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A spin-wave theory of two-magnon Raman scattering for a simple antiferromagnet at low

temperatures is presented. The treatment is based on the Dyson-Maleev boson representation
of the localized spin operators. At zero temperature, the theory yields results for the Raman

cross section which are in excellent agreement with those which obtain from the Green's-func-
tion equation-of-motion method developed by Elliott and Thorpe. In the present theory, we

derive an approximate cross-section formula in terms of renormalized one-magnon propa-
gators and a vertex function which satisfies a general Bethe-Salpeter equation. Taking into

consideration the lowest-order interaction processes, it is found that the experimentally
observed shift of the Raman peak to lower energies with increasing temperature can satisfac-
torily be accounted for. However, it is also found that this lowest-order theory is inadequate

for explaining the observed thermal broadening of the Raman spectra. The possibility that

the observed broadening is due to damping of the one-magnon states is examined using a
phenomenological width I' for a zone-edge magnon. It is found that the necessary width is
surprisingly large, although more accurate calculations of the damping of a zone-edge magnon

are needed to eliminate this possibility. Higher-order irreducible vertex corrections in the

two-magnon Bethe-Salpeter equation are also considered. An approximate cross-section for-
mula which includes these higher-order corrections is obtained using a variational principle.
The effect of these corrections on the Raman line shape has not yet been determined.

I. INTRODUCTION

Raman scattering of optical radiation by two-
magnon excitations has been the subject of much
recent experimental and theoretical study. Since
the first observation of this effect in the antiferro-
magnets FeF~ and MnF2, many other magnetic
systems (such as RbMnF~, ~ KMnF„~ KNi F„4
CsMnF„' NiF2, 8 Rb¹iF, ~ ') have provided further
experimental data on two-magnon Haman scatter-
ing. The first theoretical interpretation, ~

developed for zero-temperature and noninteracting
magnons, was only qualitatively in agreement with
the experimental results. This treatment was
formulated with states composed of one magnon
with wave vector k, and another nonintera. cting
magnon with wave vector -k, combined to give
a positive-parity state with k= 0, necessary for
the Haman scattering process. Summing over all
such combinations in the Brillouin zone predicted
a spectral shape very similar to the two-magnon
joint density of states. For the simple example
of RbMnF3 and other perovskite antiferromagnets,
this led to a theoretical spectrum with a sharp
discontinuity at twice the maximum zone-boundary
magnon energy. Instead of this, actual spectra
showed a very different line shape, with the peak
occurring at slightly lower energy than predicted.

This discrepancy was removed by Elliott et
al. , and by Elliott and Thorpe, who formulated
the Green's-function theory for two-magnon scat-
tering, and applied it at zero temperature. The
main improvement in this theory was the explicit

inclusion of the effects of magnon-magnon interac-
tions which arise in the scattering process from
the creation of magnons on adjacent spin sites.
The simultaneous excitation of two adjacent spina
leads to a net energy lower than if the spins were
widely separated. If the spin system and Haman
Hamiltonians are linearized in terms of magnon
operators, this binding effect is neglected. The
Green's-function decoupling scheme used by
Elliott and Thorpe explicitly included this effect
of the magnon-magnon interaction. Their predic-
tions were in excellent a.greement with experi-
ments, which showed asymmetric spectra having
zero intensity at twice the maximum magnon en-
ergy, and largest intensity at an energy roughly
one exchange constant lower.

However, up to the present, no theory has satis-
factorily explained the behavior of the two-mag-
non spectra with increasing temperature. The ex-
perimental results are quite interesting. The
common features in all cases are a decrease in
energy of the position of the Haman peak with in-
creasing temperature, and a broadening and dis-
appearance of sharp features in the line shape.
Even though the energy of the peak decreases, a
nonzero Raman shift remains at the ordering tem-
perature, and broad spectra persist up to several
times T&. The maximum energies in the spectra
remain near their low-temperature values over
the entire range of temperature. The qualitative
explanation for this behavior lies in the propor-
tionality of the Raman cross section to a spin
pair-pair correlation function, which is a measure
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of the short-range order persisting well above T„,
the temperature for long-range order.

The equation-of-motion method used by Elliott
and Thorpe assumed a ground state for the spins
and a decoupling scheme which were suitable only
for T = 0 '

K, and could not be readily extended to
higher temperatures. A similar type of treatment
has been given by Kawasaki, with a random-phase
approximation valid in the paramagnetic regime
with T &T&.

In as yet unpublished work, Solyom has treated
the problem for low temperatures using the diagram
technique developed by Vaks et al. for treating
spin-wave interactions in ferromagnets, and as
extended to antiferromagnets by Pikalev et al. '
Solyom's theory takes into account the renormal-
ization of the one-magnon energies with tempera-
ture in a self-consistent-field approximation, and
also includes the temperature variation of the
(renormalized} magnon occupation numbers, which
would be expected to occur in the two-magnon
Green's functions. At zero temperature his re-
sults are considerably more complicated than
those of Elliott and Thorpe, but the difference ap-
pears to us quite minor, which ought to be the
case considering the excellent agreement of the
Elliott- Thorpe theory with the zero-temperature
experimental results. As So1yom points out, part
of this difference is certainly due to the fact that
his theory is based on the sp~~-wave ground state,
whereas the simpler looking results given by
Elliott and Thorpe are based on the Neel state.
As has been discussed by these authors, this dif-
ference has little consequence in the two-magnon
scattering problem.

