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APPENMX: CALCULATION OF CRITICAL
TEMPERATURE OF McMILLAN MODEL
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Equations (A2) can be solved for x and y and the re-
sults put into Eqs. (A3). When eliminating y from
Eqs. (A3), after substitution of x and y, we get

The method utilizes the fact that 4& goes to zero
when T goes to T, .

First, new variables x, y, andy are defined by

(A1)
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The new variables are introduced into Eqs. (1)
and (2} of Ref lan. d the equations are calculated
in the limit &~&"-0, giving
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The temperature for which I' =0 is the critical tern-
perature of the McMillan model. This equation has
more than one root, but the one of physical interest
lies in the temperature interval between 1.2 and
3. 8 K.
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The exchange energy of an electron gas is calculated in the zero-temperature limit. In high
magnetic fields, it is shown that the exchange energy dominates the independent-particle en-
ergy, but in low and intermediate fields becomes much less important. Modifications due to
band structure and application to the de Haas-van Alphen effect are discussed briefly.

I. INTRODUCTION

The free energy of a dense electron gas, which
forms a basis for studying the thermodynamic
properties of metals, is assumed to have a con-

vergent expression in powers of the parameter de-
scribing the electron-electron Coulomb interac-
tion. (This parameter is customarily related to
the mean interelectron spacing r, . ) The leading
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Sec. II we examine the strong-field limit Iie, &g,
where u&, =ehH/2mc is the cyclotron frequency and

( is the chemical potential. We find, per unit vol-

ume,

F. :—— ~ y 6 k ' ln (0. 282 hx, )
16m a

FIG. 1. Feynman diagram representing the second-
order exchange energy.

for h~, »f, where (8=1 Ry, ao= Bohr radius, and

k = h&u, /(R. We also have

term in this expansion is simply the free particle
or Fermi term and has been exhaustively studied
in the absence and in the presence of a uniform
magnetic field. ' The second term consists of two

parts: the mean-field electron-electron interac-
tion, which is canceled exactly by the Coulomb
interaction with a uniform charged background, and

the exchange term which corresponds to the usual
bubble diagram in Fig. 1. The remaining terms
are lumped together and called the correlation en-
ergy.

The exchange energy in a uniform magnetic
field has been examined previously by Dresselhaus
and Ichimura and Tanaka. Dresselhaus calculated
the exchange energy numerically in the high-mag-
netic-field regime (Fermi energy- Zeeman ener-
gy) by deriving the form of the exchange hole about
each electron and then integrating the resulting
charge distribution to obtain the exchange energy.
In doing this, however, he effectively allowed the
electron density to be field dependent to maintain
a fixed occupation of the highest occupied Landau
level. This introduces a spurious divergence for
large fields and provides only an upper limit to
the exchange energy. Dresselhaus concluded f rom
his calculation that including the field dependence
of the exchange energy should not affect the de
Hans-van Alphen (dHvA) oscillations as calculated
on the basis of the Fermi term alone, other than
enhancing the amplitudes in the high-field regime.

Ichimura and Tanaka treated the diagram in
Fig. 1 on the basis of Matsubara's propagator
formalism and extracted the dominant oscillatory
behavior at intermediate-field strengths. However,
they did not include electron spin in their consid-
eration and their numerical calculation of the field
dependence of the amplitude was insufficiently con-
vergent, which introduced spurious oscillatory
behavior into their results. Their results, how-
ever, are accurate for sufficiently low magnetic
fields where spin effects are not crucial and their
numerical integrations converge well.

