
q

which corresponds to an expansion of the surface dis-
placement in ripplon normal modes (ripplons are the
quanta of capillary waves at the surface of a liquid, see
below). Q is the normalization area. The polarization of
the liquid is described by a dielectric constant €, which is
assumed to be independent of position right up to the rip-
pled liquid surface.

The scalar potential ¢(F,T') created at T by the pres-
ence of a point charge at T’ outside the liquid is obtained
from the Poisson equation and the appropriate boundary
conditions at the deformed surface, i.e., the continuity of
the scalar potential and the proper jump discontinuity of
its normal derivative across this surface. From the
knowledge of ¢(T,T’') we obtain the force that the polar-
ized liquid exerts on an external electron at T and after
identifying the charge at T’ and the electron at T, we cal-
culate up to O (&) the work that must be done to bring
the electron from infinity to the point F=2zZ+p above the
liquid surface. That gives the image potential energy, i.e.,

(@) e
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z
{(p)
NN/ ™\
> o ~ %
dielectric liquid Px,y)
e
(b) z
(&9
vacuum

dielectric
liquid

FIG. 1. Geometrical scheme used to describe the charge-
ripplon interaction: (a) planar rippling surface; (b) spherical rip-
pling surface. The plane xy, where also the azimuthal angle ¢
in (b) lies, is perpendicular to the z axis. See text for definitions
of the symbols.

the effective potential energy which enters the Hamiltoni-
an that describes the system'* 1718

Uip=—2 €11 1+————!—f d’q TPE(q)g

4 etlz 2e+1)J ()¢
X[2(e+ 1)K (qz)
+(e—1)gzK(g2)] | , 3)

where K, and K, are modified Bessel functions of the
second kind.!® The first term in Eq. (3),
gi e—1

4z e+1°

Uy(t)=— (4)
gives the interaction energy (the classical image potential)
between an external charge and a flat dielectric surface.
This term contains a residual contribution of the ripplon
interaction® which is made explicit if a Taylor series ex-
pansion around §=z —{ (the actual charge surface dis-
tance) is performed and the first-order term on § is re-
tained. This is equivalent to using the appropriate
boundary conditions of Shikin and Monarkha.? This
{-dependent term together with the remaining two terms
in Eq. (3) give the ripplon contribution to the image po-
tential,
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When the ripplon field is quantized according to the
usual canonical quantization procedure, the following re-
lation for the Fourier coefficients is obtained:!®
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#ig Q) +
— (b_5+by), (6)

SD= 2,

where d is the mass density of the liquid and bg and bq
are ripplon creation and annihilation operators. The rip-
plon frequency w, for a planar liquid surface appearing in
Eq. (6) is given by the dispersion relation®

g 3
b

w;———gq-l*gq (7)

where g and o are, respectively, the gravity acceleration
and the liquid surface tension.

Equations (5)—(7) lead us to the following result for the
Hamiltonian describing the ripplon charge interaction:

H'=H,+H,+H, ®)
with
= a il ;] —
H;=3 a;(@2)b] ;+by), i=1,2,3, 9)
q

The coupling coefficients are given by

2 [ e— s Ki(g2)
al(q’Z):——eZ z-f-i Zdh(qlwq e’ lzq ’
L (10a)
D (10b)
ozs((_l,z)=—e4i :;i Zd?)(,]wq e"‘”?z—l2 , (10c)

where we express by z the mean value of &.

For a nonpolar liquid the static dielectric constant is
not very different from 1 (e=1.057 for liquid helium) and
a usual approximation is to neglect the second coupling
coefficient, i.e., the term in K. This is justified because
of the smallness of € —1, but we cannot neglect the third
coupling coefficient since it becomes the dominant term
for large distances from the planar surface. For polar
liquids, € is much bigger than 1 (that is the case of water
with €=78.1) and one cannot neglect any of the coupling
coefficients.