Although Solyom has computed no detailed spec-
tra using his formulas, he has discussed the ex-
pected temperature dependence qualitatively. He
concludes first that, due to the fact that the one-
magnon renormalized energies decrease with
temperature, the peak of the Raman spectrum
must accordingly shift to lower energies, in
agreement with the experimental results. Sec-
ond, he concludes that the effect of the magnon
occupation numbers [2N(Q}+ l j = coth(PGt l2), and
of the Stokes factor (1 —e ~"") ' in the cross-sec-
tion formula, should have the effect of making the
contribution of low-energy magnons more and more
important. This should lead to a broadening of the
Raman peak with temperature, as observed ex-
perimentally. We believe that the first conclusion
above is certainly valid. On the other hand, we
believe that Solyom's second conclusion is incor
rect, and that the origin of the broadening of the
Raman peak with increasing temperature is of a
more complex nature than he suggests.

The present work, like Solyom's, is directed
at an attempt to understand the low-temperature

features of two-magnon Raman spectra in a simple
antiferromagnet. We also employ a graphical
technique based, instead, on the Dyson-Maleev
transformation, in the approximate form which
has been discussed by Herbert. ' '~ We find,
taking into account the renormalized one-magnon
energies and the lowest-order interaction process-
es between the degenerate "up" and "down" mag-
nons, a cross-section formula which appears to
be quite similar to that given by Solyom. How-
ever, calculations of the cross section from this
formula indicate that, while the predicted peak of
the Raman spectrum is in rather good agreement
with the experimental results, the width of the
resonance definitely is not. We find, in fact, that
without damping, the width narrows slightly with
increasing temperature, in contradiction with the
conclusions of So1yom. W'e conclude, therefore,
that the origin of the observed broadening must
be found in higher -order interaction processes
(magnon lifetime effects, higher-order vertex
corrections to the two-magnon Green's function,
etc. ) or perhaps in effects which cannot so easily
be treated by the sort of spin-wave approach em-
ployed in this paper.

The effects of higher-order scattering processes
are considered in the last part of this paper.
Spectra are computed using a phenomenological
width I' for a zone-edge magnon, and I' is chosen
to give a broadening which is in rough agreement
with the experimental results. It is found that the
necessary I' is surprisingly large —large compared
to what we have been able to estimate through a,

rough evaluation of second-order self-energy
graphs. However, to our knowledge, no really
accurate calculations of the damping of a magnon
at or near the zone edge in an antiferromagnet
have yet been carried out. Harris et al. have
recently analyzed the damping of long-soavelength
antiferromagnetic magnons in considerable detail,
and here, as might be expected, the magnons are
found to be long-lived well-defined excitations at
sufficiently low temperatures. Unfortunately,
the results of these authors are inappropriate for
analyzing the problem considered here, because
the damping of a magnon increases rapidly for
shorter -wavelength magnons. Another possible
source of broadening might arise from higher-
order irreducible vertex corrections in the two-
magnon Bethe-Salpeter equation. In this paper,
we consider the second-order corrections formally.
Roughly, these processes may be thought of as
giving rise to a polarization interaction in analogy
with the interacting Fermi gas. Although the
cross section can no longer be evaluated exactly
when these higher-order processes are included,
we obtain an approximate formula using a varia-
tional principle. Numerical analysis of the re-



994 DA VIES, CHINN, AND ZEIGER

suiting cross-section formula is planned for a
future publication.

Briefly, the organization of the remainder of
the paper is as follows. In Sec. II we discuss the
Hamiltonian and Raman cross-section formula
using the Dyson-Maleev scheme, and state the
various approximations we are making in the anal-
ysis. In Sec. III we present the general graphical
interpretation of the resulting cross-section for-
mula, in terms of renormalized magnon propaga-
tors, and a vertex function. In Sec. IV we evaluate
the cross section using Hartree-Fock renormalized
propagators and the lowest-order irreducible ver-
tex interaction between the propagators. Spectra
are computed as a function of temperature and com-
pared with experimental results. As stated pre-
viously, the peak position of the spectra is found
to be in rather good agreement with the experi-
mental results, but the calculated linewidth is
totally unsatisfactory. Section V is devoted to
consideration of higher-order corrections. Life-
time effects are examined using a phenomenological
width for a zone-edge magnon. In addition, an
approximate cross -section formula which includes
higher -order irreducible vertex corrections is
obtained using a variational pr inciple. Finally,
Appendix A contains explicit expressions of various
interaction matrix elements, and Appendix B gives
a discussion of the variational principle for ob-
taining the Raman cross section.

g- )gal)/// / g- (gg)//2 ) ' '
) ),9~4

a) = „,~~ e- ~cg,

fk
by 6

= gy2~ e &+~dj
& (s)

and X&„=X&+ 6 with 6 a nearest-neighbor vector.
In the usual manner, the part of the Hamiltonian
involving products of two spin-wave operators is
diagonalized by the Bogoliubov transformation

CtL =Qj Qg +V/ pg )

dg =Qg pf +vg Qg ]

(6)

(&)

where the n's and P's satisfy the usual Bose com-
mutation rules and uf —vf = 1. The unperturbed
part of the Hamiltonian is then found to be diago-
nalized for

1 + [1 —y(k)z]l/z /z

2[1 —y(k)']'"

[1 (k)z]l/z 1/2

2[1-y(k) ]'/z

with

(8)

S&, = S —a& a&, &+6, a = —8 + bz+& b&+& ~

We introduce Fourier transformations according
to

II, HAMII. TONIAN AND RAMAN GROSS SECTION y(k) = y(- k) =-Z e"' (10)
We consider an antiferromagnet consisting of

two interpenetrating simple-cubic sublattices of
a and b sites. We assume an isotropic Heisenberg
exchange interaction between nearest neighbors
only, and, with an infinitesimal anisotropy field to
align the spins in the z direction, we take

Z= JZ 8/, ' 8/, )) i, , (1)
$6

where the sum over j is over the N sites of sub-
lattice a, and the sum of 5 is over the z = 6 b sub-
lattice nearest neighbors of the spin at site j,a.
We apply the nonunitary Dyson-Maleev transforma-
tion to X in the form given by Herbert