In this paper we reevaluate the behavior of the
exchange energy in the high- and intermediate-
field regimes by including spin properly and taking
due account of the Landau level occupation. In

g=p 3 2 =~v (Rha (2&8) 9 a -a -s
(2m) +,

(1. 2)

11. EXCHANGE ENERGY AT HIGH-FIELD STRENGTHS

By evaluating the diagram in Fig. 1, using the
Martin-Schwinger propagator formalism as adapted
by Horing, ' we have, at zero temperature,

E„=—,'Tr t fdr, fdrzv(r, —r2)

[G( (1, 2, o3) G((2, 1, g3)jg g j, (2. 1)

where

G( (1, 2, +~).. .~= C(rs, r2) 2 s
e' d~&fo{~)

Ii2p~
x . exp s Iim — ' —p. 0 Hg'3

6-i ~ 277$ 2m

z sech(&Jib, s) exp — tanh(&Ii(d, s) . (2. 2)
1 AP

men,

where p is the density. We note that the exchange
energy does not diverge as H- ~, as in Dressel-
haus's calculation. Furthermore, it is no longer
correct to eliminate e in terms of x, as is done

in the zero-field case, since the relation between
density and chemical potential is field dependent.

Section III contains a calculation of the dominant
oscillatory contribution to the exchange energy
in the intermediate-field regime (g»h&u, &kT). It
is found that this contribution to the dHvA term is
weighted by the factor v, '

(h&u, /f), whereas the

neglected terms are weighted by r, ' {h~,/r„)", where
n &-,'. This was not made explicit in Ref. 3.
find, in agreement with Ichimura and Tanaka, that
at intermediate magnetic fields, the exchange and

free-particle energies are not generally in phase.
In addition we find that the exchange and Fermi
terms depend differently on effective mass and@
factor, which may have consequences for the

thermodynamics of semimetals and degenerate
semiconductors in high fields. The Appendices
are concerned with some mathematical points.
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The trace in (1.1) is over spin o~ = +1; p, and p
are the components of p along and normal to the
magnetic field, r r=~ —r2, tI = 1/h T; C(r~, ra) is a
unitary phase factor, I/0=@eh/2m, c; and f,(&u) is
the Fermi-Dirac distribution function. We con-
sider an effective mass m which may differ from
the free- electron mass m o.

By using the expansion

sech(~Arcs) exp — tanh(&8~, s)
@p'

m~c

In the strong-field limit (hu, &g), (2. 5) becomes

4 2 m~ 2 r 2m) 1/2

dr r (r2+r2)~/2e ~me J~"~r (2. 6)
0

After making the change of variable r = (2h/m&u, )

x (r, t+ ht /2m&v, ), and obtaining ther, integral from
a table of Laplace transforms, we find

Q (- I)"e "/' ~cQ e "~cs/2e-&n~cs/2-2 2SP
n

n=0 mes,

(2. 3)

in terms of Laguerre polynomials L„(x), the s and
&u integrations in (2. 2) are trivial and we find, in-
troducing cylindrical coordinates,

G((ri, rz, &3)t,=~,

=2'C( )Zi (-1)" ijg„(2)
2

fPg S(119 jPg -hP /ffttd
-2 2hp

Xe " mes C

E„=—(e /4v )(mu, /h) [pfo"dxx ln(x )e ~'

—p Jo dxxln(x +1)e ~

+2p f dxe ~ tan '(1/x)], (2. 7)

where p= (4g/hu, ). In Appendix A it is shown that
this may be written, where C is Euler's constant
0. 5772. . . ,

E„=(e /8v )(m&u, /h) [lnP+C —e~Ei(-P)

G23 (p l 3/4I3/4e1/4)l. (2. 8)

From this we find the behavior for P «1:

E„(p)= (e /8w )(m~, /h) p[lnp —(3 —C)]. (2. 9)

The & integration gives Jo(px), the p, integration
yields

(7/r, )
' t},(f —(n + —,) he&, —m~3 h &a,)

In conjunction with(2. 9) we note that at fixed elec-
tron concentration (& = 27/ h p /m &u, ) the exchange
energy vanishes as the magnetic field becomes
infinite, and exceeds the free-particle energy per
unit volume

x sinr, {(2m /h )[& —(n + —,') ha, ——,
' o 3 hu/, ]}'/2, 1 m3/2g 3/2~ g e

F 3 21/2 2 h2
= ~ Y

'tT 32 Qp
(2. 10)

where

t},(x)=0 if x&0, g, (x)=1 if x&0,

while the P integral is tabulated. ' Thus, after
making the coordinate transformation r = r, —r2,
R = 2 (r, + r2), we obtain (per unit volume)

in this limit; whereas if one considers a band
model in high magnetic field [all electrons in the
lowest Landau state with spins antipara11el to the
magnetic field or 2(1+ v)hu&, &t where v=gm/2mo],
one finds that the exchange energy is given by
(2. 8) and (2. 9), with

