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It is found experimentally that two energy gaps are obtained for some pure superconductors
when ultrasonic attenuation data are analyzed in terms of a simple BCS expression o~/g„
=2/(e T~ T +1) for the ratio of the attenuation coefficient in the normal and in the supercon-
ducting state. The energy gap d(T) determined in the vicinity of the transition temperature
T~ is usually larger than that expected from the low-temperature value b(0). The above BCS
expression is valid either in the limit q&»1 or if the electronic mean free path $ is mainly
determined by impurity scattering, where q is the sound wave vector. However, when q/ «1
and when the sample becomes pure enough that electron-phonon scattering dominates the elec-
tron lifetime, we expect an important deviation from the above relation. A theory is proposed
which takes into account the effect of the electron-phonon scattering explicitly. This theory
predicts that the ratio of the energy gap deduced from high-temperature data (i.e. , T ~ T~ the
transition temperature) to the one deduced from low-temperature data is a universal function
of g = g&BT, where Eo is the electron mean free path due to impurity scattering while (BTS) '

is that due to electron-phonon scattering; the electron mean free path in the normal state is
given by )„'=ED'+BT. In order to have a T dependence, it is assumed that niobium has two
distinct electron bands with different effective masses. Making use of the ultrasonic attenua-
tion data in the normal state, we can determine l„and therefore the parameter x. The ratio
of the two energy gaps is then calculated by substituting this value of x into a universal func-
tion f(x) which is theoretically derived. It is found that the predicted ratio accounts for
roughly one-half of the observed deviation from unity of this ratio. Alternatively, if we use
the ratio of the energy gaps to determine ~, we find that g (i.e. , the electron-phonon scat-
tering contribution) in the superconducting state is three times as large as that determined
in the normal state. We are unable to account for these discrepancies at present, although
we feel that the observed ratio of the two energy gaps is mostly due to the electron-phonon
interaction. However, we cannot completely disregard other possible explanations like the
anisotropy of the energy gap or the strong-coupling effect. A numerical estimate of B making
use of the known parameters like the electron-phonon coupling constant g and the Debye fre-
quency vn of niobium, on the other hand, yields B —= 1.2/Ki cm in semiquantative agreement
with the value determined experimentally.

I. INTRODUCTION

The BCS theory'~ predicts the ultrasonic attenua-
tion coefficient in a superconductor having energy
gap 6(T) at temperature T:

0
&(T) /T

y
~

This expression is derived on the assumption either
that the electron mean free path is mostly due to the
impurity scattering or that the sound wavelength is
much shorter than the electronic mean free path.
If the energy gap is taken to have a BCS tempera-
ture dependence, the above ratio is used to deter-
mine a unique zero-temperature gap &(0).

If this procedure is used, however, for some
pure metals, it is found that the gap parameter h(0)
is not constant but has two well-defined limits' ";
for data taken close to the superconducting transi-

tion temperature T„d(0) appears larger than that
determined from data close to T = 0 'K. We will
consider the latter value to be more fundamental
and will call it the "BCSgap" or &sos (0). The
higher-temperature one we will call the apparent
energy gap 4„(0).The purpose of this work is to
establish a relationship between these two quan-
tities.

II. THEORETICAL CONSIDERATIONS

As already mentioned in Sec. I, the BCS expres-
sion is not valid in a pure specimen when the elec-
tronic mean free path is limited mostly by electron-
phonon scattering rather than by impurity scatter-
ing, since in this case the electronic mean free path
depends strongly on both the quasiparticle energy
gap and the temperature. In order to treat the elec-
tron-phonon interaction explicitly, we consider
Frohlich's model Hamiltonian for a superconductor.
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The self-energy correction of the electron
Green's function due to the electron-phonon scat-
tering in a superconductor has been discussed al-
ready by Eliashberg. ' Here we are only interested
in the imaginary part of the correction which gives
rise to an electron lifetime.