The total Hamiltonian for the point-charge plus rip-
plon field is then given by

H=H,+H', an

[

where H, is the Hamiltonian for free ripplons (15) and
(16), which are excitations of boson character and there-
fore

Hy=3 #w,(blb_+1). (12)
q

B. Self-energy

The point-charge self-energy in the presence of the rip-
plon field can be easily calculated from the Hamiltonian
given in Eq. (11). To find the system energy shift due to
the electron ripplon interaction one makes use of a bilin-
ear transformation that reduces the Hamiltonian given by
Eq. (11) to the standard number operator form'>?! and
the desired self-energy is the zero-point energy of the re-
duced Hamiltonian,

AE(z)=—3la;+a,+as/|? 1 ,
1 fiw,

(13)

where the terms appearing in the summation are given by

|a1|2 a 13
AE|(z)=— =—4G+* K1),
== o [, g i
q
(14a)
|052|2 a £’
AE,(z)=— =—Gv* | dt Ki(t), (14b
2(2) % o, . Gz Ko, (140)
AEy(2)=—T3 sl 2 [ “ar—L (14
= T fiw, AN 1+xgt2 ©)
Re(a,a5)
AE4(z)z—2§ T,
q
a t4
=—4Gv’ | dt Ky (K (1), (14d)
v fO 1+7 270 !
Re(a,a3) > [a t?
= t >
AEs(z) 2% fw, 80 J, di———5 K\ (1)
(14e)
Re(a2a3) a t3
AE (z)=—2 =4G+v? | "drt K1),
6\% ‘E’ #w, f +xt? 0
(149
where
et (e—1)
- . y= , a=zq, , (15)
(256mdgz®) (e+1) ™
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and where
__o
K dgz?

The upper limit of the integrals, zq,, has the following
physical meaning: The wavelength of the excited (virtu-
al) ripplons cannot be smaller than a characteristic length
for which the continuous description we are using for the
liquid is not valid. The self-energy is not very sensitive to
this upper limit when the smaller characteristic length we
take is of the order of a few Bohr radii, corresponding to
the mean separation between atoms or molecules in the
liquid.22 However, there is another wavelength cutoff cri-
terion related to the ripplon energy which is competing
with the one already mentioned. If we assume that in the
static case the system is in thermal equilibrium, most of
the thermally excited ripplons have energies of the order
of ky T, where kj is the Boltzmann constant and T is the
temperature, i.e., they have a long wavelengths. We
choose the lowest of both cutoffs in each case.

In our calculations we use the following parameters:
For liquid water at 0°C, 0 =72.8 dyn/cm, d =1 g/cm3,
€=78.1, and ¢, =2.1X 108 cm ™!, and, for liquid helium
at 1 K, 0=0.35 dyn/cm, d =0.14 g/cm3, €=1.057, and
q.,=1.9%X10"cm ™.

In Fig. 2 we show numerical results for the self-energy
as a function of the electron-surface mean distance z. We
display also for comparison the classical image potential
of the electron in front of a flat surface. In the helium
case [Fig. 2(a)] the electron-ripplon contribution is always
smaller than the image potential (less than 109%). There-
fore, the ripplon interaction is a perturbation of a well-
defined electronic state (in the case of a surface state we
should add the kinetic energy to the potential energy).
This is in agreement with the findings of Shikin and
Monarkha.? However, in the case of water the perturb-
ing condition is not fulfilled at short distances from the
surface when, as it is the case in our calculation, the elec-
tron is represented by a static point charge. A full calcu-
lation of the quantum electronic wave function should be
done to decide about the validity of the perturbation ap-
proximation in the region close to the surface.