X = rZT-',

with the spin operators S going to S = TST '. Then

y(k ) = y(cosk„a + cosk„a + cosk, a)

for the simple-cubic case. Other useful relations
are

2
u„+vgi= SZz/Ag, (12)

up v) = —z[y(k)] SZz/At,

where

Q = SZz [1 —y(k ) ] /

The higher-order terms in the Hamiltonian can
now be expanded in terms of the n's, P's, u's, and
v's. We treat these higher-order terms using the
approximations discussed by Herbert, and obtain

K= JZ S;, S/, )) )),
j5

(2)
K =Eo+Q+ V,

with

(ls)

and using the Holstein-Primakoff boson represen-
tation of the original S operators, we obtain for
the transformed S operators

aS;.= (2S)'" ) -'~') /, S/'. ...= iK)' "///'. ,

(16)Ei) = -NJzS(S+ 1),

~=g„- Ag(nant + P„P~ + 1),
Jz

SO+5, )t'+5" z)r. II' n)tnzns' nir
CC' SF
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In Eq. (18), the I's are complicated sums of
products of the y's, u's, and v's, and are given
explicitly in Appendix A. Also in Appendix A we

give the matrix elements which obtain using an
alternative scheme" in which one applies the Dyson
correspondence on sublattice a and the conjugate
Dyson correspondence on sublattice b. (See Refs.
R and 31 for further discussion of results using
this alternative scheme. } Our form of V as given

by Eq. (18) is slightly different from Herbert' s
form. This is due to a difference in the way we
have introduced Fourier transforms [Eqs. (4) and

(5)]. Our choice of Fourier transforms makes the

analysis of the cross section quite analogous to
electron-hole theory in the fermion problem.

Finally we list the approximations made to ob-
tain V. First, we have ignored completely a three-
body interaction term. + From the two-body-in-
teraction terms we have ignored terms whose
expectation value would vanish between any eigen-
state of Xo. We have also ignored small Oguchi

type of corrections to Ea and 5eo which arise in
normal ordering the operators of V. Equation (18)
also neglects umklapp processes, i.e. , processes
proportional to 5a, s a. ,s.,r with iF e0. In the sub-
sequent analysis we shall also neglect the kinemat-
ic-interaction effect, ' ' and perform traces in
the usual unrestricted fashion. We replace the
symbol X by X in the discussion which follows,
treating it as one would an ordinary Hermitian
Hamiltonian.

We take the two-magnon cross section to by
proportional to

g(I~)= E p(Eg~&m~M)n&~'

x 5(E„E+Sf&a), -(19)

with ~ = ~& —~& the frequency shift of the scattered
light and M a spin- and field-dependent operator
discussed below. The kets In) and I m ) are eigen-
states of X, with

X(n&=E„~n& ~d p(X)~n&=p(E„)(n&

p(X) = e ' /Tr (e '"] .
g (II&u) can then be computed using the standard
temperature Green's -function method~:

g (P', 0) = Trg(X)T[M(S')M'(0)]),

and with M(S'}=es Me, and 4= 2vil/p .We

also have the relation

9 (S', 0) = -E" ' 9 (&,),
with 9 (4) the Fourier coefficient in the expansion.

Following Elliott and Thorpe, we take for the

transition operator M of the two-magnon scatter-
ing process, the expression

M =Q (Bga( ' ay+BB [sa(' ay —5 (5' a()(5 ' ay)]]'
j6

(28)

(24)

The first two terms in Eq. (26) make no contribu-
tion to the I"3 mode because

—a(' ag —~(5' a()(5' ay) =0 .
d

It is then easy to see that the first nonvanishing

contribution from the S' operators must involve

products of at least six boson operators. which

we neglect in the lowest-order spin-wave treat-
ment. To the level at which we are working here,
the entire contribution comes from the transverse
(S') spin components, and we obtain

M ~ SBsP.Q (k ) (c)df +ca da ), (27)

with

e(k) = e(-k) =~
b

x (Sg, '
Sg, s, a) (25)

where E& and E& are the initial and final polariza-
tion vectors of the scattered light, and the sum is
again over nearest-neighbor spin sites. The B&

term gives rise to the I'& scattering mode, the B,
term gives rise to the 1"3 mode. For nearest-
neighbor interactions here and in the Hamiltonian

X, the B& term makes no contribution, because it
is then proportional to the Hamiltonian, and the

corresponding contribution to M(S') is independent
of P' (implying immediately that it makes no con-
tribution to the cross section). Henceforth we drop
the B, term.

In the present treatment we shall limit ourselves
to considering terms in the product M(S')M (0) in-
volving no more than four boson operators. In this
approximation, the S' operators in M can be
dropped. To see this, consider

Sj gSf I,s= -S +S(a&a~+ bj Q bg 5) a& a& 5&+6 b;-+, 26)

with

Img (II~ +f0')
w(1 —e'"")

g(a~+so') =9 (~, - a~+so'),

9(& ) =j ~ "«(8', 0)dfI'

(2o)

(21)

(22)

Then for 9(p', 0) we find

g (p', 0) s'B,'Z as(k)y(k')g, s (p', 0),8
with

9 Sa (p', 0) = Tr (p(X)T [(c~i (p') da (fI')

(29)
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+cp(p')di (P'))(cfd'i +c„-d,")]}. (30) —f(fjf(fj —«(fjf(fj —f(fjf(fj] (39)

We next have to insert the Bogoliubov transfor-
mation [Eqs. (6) and (7)] into Eq. (30). Again we
neglect terms which would give no contribution if
we replaced K by +. We then find the result

8 ip (6', 0) = (u j + v „-')(u~i + vp') 8' (p', 0)