The renormalized Green's function then is written

(d+ fg(, )= „(„-),+( ) P) fl(~ ~} (2)

where
0((d, p) = (d~ —$&

—E2 hf, =f'/2m —I, (3)

vf&,
(() = (()+ ~ )

de
(

Im ~2)g (p

and

2(e''+(d) 2e de
e" /'+1 +e"" (4)

4~~4= 4+ ~ d6 I I2 g2~1/2 5 /~ 1o ~ Le —~) e +1
(5)

Here we assumed (u «0, Xo = IglN(0), the electron-
phonon coupling constant and ~0 = 2s~ p, ~

with s the
sound velocity and po the Fermi momentum. In
deriving Eqs. (4) and (5) we neglect small correc-
tion terms. For these calculations and analysis the
Frolich model of electron-phonon interaction has
been used. In the vicinity of the transition temper-
ature where d «T, Eqs. (4) and (5) are further
simplified as

and

u) = (d+ ('. — [7 t'(3) T + 2(d (- ln2)] T
470

H.oi
+—[26(d( —ln2)] T,

0

(6)

respectively, where t'(3) (= l. 202) is Riemann's

& function. From these expressions the lifetime
of the quasiparticle is given as

Furthermore, we limit ourselves to the case
ql «1, where l is the electronic mean free path
and q is the sound wave vector for simplicity.

The effect of the electron-phonon scattering on

the ultrasonic attenuation coefficient is determined,
if we know both the self-energy correction and the
vertex correction associated with the sound wave

vertex. We will consider briefly these corrections
in the following.

A. Self-Energy Correction

a, = z [Vf(3) T +2(d (-ln2)]T
C00

=Bvo T )

vo being the Fermi velocity. The second term in

Eq. (7) is less important than the first term in the

whole energy range of interest (i. e. , (d= T), and

we neglect this term in the last expression. So
far we have neglected the scattering due to im-
purities. This effect simply adds a constant term
to Eq. (8)." Thus, the total electron lifetime 7

is given as

1 1
+ r,„((u)

(10)

A'(o)f
~

(e)(~'() —case)an,1

~tr

while

1 =..~(D)j(.(() (*~()
~Im

(12)

(13)

Here n is the impurity concentration and u(e) is the
Fourier transform of the impurity potential. The
difference between r„and 7, lies in the fact that Tg

represents the electron lifetime due to impurity
scattering, while 7„represents the lifetime of a
current carried by the electron.

In the case of the ultrasonic attenuation, however,
the vertex correction is of fundamental importance,
and we will treat this correction briefly in the fol-
lowing.

It is important to note that the lifetime due to im-
purity scattering is constant (i. e. , independent of

quasiparticle energy) and the same as the one in

the normal state, while that due to the electron-
phonon interaction depends strongly on the quasi-
particle energy.

A similar energy-dependent lifetime has been
introduced previously in a heuristic way by Kadan-
off and Martin" in their treatment of the thermal
conductivity of relatively pure superconductors.
In the calculation of the thermal conductivity, we
neglect completely the vertex correction due to the
electron-phonon scattering, since the vertex cor-
rection represents the elastic part of the electron-
phonon scattering, which is always extremely
small. The relevant lifetime for the thermal con-
ductivity is given by

1 1 1
+

~th ~tr ~yh

that is, the impurity contribution has to be replaced
by the transport lifetime v'„'3:

and

„}=2rm((d' —&')'"= &,)«, a, &((d-&)

(8}

B. Vertex Correction

The vertex correction is expressed in terms of
ladder-type diagrams; the summation of this series
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of diagrams leads to an integral equation. The
solution of this integral equation for a supercon-
ductor is a rather difficult task. We will not go
into details here but within a first-order approxi-
mation in ~0 we have an integral equation for the
vertex function:

A(runs ~ n+v) = 1+ ~ g gdy P2 1—qT ' 2y'

0 0

1 2

Q(f(~ ~ (g ) g((g )) ~2 + y2 n+vs n+e+v)