We also compare the self-energies obtained from Eq.
(13) and the one derived from Eq. (1) (removing the three
K ,-dependent terms). We consider that the relation be-
tween the atomic polarizability and the dielectric con-
stant is given by

1 et
27 e+1 "’

(16)

na=

which is valid for planar geometries. For helium we ob-
tain differences smaller than 1% between both methods,
but in the case of water, the difference increases from
11% at 100 a.u. to 46% at 6 a.u. from the surface. As it
is expected, the second method works worse for polar
liquids because Eq. (1) does not include the full polariza-
tion of the dielectric and it is not taking into account the
screening effects between the atoms or molecules in the
liquid.
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FIG. 2. Static electron self-energy as a function of the
electron—planar-surface distance. Curve I is the classical image
potential, curve II is the full dielectric calculation of the ripplon
contribution, and curve III is the approximate calculation of the
ripplon contribution (see text); (a) for helium, g. =0.10 a.u., (b)
for water, g.=1.11 a.u. The values of the parameters used for
each liquid are d=22.75 au., 0=2.244X10"7 a.u., and
€=1.057 for helium and d =162.504 a.u., 0 =4.673X107% a.u.,
and €=178.1 for water; g =1.083X 10" a.u.

III. STATIC CHARGE RIPPLON INTERACTION:
SPHERICAL LIQUID SURFACE

We repeat the procedure followed in the planar case
and we obtain the coupling coefficients for ripplon charge
interaction for an electron in the z axis. In the Appendix
are given the coefficients corresponding to the case in
which the electron lies in an arbitrary position.

A. Interaction Hamiltonian

We consider a spherical drop of radius R centered at
the origin of coordinates and we express by §(0,¢) the
surface normal displacement from its nonperturbed posi-
tion at R [see Fig. 1(b)]. Throughout this section spheri-
cal coordinates (7,0,¢) will be used. We reformulate the
steps followed in Sec. II to obtain the adequate expres-
sions for the spherical liquid drop and obtain the expres-
sion of the image potential energy U (z) felt by the charge
e lying in the z axis (see Appendix):



14 BARBERAN, GARCIA-MOLINA, AND GRAS-MARTI 40
e? e— +1
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2g+1
9 z+R
2 +1 R | I'8
q 2(717
_|_ .
21+1§ Z+R (I'+qt2)el +1+1) CotFal;000 |, 17
[
where where
B=—(2eql'+21"*+3I'+eq +1) . (18) wi=1(1—1)(1+2)o /(dR?) 1)

z is the mean distance from the charge to the spherical
surface, u,,, are the expansion coefficients of the surface
displacement in spherical harmonics:

9¢) zulelm(9¢ (19)

and C are Clebsh-Gordan coefficients.?

The first term on the right-hand side of Eq. (17) comes
from the first-order term of the Taylor expansion of the
classical image potential around £=r —(R +¢). The
coefficients u;,, have been previously calculated in Ref. 15
in terms of the rlpplon creation and annihilation opera-
tors and are given by?*

is the ripplon oscillation frequency.’® The angular
momentum / has to be greater than one; the lowest two
modes are excluded by the requirement of mass conserva-
tion (/ =0), i.e., radial oscillations are forbidden for non-
compressible fluids, and by fixing the center of mass of
the drop at the origin of the coordinate system (I =1),
with which a translation motion of the drop as a whole is
not allowed. The effect of a small but finite compressibili-
ty of the liquid on the dispersion relation for ripplons has
been studied by Ogale et al.?

From Egs. (17) and (20) we obtain the interaction
Hamiltonian

2
H'=3 3 a,(1,2)8,, [(—1)"b,_,, +b,,1, 22)

ﬁl 172
Ui = | S | L= 1" +by 1, (20) =
Wi where the coupling coefficients are
J

2 2g +1
= 1(21+1) e—1 E qg(g—+1) R (232)
" Var | 2R%dw, (z+RP?“eq+q+1 |z+R ’ a

I'+q "RO2(7

e? I 1" e—1 g+1)2g+1) I'BC3(1'ql ;000)
o= —= '+ .
> Var |2R%w, | (z+R) 22 €q +q+1 ,2 z+R T+qtane +1+1) [ Tatleven. (23b)