+4u„-v",ui vi [8(I' (P', 0) +8 iui~ (P', 0)], (31)
with

8i~i' (P' 0) = Tr i P(&) T [a l (p') Pi (P') Pi ai

+a&(P') Pp(P') P; a/]}, (32)

8 g (p 0) = Tr (p(X) T [a~ (p') ai (p ) ai ai

'P (P') P- (P') PiPi]} (33)

8 jt (p', 0) = Tr (P(X) T [ae (p') ap (p') p~i P-

where

x[&;f(&,) st;(-&,)], (»)

~ h. (p', 0) = Tr (p(X)T [a-„(p') p~f (p') pf a" ]} (36)

&n (p' 0) = - ~ e'" 'ii ($r) (37)

Finally, using the cubic symmetry of the system,
Eq. (35) may be rewritten

8 ($ r) = $g(f () fj)NS Bq —Z f(k )f(k')
N gg.

x(ui+vi)(ui +vf. )[&ii (ir)+Sf+( ir)]2 2 2

where f(k ) = (cask„a —cosk, a) is the symmetriza-
tion fa,ctor for the I"~ mode, and

g(f(, fj) = [(f(fj) + (f (fj) + (f( fj)

+ pi (P') Pe(p') a~iai]} (34)

We can now argue that it is an excellent approxima-
tion to ignore the terms involving 9 ' ' and 9 ' '.
There are essentially two reasons for this. First,
the relevant magnons involved in two-magnon
scattering are those near the zone edge, and for
zone-edge magnons lu„.vi I «(ui + vi ) = l. Second,2 2

and more importantly, the 9' ' and Q
' ' Green's

functions give no contribution to the noninteracting
spectrum because the operators a~a„- and pg pp

t

commute with +, making these Green's functions
independent of P'. Likewise one can see that the
simplest class of higher-order corrections to these
Green's functions can be ignored for the same rea-
son.

With the above approximation, the cross section
may be obtained from

8 ((,) = S B 2 (t) (k ) (P (k') (u +v. ) (u'+.vt )

gives the chara, cteristic polarization dependence
of the I 3 mode.

III. GENERAL GRAPHICAL ANALYSIS

The quantity Si„" ($r) can now be analyzed by
standard graphical techniques, in terms of the
sum of all linked (or connected) "polarization"
graphs. First we define the basic unperturbed
propagator s

+)I (P(, Pj) = Tr(p(+)T [ar (P() ai(Pj)]},

DI(I (Pf) Pj) = Tr{p(XO) T [P„'-(P,)P„-(p,)]},
(40)

(41)

with 6(p, ) =e~( 06 e ~("o. We denote Di' ' by a
single solid line with one arrow, going from P((0)
to P~. We denote D by a single solid line with
two arrows, going from p, to p, . We introduce
Fourier representations according to

D;.' (P„p,)= —Z e""('j'D&. (&r),
2

Dior(P P ) Q e(r((rj-(((&D(0((] )

(42)

(43)

and find

Di."(&r)=(iii-&r) ', (44)

D;, '(&, )= (&+&,)-'. (46)

The corrected propagators are obtained from Eqs.
(40) and (41) by replacing Zo by X everywhere.
From Dyson's equation, we will obtain

Di (ir)=[~i —ir —Gin(hr)] '

Di(((il) [~i+ $r Gr)rr(hl)]

(46)

(47)

1
e ii'(ir) = p& Df. (ir + hr, )Da)(tr, )Ah (ir ((,) .

P r,

The vertex function in Eq. (46) satisfies a Bethe-
Salpeter equation of the form

Js
Aii'(t'r t'rr) ~i, i +

Np
~~ fA(, i(i(err, t'r, )

Np

xDir, (Jr +i( )Dira((rm) Airi ((r) ir~) ) (49)

where I ~ is the sum of all the irreducible inter-
action parts. Let us next write

8(t,)=8 "(&,) 8 "(-&,), (60)

where the G's are the self-energy functions,
Gi()((r) =Gi~( &r) and Df(r(t'r)=D„" (-ir) from mode
degeneracy. We represent the corrected propaga, -
tors using double solid lines in place of single
solid lines.

The general graphical representation of S i;.(fr)
is shown in Fig. 1 in terms of the corrected mag-
non propagators, and a vertex function Aii (t'„err).
We then have, explicitly
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FIG. 1. Graphical representation of the scattering
function g g z. ($,) with corrected magnon propagators.

where from Eq. (38)

g '(tr) =gg(err Z~)NS BB

& "(fr)= rg(e„Z~)NS'B,'2 2 f(k)(u"„+v.„)'NP g

XDfrr()r + err) Db()rr) Af(tr, err), (52)

where we have defined

A;(&„&r,) =Zf(k') (uf+vf) A;&(&„t, ) .k /y lg

From Eqs. (49) and (53), the new vertex function
satisfies

(53)

A;($„$r,)=f(k)(ui+vi~) &&~ ~ fbi, .frf((r, hr,}Np

xDfrrr(hr + t'r )Djrs(fr2) Ai (5» kr&) ~ (54)

Equations (20), (21), (50), (52), and (54) are the
general equations of the present theory.