(14)
where

II(f~ f~ ) (~2+ g2) 1/2 ~ ((P+ 5,2)1/2 (16)

vg
"

y'Pp (1 —2y'/~(')}

I (~+ y)/[(&+ y)'- &']'"
~ si

~-1 + 8+ f~ 1
= 1—

(16)

and Pz(z) is I egendre's polynominal. Here we made
use of the same transformation as used in the cal-
culation of the self-energy correction; we first
replaced the three-dimensional integral d'P/(2n)'
by A/(0) d$~ dQ/4v where $~ = pm/2m —p and inte-
grated over $~, then we transformed the integral
over ~ to that on the phonon energy y = by making
use of the relation

&, = Spa [2(1 —cos8)]'/~ .
Pz(z) appears in Eq. (14}, because the stress tensor
in the l.imit ql «1 has d-wave character. In the
evaluation of the ultrasonic attenuation constant for
low frequency [i.e. , ~ «5.(T), where &o is the sound
wave energy], we need only the value of A(f~„,
i~„,„)at A(~+ f5, & —i5) With. in the first-order
approximation A(~+i5, ~ —f5) [ -=A(~}] is evaluated
then as

Making use of the above calculations, the effective
mean free path of electrons, which appears in the
calculation of the ultrasonic attenuation, is given

by

I(~) = v, [21m(~' —a')"'[I -A(~)]1 '

where

-1

Io + ~ g g /z 8 (~ (d~ —O)BT (19)

BT ' = vo'(a, —az) (20)

and vo is the Fermi veolcity of the main band. On

the other hand, the relevant mean free path in the
normal state is obtained by simply letting ~ = 0
in Eq. (19):

I =(4+BT'}-' (21)

It has to be emphasized that the T terms in Eqs.
(19) and (21) result from the possible interband
scattering of electrons due to the electron-phonon
interaction in a two-band metal. In the case of a
single-band metal we will have, instead of a T
term, a T' term.

D. Ultrasonic Attenuation Coefficient

Making use of the mean free path obtained in Eqs.
(19) and (21), the ratio of the ultrasonic attenuation
coefficient of both the longitudinal and the trans-
verse sound waves with gl «1 is given by'6

l & cosh

band scattering, while ~ is due mostly to intraband
scattering [the interband scattering contribution
to a2 has a small factor mz/m» where mz/m, is
the ratio of the two effective masses of the respec-
tive bands (we assume that m2«m, )].

C. Effective Mean Free Path

a "&& +~ 1 — @ )]r 1
+ 3+~]&

(17} T l„Tcosh (22}

For a metal with a single conduction band we will
have

aa= ~i+ CT (1&)

From this it follows that the mean free path rele-
vant for the ultrasonic attenuation has a T' tem-
perature dependence. However (see Sec. IIIA), in
the ultrasonic attenuation in Nb, a T' dependence
appears. We believe that this is because niobium
has at least two distinct bands" with different elec-
tron masses. Then cr& is described as the sum of
two contributions, interband scattering and intra-

At low temperatures where IOBT'« I, Eq. (22) re-
duces to the BCS expression Eq. (1}. Therefore,
the gap determined at low temperatures making use
of Eq. (1) should give the BCS gap h(0).

On the other hand, in the immediate vicinity of
the transition temperature where & (T)/2T is small,
Eq. (22) is expanded in powers of &(T)/2T and we
have"

(23)

where
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cosh8
(sinh8+ x cosh8}

0

(24)

x2 1
1

1 Q p /p arccosh
x ~1 —x~ x

x
'

m

1 '-1 '" 2
—»csin — —1

for x& 1

for x~1

and
x= loBT, . (26}

B= vo 2 7&(3)T
0 f n terband

(29)

(27)

In closing this section we will summarize the theo-
retical conclusions.

(i) In order to have a T' term in the electron
mean free path for the attenuation coefficient, it
is necessary to take account of the possible inter-
band scattering due to phonons (i.e. , two-band
model).

(ii) Then the electronic mean free path in the
normal state is given by

lw], le) + BT3 (26)

where 8 is related to the electron-phonon scatter-
ing by

o~ J4

~ 1.3
a
n

~ l.2

The x dependence of f(x) is shown in Fig. 1. f(x)
increases monotonically as x increases. In par-
ticular, we have f(0) =1, f(1)=+3, and f(~) = —,'m.