B. Self-energy

In terms of the coupling coefficients, Eqs. (23), the
self-energy of a point charge at a distance z from the
spherical surface is

1
= -— 2——‘—-—
AE(z) I§m|a1+a2| oy (24)

In Fig. 3 we show numerical results for the self-energy
as a function of ¥ =(z +R)/R for helium [Fig. 3(a)] and
water for the static [Fig. 3(b)] and optical [Fig. 3(c)]
dielectric constants. We take R =100 a.u. in all the cal-
culations. To check the applicability of the perturbation
approximation we have compared in each case the rip-
plon contribution to the self-energy with the classical
self-energy of a charge in front of a flat sphere i.e.,

20+1
1 1—e l

Z+R 2 XTI+l

Uy(z)= (25)

z+R

[

From Fig. 3 we infer that the ripplon interaction is a per-
turbation of less than 10% of the self-energy for distances
z larger than 25 a.u. (¥ =1.25). It must be realized nev-
ertheless, that the ratio between the ripplon contribution
and the self-energy of an electron in front of a spherical
flat surface depends on the sphere radius, as can be easily
shown. Indeed from Egs. (23)-(25) one can see that the
quantity

AE(z)(z +R)* (26)

is independent of the radius. This allows us to obtain the
ripplon electron self-energy for an arbitrary radius:
R, |*

[AE (z) _R—l 27

]R1 :[AE(Z)]R2

If we expression the self energy of an electron in front of
a flat sphere by AE,(z) the quantity that is independent
of the radius is now
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AEy(z)(z +R) . (28)

Thus, for different radii we obtain the relation
R,
[AEO(Z)]Rl :[AEO(Z)]RZ— ) (29)
R,

and therefore the ratio between the ripplon and flat sur-
face contributions depends on the radius.

For comparison, we have also calculated the self-
energy using the r ~* potential integrated through the
volume of the sphere and have obtained for the ripplon
contribution

(a)

-AE(a.u)

1 2 3 4 5
u=(R.Z)IR

(b)

-AE(a.u)
3

u=(R+Z)/R

10" 1

(c)

-AE(a.u)

10"

u=(R+Z)/IR

FIG. 3. Self-energy of an electron near a liquid drop as a
function of ¥ =(z +R)/R. Curve 1 is the classical image poten-
tial, curve II is the full dielectric calculation of the ripplon con-
tribution to the self-energy, and curve III is the same as curve 11
but obtained from the approximate calculation; (a) for helium,
g.=0.26R, (b) for water g.=1.11R, €=78.1, and (c) for water
q.=1.11R, €e=1.76. All other parameters are the same as in
Fig. 2. R =100 a.u. in all the calculations.
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U, (z2)=————= u;oV (21 +1)
rip (Z+R)2; 10
2g+1
X 22q—2u__
3, (1+u?)%
+2
_ lng__ %77 .
2% e |0 00

where na is the polarizability per unit volume, related to
the dielectric constant by

€e=(8mna+3)/(3—4mna), (31)

and where

(g t+1)g(g—1)---(qg—1+2)
(g+I+1)Ng+I—1)---(g—1+3)"

l+q even, IZ22. (32)

I=
2

We see from Fig..3 that the alternative method yields
results that worsen when the distance from the surface
increases and that this behavior is very similar for polar
and nonpolar liquids. This seems to indicate that there
are screening effects associated with the spherical
geometry which are not included in the approximate cal-
culation and that these screening effects seem to be far
more important than the effect of the permanent dipole
moment of polar liquids.

The summation over / has a cutoff given by

I.=q.R , (33)

where g, is the cutoff used in the planar surface case for
the same material at the same temperature.