IV. LONESTARDER PROCESSES

The simplest self-energy processes to take into
account arise from the first-order skeleton self-
energy graphs. In analogy with the fermion prob-

, a

ee

aI( a &ra
FIG. 2. Typical

Hartree-Fock graphs
for a renormalizing
one-magnon propaga-
tors Dyo(]&).

x —5f(k)f(k')(u-+v„. )(u-. +v„" )SI9 (&,) . (51)N re

Combining Eqs. (48) and (51), we obtain

0.2—

Oi I

0.05
I I

0.1 0.15

kT/2 JzS

T
N

0.232

0.25
I

0.2

FIG. 3. One-magnon energy renormalization factor
0|(T) as e function of normalized temperature, kT/2JgS.

lem, we shall refer to these as Hartree-Fock
graphs (called "cactus" graphs in the paper of
Herbert'~). Typical Hartree-Fock graphs are
shove in Fig. 2. As discussed by Herbert, the
solution of the Hartree-Fock equation yields re-
normalized energies 0-„given by

Q= 0;a(T),
where a(T) depends only on temperature and is
given by the implicit equation

(55)

8 ((r) ='4(er ~t}NS Bs

a(T)=1 — —Z 0-(e'"&" ' —1) ' . (56)JzS' N;
This same result (but including a small Oguchi
correction which is finite at T = 0 'K) was first ob-
tained by Bloch & ~ from a variational calculation,
and has been obtained in various ways by others. ~
A plot of a(T) for S = 1 is shown in Fig. 3 (we have
plotted only the upper physical root). In this, and
all numerical calculations to follow, we take the
case of a cubic structure with z=6, S=1, corre-
sponding to the example of KNiF&. There is no
solution of Eq. (56) beyond a maximum tempera-
ture which is within a few percent of various the-
oretical determinations' ~6 of the Neel ordering
temperature T„.

If we now compute 8 "(]r) ignoring interactions
other than the Hartree-Fock renormalimation of the
energies, we easily obtain [with Af(t'„$r }=f(k)
x(ug +vf } in this approximationj

)eje
+ p + ~ ~ ~

x —Qf(k) ( f+„&)
2&

' ~, (5f)

so that
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g (K&) = —g(e„z&)NS B2(l —e " )-'
37r

E—f(2&' ( )

5f (k )y(k )g(k ) = 0, (60)

2 f(k)y(k-k1)g(k)= Q f (k) g(k), (61)
g

where g(k) has cubic symmetry. From Eqs. (52),
(54), and (59) an exact solution for g "((I) is then
found:

9 ('&((,) = gg(z„c,)NS'B,'
L(2) ~ L)~(L(1)L(1& L (2&L(0))

)gL(0) +L(2)) 1 g2(L(1&L(1& L(2&L(0)}

(82)
with

L' )(]I)=
N 8ZZf( }'(ku 2)+) vDf„((I+]I,)Df&)((& )

1

(83)

x[2N(A;)+I] + ., (58)

In the equation above, N(02) denotes the Bose func-
tion. This result is essentially identical to the
noninteracting result obtained by Solyom, except
that the over-all amplitude factor S in our theory
is renormalized with temperature (decreased) in
his theory. This difference may be due to our
complete neglect of higher-order terms in the Ra-
man cross-section formula. The difference is
important as far as the temperature variation of
the Raman amplitude is concerned, but it plays no
role in the shape of the spectrum. The same re-
mark applies to the interacting spectra in the two
theories. We shall discuss the temperature de-
pendence of the Raman amplitude in more detail in
Sec. V.

Next we consider the lowest-order vertex correc-
tions to the interacting-magnon spectrum. In this
approximation the vertex function satisfies the
simple "ladder" approximation Bethe-Salpeter
equation. In this approximation we have (see Ap-
pendix A for the explicit expressions for various
matrix elements)

8a', ,f,2(4„((2)= 128,2,2

= f-,'y(k —k() [(uz+v;)(uf, +vj, )+ I]
—2 y(k)y(k1) [(u2 + vf )(uf( + vf))

+(up+vs) —(u;, +v;,)]}.2 2 2 2

We use the relations

or

k k

for the case where we use Hartree-Fock propaga-
tors for the D's W.e remark that the 9"(- $()
term in the cross-section expression can be ne-
glected for the Stokes ((0 &0) scattering, because
it contains no imaginary part to the level of the
Hartree-Fock approximation. Even if we were
to use propagators which contained some damping,
the contribution of the (& "(-

) I ) component to the
Stokes cross section should be extremely small,
since it involves no resonant denominators.

Both our interacting cross-section formula
[Eq. (62)] and the one obtained by Solyom ' are
somewhat complicated and hard to compare pre-
cisely. However, neglecting nonresonant contri-
butions in both theories, and also approximating
the factors (U&+ v&) = (SJ'z/Qf } = 1, both theories
reduce to give an interacting Stokes cross section
proportional to Im(L ( '(]I)/[I -ZL' )($&)]j. Thus
we believe that the content of the two theories is
nearly identical. Furthermore, we find that our
cross-section expression is very insensitive to the

approximation L' ' = L"'= L ' '. The reason is
that the density-of-states function is so strongly
peaked near the zone edge. This, incidently,
appears to be the reason that Solyom's quajitative
conclusions, concerning the broadening of the Ra-
man peak, fail. Also we can state rigorously that
both theories yield no Raman intensity beyond the
Hartree-Fock maximum (20 ), because the Green's
functions contain no imaginary part above this en-
ergy. This result is not in accordance with the
experimental observations.

In Fig. 4 we show a series of Raman spectra for
various temperatures computed using Eqs. (62)
and (64). The calculations were carried out by
first rewriting Eq. (64) in the equivalent form
(as 2r-0 }

L '(if(d) = — i E' dE'
7r E' nE' —Sv —j21

0

1 v f(k)
N - E" 4II2 —'0'

where 0 = Blz, a = a(T) is the energy renormaliza-
tion factor, and 2I' is chosen to be a suitably
small number. The k summation in Eq. (65) can
be evaluated using the standard transformation to
Bessel functions. The remaining E' integration
was then performed numerically on a computer,
with 2I' chosen to be as small as practically pos-
sible for such a numerical integration, and small
enough to ensure that the results were independent
of I' for the limiting case of I' 0. It is worth
noting also that the amplitude of our computed
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FIG. 4. Theoretical two-magnon Raman spectra for
various temperatures as a function of normalized energy,
E/2Jg8, with 21'/2Js$=0. 0009. Curve (a) T=O, curve
(b) T=0.69T~, curve (c) T=0. 86T~, where AT~=0. 232
&&(2JgS), as found from 0'(T).