The BCS expression' corresponds exactly to the
case x= 0, where the mean free path is determined
by l only.

Equation (23) predicts that &(0)~, which is deter-
mined from data obtained near T„is larger than
the true energy gap measured at low temperatures,
and the ratio is given by

(iii} The ratio of the two energy gape measured
in the vicinity of T, and at low temperatures is
given by Eq. (27). Hence, from the determination
of this ratio we can determine the constant x in Eq.
(26). Alternatively, we can estimate x in Eq. (26}
by making use of the ultrasonic attenuation data
in the normal state, and then we can test relation
(27).

It has to be borne in mind that we neglect any
other possible sources which could cause the ratio
&„(0}/&ecs(0) to deviate from 1, such as the effect
of anisotropy on the energy gap and also the effect
of strong coupling since these effects appear to be
of minor importance in the present problem, al-
though they may affect our analysis slightly.

III. EXPERIMENTAL RESULTS

We have employed the pulse-echo technique on
three samples of niobium" having different crystal-
lographic orientation and purities (see Table I).
Data were taken using a Matec attenuation com-
parator and attenuation recorder. The phonons
were generated in quartz transducers having a 15-
MHz fundamental. The transducers were wrung
on the crystal with fresh (Fisher) Nonaq stopcock
grease after driving out the accumulated water at
160 'C in the normal way. Normal-state data be-
low the transition temperature were taken by driv-
ing the sample normal with the minimum required
magnetic field.

The data were analyzed and are presented here
with two purposes in mind. In Sec. IIIA the pre-
diction l '= lo'+ BT is tested; in Sec. III B the
ratio &~(0)/&ec, (0) =f(x) is evaluated.

A. Mean Free Path

04 0.8 l.2 1.6 2.0 2.4 2.8

~= r„/(I;-1;,j

FIG. 1. Predicted ratio f(x) for increasing purity
(increasing xI.

Here the data are compared with the model
l '= lo'+ BT . In order to check the hypothesis that
the mean free path is proportional to T', the nor-
mal-state data were compared with a theoretical
model based on Pippard's'9 result
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TABLE l. Summary of all relevant statistics and conclusions for the three samples investigated.

~3oo/~4. 2

Orientation
Length (cm)
Phono n

Frequency (MHz)

q/n„-o~ I t- o(Np/cm)

Tc
lo (10 4 cm)
a (1/'K')
2b, (0)/kT~, T «T~

2~(0)/kT„T T,

&aarma1

~(0)/~, ~ (o)

f( .~i)

Nb No. 2

&150
f,111]
1.27

Trans ~

135
0.36
0. 13
9.21

1.2+0. 2
0.85 +0.15
3.70 + 0.02

4. 24+0. 02

0.08
l. 15 + 0.02

1.095
0.23+0.2

Nb No. 3

300
[100]
2. 54
Long.
225
0.40
0.87
9.24

1.6+0.3
1.0+0.1

3.64 +0.02

4.40 +0.02

0.13
1.21 + 0.02

1.11
0.40 +0.06

Nb No. 8

1000
[110]
l.11
Long

45, 105
0.6, 1.4
0.30, 1.28

9.39
9.0 +0.1

0.73 ~0. 05
4.04 + 0.02
3.84+ 0.02
6.12+0.05
5.68 +0.05

0.55
1.52+0.02
1.48 +0.02

1.24
6.8 +2

6 1 qltan'ql 1

m 3 ql —tan-'ql ql

where
m Nvo
12 pov)

(30)
for 105-MHz data. The higher-frequency data have
ql=1. 4, and it is expected that as ql increases, the
conclusions in Sec. II are no longer valid.

Previous work~0 had indicated for niobium a re-
lationship l '= lo'+ BT'+ cT' with the result
B/c =10'. The use of the T' "best-fit" approach

In this equation, we have imposed the condition
l '= lo + BT . The zero-temperature mean free
path /0 is determined through comparison of (30)
with data obtained for various frequencies at
T = 1.3 'K. The constant B is taken such that the
agreement between experiment and theory extends
as high in temperature as possible without com-
promising the fit for T & T,. In all cases the theo-
retical fit is excellent for T & T, and begins to dete-
riorate at larger values of temperature.