IV. DYNAMICAL CHARGE RIPPLON INTERACTION:
PLANAR LIQUID SURFACE

In order to calculate the stopping power corresponding
to an electron moving with velocity ¥ parallel and exter-
nal to a planar surface we substitute the electronic two-
dimensional position vector g by ¥t in the interaction
Hamiltonian H’, Eq. (8). From this time-dependent
Hamiltonian the ¢ mode excitation probability at time ¢ is
given by

1 t , dwet o, 2
Pq(t)—;i;'f_wdte 7 (qH'(t")]0)| , (34)

and the stopping power by

dw _ Q fiw,
“dx (2m)? f d’q v Ya’ (33)
where
dPﬁ(t)
YaT g (36)

is the rate of the transition from the initial state |0) to
the final state |q).
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We obtain the following analytic expression for the
stopping power:

¥ =3s,, (37

where the six terms are given by

’K3(1)
= R R Vil Dl
S, =4Dv* [ di (382)
t3k3(2)
=pv* [“dr—=2""
S,=Dv* [ v (38b)
S3=§8—-D7v2[2—('r]qcz +2)(1—ng,.2)'"?], (380)
n
a  t*K (K (t)
=4Dv* [far——— 38
Sy=4Dv* [ “dr e (38d)
« 2K (1)
Ss=—8D+v [“dt——e, (38€)
> Y fo Vi—ngt
o UKot
Se¢=—4Dv’ | dt——v, 38
6 v fo Vit (38f)
where
1 (e—1)

(1287dv2%)" © (e+1) @7 e
and where =0 /(dv?z) and ¢, is the momentum cutoff
(we use atomic units in the above expression).

In Fig. 4(a) we display dW /dx as a function of the dis-
tance to the helium surface for an electron moving with
velocity v =85 a.u. (corresponding to an energy of about
100 keV). The alternative calculation using the » —* po-
tential is not depicted because in a logarithmic scale it
would be indistinguishable, the differences go from 0.6%
at z =6 a.u. to 0.01% at z =50 a.u. The same calculation
is shown in Fig. 4(b) for water and in this case the
differences with the alternative method are 4.5% at z =6
a.u. and 0.02% at z =80 a.u.

For comparison we show in Fig. 4(b) numerical results
for the stopping power of an electron moving over a flat
water surface calculated from the expression (in atomic
units),

dw _ w?

dx v2 0

2w,z

v

where w,;=0.546 a.u. is the surface plasmon frequency
for water. From this figure we conclude that the energy
lost by ripplon excitations of a classical swift electron
over a water surface is negligible. However, energy loss
to ripplon excitations become important for lower elec-
tron energies, especially around and below the threshold
for plasmon excitation.
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FIG. 4. Stopping power for an electron moving with velocity
v =85 a.u. parallel to a plane surface. Curve I is the stopping
power for a flat surface, curve II is the contribution of the rip-
plon interaction to the loss of energy; (a) for helium g.=0.92
a.u., €,~ €, and (b) for water €, =1.76, g.=1.11 a.u.

V. FINAL COMMENTS

Our calculations have shown that the ripplon contribu-
tion to the self-energy of an external electron above a po-
lar liquid is about ten times larger than the one corre-
sponding to an electron above a nonpolar liquid. This re-
sult is independent of the geometry considered in this pa-
per [see Figs. 2(a), 2(b), 3(a), and 3(b)].

We also conclude that for polar liquids, in spite of the
time consuming calculations, (especially for small values
of u in the spherical case), the complete dielectric compu-
tation must be performed for the static case.

We have also confirmed the Shikin and Monarkha? re-
sults on nonpolar liquids, i.e., the ripplon contribution to
the self-energy is a perturbation. However, for polar
liquids and short distances the applicability of the first or-
der perturbation method is uncertain (see Figs. 2 and 3).