0.8

spectrum for T =0 'K is in excellent agreement
with the results found from the Elliott-Thorpe
formulation.

From Fig. 4, we see that while the Raman peak
correctly shifts toward lower energies with in-
creasing temperature, the linewidth slightly nar-
rows, in strong disagreement with the experi-
mental results. In Fig. 5 we compare the experi-
mental results for the peak position as a function
of temperature, for the antiferromagnet KNiF&
(S= 1), with the theoretical peak predicted by the
equations presented in this section. The agree-
ment is seen to be satisfactory.

V. HIGHERARDER PROCESSES

Figure 6 shows a plot of the measured Raman
linewidth for K¹iF~as a function of temperature.
A natural first question to investigate is whether
this broadening can be ascribed to damping of the
one-magnon states, which arises in lowest order
from the imaginary part of the self-energy in dia-
grams of the type shown in Fig. 7. The contribu-
tio«&& I';= 1m&"t, (Ay+f0') from the second-order
diagrams of Fig. 7 is given by

I'i= »(1 —e ~"r)

0.2—

I

0.2
I

0.05

with
apl ~p ~ ggg Og

M(k& k
& &1& -I~(f

&&&t p &e t&If&i g& &r q&p

OO aa
+(1&j.g&t &.in~~&&.t &+I& f& i&o& f &,.&i t&t)

I eoo ON
X ~k(i-tL), (-p )~.p+g) + I~.i &~ pe'

ao ae
+I)& I' g&, & f &&Lib +I& e &&L&t&, t& S~q&) (67)

In writing down the above results, we have used
Hartree-Fock propagators in place of the bare
propagators. An expression quite similar to Eq.
(BB) has been obtained by Harris ef al. ,

"and
these authors have analyzed in detail the damping
of long-wavelength magnons.

In order to investigate the question of damping
in a qualitative way, we have done the following

400— KNIF3

300—

E

z 200—
O

I I

0 0.1 0,15 0.25

kT/2 Jzs
FIG. 5. Experimental and theoretical Baman peak

positions ss a f~nction of temperature for KNiF3. The
temperatures for the experimental curve have been nor-
malized to make the theoretical and experimental Noel
temperatures coincide.

2

Z M(k, k', &1) [N(A&;)+1][N(Ai z)+1]
k'q

I

100
I

200 300

xN(AP) 6(Af «+ AP t —AP —Ai), (66)
FIG. 6. Measured two-magnon Raman linewidth (full

width, half-maximum) for KNiF3 (from Ref. 4).
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FIG. 7. Typical second-order diagrams contr'b t'rl u lng

e imaginary part of the one-magnon self-energy.

calculation. To a rough first approximation, the
effect of the damping of the one-magnon states
will be to replace the quantity 2I' (where formerlormer y
2I'-0) in Eg. (65) by 21'f = 21mGt, for k cor-
responding to a near-zone-edge magnon. Figure
8 shows a set of two-magnon spectra computed
from Eqs. (62) and (65) using values for I' which
yield widths in rough agreement with the measured
experimental widths. The shapes of the computed
spectra are also in qualitative agreement with the
experimental shapes, except that the computed

f
spectra appear to have rather too much tail awway
rom the resonance. The values of I' for the three

curves (a), (b), and (c) of Fig. gare I'/SJz =0.0009,
0.05, 0.105, respectively. These latter two values
are at least one order of magnitude larger than
what we have been able to estimate through a crude
calculation of I'g from the second-order self-en-
ergy graphs. However, the calculation of I'g for
a zone-edge magnon is complicated. Among other
approximations, our calculations were done using
a spherical model for the energy surfaces, with
energies which are taken to be linear functions of
j kl . Obviously, better calculations of 1"„are
needed before the damping of one-magnon states
can be ruled out as an important contribution to
the broadening of the Raman spectra. It should
be noted that for the F values given above, the

TABLE I. Comparison of theoretical and experimen-
tal two-magnon peak amplitudes.

40

lA

C

O
~ 30—

h
O
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I-

xIl 20-
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Cl
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K~ 10—
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O
C/l

zone-edge magnons are still well-defined excita-
tions in the sense that I"/SZz «1. Also we remark
that it is clear in going beyond the Hartree-Fock
approximation that the self-energy renormalization
is k dependent, i.e. , long- and short-wavelength
magnons may, perhaps, renormalize in quite dif-
ferent ways. This could also contribute to broad-
ening.

Finally, it is interesting to compare the experi-
mental temperature dependence of the Raman peak
amplitude with the amplitudes, shown in Fig. 8, ob-
tained using the phenomenological damping of one-
magnon states. The experimental determination of
the amplitude is somewhat more difficult than that
of the line position or width, since there is no tem-
perature-independent reference feature in the
spectrum and the sample absorption is changing
slightly with temperature. However, using a rough
correction to allow for the measured absorption
we present in Table I a comparison of the peak am-
plitudes of Fig. 8 with the experimental values.
We also give the value of a corresponding to the
temperature-dependent amplitude renormalization
factor of Solyom. Without damping (see Fig. 4),
this factor is approximately sufficient to offset
the increase in amplitude due to the Stokes and Bose
temperature factors, and this would yield an ampli-
tude which is roughly constant. To the level we have
carried the present theory, SAyom's amplitude
renormalization factor does not appear to enter.
However, ignoring this factor completely, Table I

h
shows that phenomenological damping yields pe-

aps only fortuitously, an amplitude dependence in
reasonable agreement with the experimental re-
sults.