E„=-47/e Q, t dr, i[ rdr(r, +r )
'/ 4[/ ——,(1 —v)hu, ]

S(d C

x P q, (f —(n+ ,')Ku&, -,'u-, h~, -)
n=0 47[ Sr,

2m 1/2
x sin r, ~ [f —(n -,+' +u) s&uh, ]

-2 men Pxe-mu „r /g/, g m ~cr (2 5)
2S

and is less than the free-particle energy in the lim-
itP «1,

1/2

Er =
2 a @2 [[0 —z(1 —v) 5'/d~] 2 (1 —v) K(a&~

2(2m) m(d

+ -.' [g ——.'(I —v) h~, ]"'],

with I ——,'(1 —v)hu, = 2v h p /m
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III. EXCHANGE ENERGY AT INTERMEDIATE-FIELD
STRENGTH

Here essentially we follow the work of Ichimura
and Tanaka but with spin effects included in the

propa, gator. The integral over p in (2. 2) is per-
formed by transforming to cylindrical coordinates
as before and we find (including the effect of a, non-

free- electron g factor )

2

Eex e 23/2 3/2h2 /f~
d 2 3/2 . Ih, cosh (2@% )(s +s ) 8

27/i s sinh 2hcu, s) mp

Sist h) —,'lt, ) S ', , 2
'

)
')"'s' h)-X ') Sst h)-, lt', ') )

(3 1)

The singularities of the s and s' integrals in

(3. 1) are of two types: (a) isolated essential
singularities along the imaginary axis at s, s'
=2)/ni/h&u, , n =+1, +2, . . . , and (b) a branch cut
along the negative real axis with branch points at
0 and —~. These singularities give rise to charac-
teristic behavior in the exchange energy. At in-
termediate magnetic fields (h&u, & r„) the leading
dHvA contribution to the exchange energy comes
from terms due to the isolated singularity contri-
butions to the two s integrals in (3. 1). We evaluate
these terms by retaining the leading term of the
Laurent expansion of the hyperbolic functions ap-
pearing in the integrand. By a simple change of
variables the contour integral corresponding to
each of the isolated singularities can be transformed
to one of the form

-25- 1/2dX»q -1 -mr2/2h2»
o

where the contour encircles x = 0. The branch line
contribution to the s integrals is evaluated by ex-
panding the integrand in powers of cu„ the leading
term of this series expansion gives rise to an in-
tegral of the form

f' C+f 423

J

�st'
-5/2 -rr /2h s

c-4 ~ 2&2

The leading dHvA contribution to the exchange en-
ergy is given in terms of the branch cut of one and
dHvA contributions of the other s integrals. There-
fore we have

3 2h2~ 3/4 2 2 &/h~ P &
2 4)teZ/xtse

E„=—e'
h 8)/ m „., sinh(2v no/hague p) 27/inc/h)s/,

(- 1)"
a=f1

cos ™mn +1 dr& Jp 2
2@2 exp ™@ Js/2 2 (3 2)

By separating the r integral in spherical polar coordinates we have

(- 1)" 27/2n/h)d, p gm
n =1 fI sznh(2m'/@~c ~~ mp

(3. 3)

where

(3. 4)

2m( 2m( m
Q{P)= cos —— S(P)+ sin - —— C(P),k(d 4 h(d, 4

co (Pxz )de% J3/2(X) dZ Jp X(1 2 ) (3. 5)
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FIG. 2. Amplitude factors given
by Eq. (3.5). The solid curves
denoted I are the results of Ichi-
mura and Tanaka. The dashed
curve shows the present results.

and P =h&u /Swan'n. Equations (3. 3)-(3.5) correspond to Eqs. (3. 8)-(3. 10) in Ref. 3. It is shown in