For the spherical case of a water drop containing a
positive ion at its center, Ballester and Antoniewicz!! cal-
culated the binding energy and the surface-state wave
functions for an electron external to the liquid drop. This
electron is attracted both by the classical image potential
and by the Coulomb screened interaction with the inter-
nal ion. For a water drop of radius R =5 A they obtain a
binding energy of 1.8 eV for the lowest electronic state lo-
cated at 2—3 A from the surface. For this distance from
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the liquid surface u =1.4,2% and from Eq. (27) and Fig.
3(c) we obtain that the ripplon contribution to the self-
energy is about 0.7 eV, i.e., about half the binding energy
calculated in Ref. 11. This result tells us that the electron
in a surface state of a water drop is bound by a stronger
force, an important point to be considered in problems
like that of the charge-state dependent interaction be-
tween liquid drops which induces drop accretion and in-
creases rate of coagulation of aerosols.?’

Finally, it has been shown that the ripplon contribu-
tion to the stopping power for a swift electron running
parallel over a planar surface is negligible for high elec-
tron energies (v >>1 a.u.) and the same result should be
expected for the spherical case.
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APPENDIX: COUPLING COEFFICIENTS
OF THE ELECTRON
SPHERICAL SURFACE
RIPPLON INTERACTION

We first calculate the potential ¢(F,F’) created at T by
the presence of a spherical dielectric drop of radius R
centered at the origin of the coordinate system and an
external charge e located in vacuum at ¥'. The corre-
sponding Poisson’s equations are

V2$(T,T')=—4med(T—F), r>R +£(6,9)
V2$(F,T')=0, r<R+E(6,9),
where £(6,¢)

(A1)

is defined in Sec. III. Applying the stan-
J

1(1+1) R 1
rip 22 l+l+1(1_€) 20+3 zulelm
(2¢ +1)(g+1) R’*q 1—e

dard boundary conditions on ¢

¢(F,F')|r R4 ¢(fi"’)l _
S, (A2)
€n-Vo(r,T )Ir —R4e
where + and — indicate inside and outside the surface
respectively, we obtain

1

,
HET)=e 3 —7Pi(cosO)
1T

1 I(1—¢)
rr’)l'H el +1+1

+e2( R*1p(cosO)
1

4;
+§—r—l—ﬁP,(cos6), rr'ZR +¢ (A3)
where 7 _ (7 ) denotes the lesser (greater) of 7' and r, i is
the unit vector perpendicular to the surface and is given

by

f=o 1 |, 13 1 3¢
"8 Tl [P T 790" 7eing op Aad
Pi(cos®)=[4m/2l + DI}, - _, Y (Q)Y),,(Q) are
Legendre polynomniials and Y}, (Q) are the spherical har-
monics. The argument in the Legendre polynomials is
c0s© =cosfOcosf’ +sinfsind’cos(p—¢’'). The angular co-
ordinates () and ()’ refer, respectively, to the angular po-
sitions where the potential is calculated and where the
external charge is located. A; is a function of ¥’ and the
displacement { [we shall only retain terms up to O (£) in
what follows].

The first term in the right-hand side of Eq. (A3) is the
bare Coulomb potential, the second term is the potential
produced by the nonrippled surface, and the third one is
that generated by the rippling surface.

If we remove the bare Coulomb term from ¢ and calcu-
late the force on a test charge e, at T along the radial
direction (F, = —e,d¢(F,T’)/0F) we obtain the image po-
tential energy U (F) felt by the charge e after identifying
the test charge e, and the charge e at T'(F=F',e =e¢,)
and up to the first-order ripplon contribution we obtain

% €q +q+1

where B is given in Eq. (18), u,,, in Eq. (20) and
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where r +1'+1iseven,l +g +r +1iseven,and m'=m +m"

! q ,
d,= 3 3 3 (—D™(up_p—sp,)m

I'm'>0m=—Im"=—g¢q
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where r +1' iseven, / +q +riseven,and m'=m +m"’,
C=C(l+1,q,r;mm'n),
C% =C(I¥1,q,r;000)

are Clebsch-Gordan coefficients, and
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Using Eq. (20) we obtain the interaction Hamiltonian given by

H'=3(a,+a)[(—1)"b}_,, +b;, 1+
Im

Im >0
with the coupling coefficients,
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