Temperature

0 1.00
0. 69TN 0. 86
0. 86TN 0.71

1.00
0. 44
0.31

1.00
0.55+ 0. 10
0.34+ 0. 07

Normalized Normalized
theoretical amplitude experimental

(from Fig. 8) amplitude

I I

0.2 0.4 0.6
E/2 Jzs

O.S 1.0 1.2

F&G. 8. Computed two-magnon Raman spectra as a
function of normalized energy E/2JzS, using phenomeno-
logical magnon lifetimes necessary to fit the experimen-
tal data (Fig. 6). (a) T=O, I'/JzS=0. 0009; (b) T=0.69T&,
I'/JzS=O. 05; (c) T=O. 86T, 1/JzS=0. 105.
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Another possible source of broadening of the
two-magnon Raman spectra might arise from higher-
order irreducible vertex corrections in the two-
magnon Bethe -Salpeter equation. Typical second-
order corrections are shown in Fig. 9. These dia-
grams can roughly be thought of as polarization
processes which give rise to a modified interaction
between the primary o and p Raman scattering mag-

-ag ag

Itic, i(t ('i&&s t& &i) IK&, i&&j ++Kg ($&&s 'i& g) (66)

where E essentially plays the role of a "dielectric
constant, " and is given by

nons. Using Hartree-Fock propagators to evaluate
these diagrams, we find that I'g in the Bethe-Sal-
peter equation [Eq. (54)] is given by

Ifii&(4&~ h&2}
=

N
~ {Iii&,&i&-r.i"&i" +I&i&-i.r' &i' ~, ii + I&i&-i+i' ~ &i&ii", Iie', (i&-4& ~ &i }

xfi" &i -i+& ~
&, i i[N{flr') N(fbi(-i+i")1lfl. . ~. il I. . is + ., ~ I&'i&, (i+i&-i" &i &er', i&&i+i&-i" &

N{Qi ~ ) -N(Gi+i -i ')
"

(&g.i,.i -Ap. )+(5&+5&,+(&) (69)

Note, as would be expected, that E vanishes at
T =0 'K, and gives no correction to the zero-tem-
perature spectrum.

It is rather apparent that, with these new correc-
tions taken into account, one will no longer be able
to obtain an exact solution for 8('&((,) as was ob-
tained in Sec. IV. However, we may obtain an ap-
proximate evaluation of 8 "(f&) using the variation-
al principle discussed in Appendix B. This varia-

aB
tional principle assumes that Ig~, „- i($,„)&g is sym-
metric' under the transformation $,,- g, and
k=k(. Referring to Eq. (69), we see that the first
property above is correct. However, the second
property (k= 4&) is not quite correct due to the form
of the I matrix elements. In this connection, we
refer back to Eq. (59) which gives the lowest con-
tribution to I g. This expression contains an anti-
symmetric term31 in k and k1. The antisymmetric
term in this case rigorously gave no contribution to
the cross section but it is not known whether this
can be shown to be true in general. In any case, it
can be shown for k and k1 near the zone edge

1 —«g($&) /L ($&)

where L&@((,) is given by Eq. (63), and

g(4)= I z Q Q f(k)f(k()(uf +vi)(ui+vz, )
P kk1 $1l 2

x Di~(i &
+ $ &

) Di&&(i, &) Di ~($, + $, ) Di(&&(i& ~)

ag
Iiit, i&i ((&g (71)

From Eq. (71) we see that any (assumed small)
antisymmetric part of I g makes no contribution to
0 ~ ~rtttng fixe, i i =IRiq, i&i +I~ii&($&q& 5&2}
obtain

(u; —u„-& = 1, v„=vi~ —0) t"at &ii~, i&i(hr~~ i&») as given
by Eqs. (68) and (69) is approximately symmetric
under k- k1. With this approximation and a simple
choice of a trial function, the variational principle
of Appendix B yields the result

g "(i&}=ig(e„cz}NS'8,

with

L'"(i,)' 1 '.~[L'"(i&)L'"(&,)+L"'(&&)L"'(i )]/L'"(i ) «0'(&&)-/L'"(i )
(72)

{i,)= ~ ~ f(k)f(k~)( i+v„"}{u-+v„-&)D (i, i, )D„-»(~, }D„- (t', +t, }D- &&(i, )IC=„(~, , ~, } ~ {7&P rR ir1 1 2
2 1 2 1

Note that, in the absence of the higher-order ver-
tex corrections obtained in g'((&), Eq. (72) yields
essentially the same result obtained previously
[Eq. (62)], because L'0&=L "&=L(~& due to the
sharp peaking of the density-of -states function

near the zone edge. This gives us some confidence
that the variational method provides a reasonable
approximation for treating the higher-order vertex
corrections.

Unfortunately, a calculation of &I&'($,), like that
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FIG. 9. Typical second-order irreducible vertex cor-
rections leading to a modified vertex function Ag((&, (,,).

of the imaginary part of the second-order self-
energy processes, is very complicated to carry
out, and we can presently make no qualitative pre-
dictions about the effect of this term on the two-
magnon Raman spectrum. Improved numerical
calculations of the second-order self-energy for
a zone-edge magnon, and calculations of the effects
of the higher-order vertex corrections contained
in g'($, ) are presently in progress, and results of
these calculations are planned for a future publi-
cation.

VI. DISCUSSION

In this paper we have attempted to analyze the
low-temperature behavior of two-magnon Raman
spectra using a spin-wave approach based on the
Dyson-Maleev formalism. We have found that,
while the shift of the Raman peak to lower energies
can be satisfactorily explained by the renormaliza-
tion of the one-magnon energies in the Hartree-

Fock approximation, the observed broadening of
the spectra with increasing temperature appears
to have a more complex origin. Preliminary crude
calculations indicate that this broadening effect is
probably not due to damping of one-magnon states,
but more accurate calculations of the damping of
a zone-edge magnon are needed to eliminate this
possibility. We have also set up a formalism for
treating the higher-order vertex corrections in
the two-magnon Bethe-Salpeter equation, but the
qualitative effect of these corrections is not yet
known.