Appendix B that C (P) and S(P) may be expressed as

C(p) = (2/~)'" —(2~) 'p "'ICo(P) +3o(P)1,

~(&) = —(2 ) 'P "'(Co(p)- ~o(p)],

(3. 8a)

(3. 6b)

where

0 P
(3. 7)

E~/E~= (mo/m) cos(gmm/mp),

E„/E,,= 2[1+cos(gmm/mo)].
{3.9)

In the case of simple metals, the exchange en-
ergy is small compared to the free-particle en-
ergy at intermediate-field strength, and these
facts are of little consequence for thermodynamic
properties such as the magnetic susceptibility
where

For small P we find

C(P)= (2/w)', S(P):——P(2/w)' ln( P). (3. 8)

Ichimura and Tanaka calculated the complicated
double integrals in Eq. (3. 5) numerically. The
fact that we have reduced them to rapidly conver-
gent single integrals allows us to obtain a more
accurate picture of the behavior of these functions.
In particular, we find that the irregular oscilla-
tions found by these authors are absent and we ob-
tain the simple behavior shown in Fig. 2.

We find from Eqs. (3. 3) that the exchange energy
is not in phase with the free-particle energy and
that the free-particle and exchange energy depend
differently on the effective mass and g factor.
We have

the free-particle susceptibility. For semimetals
and degenerate semiconductors where the quantum
limit is easily reached, however, it appears that
the field dependence of the exchange energy must
be taken into account in comparing theory and ex-
periment.
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APPENDlX A

The first two integrals in (1. 7) may be obtained
from a table of Laplace transforms. Consider

F(a)= f e ' ' tan '(I/x)dx

By a simple change of variable we have

2
F(c)=a ' e ' tan ' — dt

&&/ 2 a—(erft) ta.n ' — dt
2a 0 ~t

y,„(dHvA)
gz (dHvA) Aced,

It is interesting to note that Berlincourt and Steele
point out that the field dependence of the amplitude
of the obserfed dHvA magnetic susceptibility in zinc
is one power lower in magnetic field strength than

0

where we have integrated by parts. Now by noting
that

erft=(2/w' )t ' e ' M (t )

and letting x = t we obtain
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t
-3/4e -t/2 M (f )P(n)

e -1/4el/4
2 0 a2+ t

Next, note that

fz- f dxx J~/z(x) sin(ax)

a-3/2 G22 /a213/4 '5/4= 4a 2s (a 13/43/4&/4) ) f dxx ~3/2(x)&1/2 (nx)

which is a known Stieltjes transform.

APPENDIX 8

where

{1 y 2)1/2

Let

x2z 2

f —2f /i J ~ (1 )~/2]
sin (Px'z ')

We note the Fourier cosine transform pairs

//, (1 —z)Zo [x(1—z )' ] ~ - ~ (x +y )
' sin(x +y )'

which is a Weber-Schaftheitlin integral and has
the value

1P "2 a+1 2a
(1 —a ) ln + 2, a&1.47t a —1 1 —a

Thus we obtain

sin(Px z ) 4x P 4Px 4Px

So, by Parseval's theorem, we have

I, = —— (1+y') "'sin[x(1+y')"']
X 7TP 0

x 2y (1+y ) +ln2 i/2 (1+y )' —1

(1+y ) +1

cos —9 sjn

x cos —+sin — dp .
which is equivalent to (3. 6) and (3. 7).
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The magnetic behavior of a type-II superconductor with very short electron mean free
path (dirty limit) near its upper critical field I3,2{T) is investigated. A calculation of the
magnetization up to the second order in the difference between &,2(T) and the external mag-
netic field is presented which is valid for all temperatures. A triangular and a square lat-
tice of flux lines are considered. A numerical calculation suggests that the triangular lat-
tice remains stable despite the fact that the difference in the thermodynamical potentials
between the two lattices decreases due to these second-order terms.

I. INTRODUCTION

The magnetic behavior of type-II superconduc-
tors was first explained theoretically by Abrikosov. '

On the basis of the Ginzburg-Landau theory,
Abrikosov showed that a type-II superconductor
exhibits a mixed state between the two critical
magnetic fields B„(T)and B,z(T) in which the mag-