In conclusion, there exists the nagging possi-
bility that the correct solution of this puzzle lies
in contributions in the Hamiltonian or Raman tensor
which we have ignored in this treatment. For ex-
ample, in the Raman tensor we have discarded
terms involving products of more than four mag-
non operators. At least in a graphical sense, cer-
tain of these higher-order contributions in the Ra-
man tensor cannot be interpreted in terms of "two-
magnon" scattering processes. Nevertheless such
terms could be important for understanding the tern-
perature dependence of the measured "two-magnon"
cross section. These higher-order terms will be
difficult to treat using the sort of spin-wave tech-
nique which we have employed in this paper. In

the event that these processes become important
with increasing temperature, it may indicate that
a spin-wave approach is not the best way to tackle
the problem. If this should be the case, some
better method of decoupling the higher-order
Green'8 functions in the spin-operator equation-
of-motion method must be sought.
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APPENDIX A

The three matrix elements which appear in Eq,
(18) of Sec. II are

fyy'sy'=y5 , P)uyuy vyvs+2[y(p)u~y vyuy +y(p')vyvy vyuy ],
1 «g

fyy yy =y(q q)u;us v-svy+-, [y(q~usvs. vyvs. +y(q)uyvy. usus ],
Otg r

fsy', ss' =y(p p)uyur usus'+y(q -g) vyvy vyvy +y(q-p ) vsue vsur

«I
+y(P 'q ) us vj' usvy' + y(P) usuip uyvr +y(q) vyuy vyvy +y(q') v ue u;us +-y(p ) vs vs uyvy

(Al)

(A2)

(A3)

Note that the order of the indices of the u's and
v's in each term is the same as the order in which
they occur in the I's.

In the Dyson-Maleev scheme employed in Ref.
18, one takes for the a sublattice spin operators
the expressions given in Eq. (3). However, the
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b sublattice spin operators are chosen according
to

Sq (2S)1/2bt l (qd f)jko
j+6,Q )+5

Sy+o, o = (2S) b&, o,

~)+a, a
= S+ bg, ~ bg, g .

The corresponding matrix elements from this
scheme are

(A4)

i44', SS' ~CC', H'

~) 1='Y(p -p)uyuy vyvy + —[y(p)uyue vyuy +y(q)uyvy vyvy. ],
ke )

Iyy, yy =y(p p)-uyuy uyus+y(q -q)vyv& vyvz +y(q p')—v, u,. vyus

+r(p —q )uyvy. uyvy +y(p)u;uy uyvy+@(q) vyu(r vyvy +y(q)uyvy. uyuy+y(, p) vyvy. vyuy. .

(A5)

(A6)

Allowing for a difference in the way that Fourier
transforms have been introduced, these results
agree with the corresponding matrix elements
given by Harris, et al.

APPENDIX B

Here we discuss a variational principle for ob-
taining an approximate solution for the Raman
cross section when higher-order vertex correc-
tions are included in the two-magnon Bethe-Sal-
peter equation. In a compact notation, we can
write the two basic equations [Eqs. (52) and (54)]
of the present theory as

g "(q,) =Z V(k) 3(k; q, ) A(k;q, ), (Bl)

(k, ~,,)-k,

A(k;qo) = V(k)+ JzZ I' (k, kt) D(kq, qo) A(k„.qo) .
kg

(B2)

Here g "=9"/[~og(e„Z&)NS 8,], and we have
introduced some four -dimensional notation:

x D(k)qo)I' (k, kl)D(kl, qo}A(klqqo) 5 (B3)

where we treat A as an arbitrary function of k.
By taking the variational derivative of Eq. (B3),
it is stkaightforward to show that the above func-
tional is stationary with respect to variations in
A, when A satisfies Eq. (82). Furthermore the
stationary value of the functional is exactly
g '(qo) as given by Eq. (Bl).

We apply the variational principle by choosing
the simplest trial function we can think of:

A(k; q (,) = A V(k), (B4)

where A =A(qo) is a constant (independent of k).
Inserting this into the functional form Eq. (B3),
and requiring the functional to be stationary with
respect to variation of A yields

A= 1- Jz Vk V ki Dk;qo D kiiqo I k, kq
keg

r V(k) D(k; q,))' (85)

The resulting stationary value of the functional is
then found to be

V(k) =f(k) (u ) +vz),
g "(q,)=a 2 V(k)'D(k;q, ) . (B6)

D(k; qo) = Dfl(hl+ hl, )Doo($ l, ),

I (k, kl) =~y~y& y y (4l, h, o) .
We assume that I ' (k, k, ) =I ' (k„k) is symmetric
in the discussion which follows.

Next we construct the following functional of A:

fl "(A)=Q 2V(k) D(k;qo) A(k; qo)

-QD(k;qo}A(k;qo) +A 2 A(klqo)
lt %kg

Writing out these results explicitly then yields Eq.
(70) of Sec. V.

As discussed in Sec. V, in the case where the
higher-order vertex corrections in I ~ may be
ignored (e.g. , at zero temperature), the simple
choice of a trial function given by Eq. (B4) yields
a very good approximation for fd "((,}. This is not
surprising because the exact solution of the simple
"ladder" approximation Bethe-Salpeter equation is
of the form

Ai(lkl) ill) = Ai(45I) f(k) [~(tl)(uy +vy }+B('5l)]

where A and 8 are constants (independent of k).
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If Eq. (BV) is substituted into the functional form
Eq. (B3), and the functional is made stationary
with respect to variation of A and B, it is straight-

forward to verify that the variational principle then
generates the exact solution for g "($,) as given

by Eq. (62).
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