Figure 2 shows normal and superconducting data
for our intermediate purity sample, Nb No. 3. The
solid line is found from Eq. (30). In this case,
lo = 1.6 &&10 ' and B= 1.0/ 'K'. Clearly, the data
and experiment are in good agreement. Data ob-
tained in the superconducting state from the transi-
tion temperature 9.24 down to 1.2 'K are also
shown in this graph.

Figure 3 shows normal-state data for Nb No. 8
at two frequencies, 45 and 105 MHz, where the
fourth and first echoes were measured, respective-
ly. Both theoretical lines are derived using Eq.
(30). The same values for lo and B, along with the
appropriate value of q for the bvo frequencies, are
used to generate the two different curves. For this
higher-purity sample, the fit of the curves to the
experimental data is good for the 45-MHz data
which have ql of 0.6, but deteriorates more quickly

~ Upward

0.8

oE 0.6

—
I).5

o 04

~ 0.3

O.I—

0 a/i
I 5

I I I I

9 l3 I7 2I 25 2S

Temperature ('K)

FIG. 2. Ultrasonic attenuation in the normal and
superconducting states for Nb No. 3, at 255. 5 MHz with
a theoretical curve (solid line) for the T3 case.
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l.3-

0.9-

O.T-

l05 IVIHz

cess of 0& T& T,. For our samples this is not
entirely the case. The value of B which is most
nearly compatible with all three samples, namely,
B=0.85, yields for sample No. 8 at T= T, a 7%
deviation from the ultrasonic attenuation data in
the normal state.

The unsatisfactory fit to the normal data in sam-
ple No. 8 may be due to the fact that Eq. (30) is
an exact result only for metals whose Fermi sur-
face is spherical; there is evidence that for real
metals Eq. (30) will require modification. The
need for this modification is more apparent in the
study of purer samples as our data seem to in-
dicate. The modification of Eq. (30) will result in
a different value for B.

8. Apparent Energy Gap

Here the ratio &„(0)/&sos(0) is compared with
the theoretical value of f(x). Equation (1) can be
written

O, I— 45 MHz =[1 (2 ./ .- 1)]
C

(31)

0 I 3 5 7 9 II I3 l5

T(Kj

FIG. 3. Ultrasonic attenuation in the normal state in
Nb No. 8 at 45 and 105 MHz. Here both theoretical
(solid) lines are drawn using the same constants and the
appropriate frequencies.

for these data yielded B/c =10~ and reduced the
value of B by nearly 50%. Therefore, in view of
the information carried in B, the small apparent
improvement in fit produced by considering a T'
term was forfeited.

Some attention should be focused on the uncer-
tainties of the results shown in Table I. The zero-
temperature mean free path lo is measured by com-
paring data for different frequencies as described
above. In most experimental arrangements a fre-
quency change meant, in addition, a change of the
comparison echo method. For example, the data
for Nb No. 8 at 45 MHz were taken comparing the
size of the first and fifth echo, while the 105-MHz
data by that sample were taken comparing the first
echo with a fixed standard. These techniques in-
troduce an uncertainty of perhaps 3% when the data
at the two frequencies are compared. This uncer-
tainty leads to an uncertainty of 10% in the value of
B as compared to the 2% uncertainty introduced by
the scatter in data. This scatter is due to drift
and noise in the apparatus.

If in the limiting case ql «1, the phonons do
average a large portion of the Fermi surface, a
single value of 8 should exist such that l '= lo'+ BT'
is a good fit to data in a temperature regime in ex-

0.6-
I

~O
C

cu 0.4-

o Upward

~ Downward

00
0
ti
0
0
0

0

0.4

Tc

0,6

FIG. 4. Low-temperature data analysis for Nb No, 8 at
at 105 MHz. The limiting slope is 1/Lhs&s (0).

where Ts = T/T, . When T„&0.6 the energy gap
changes very 'slowly so that a plot of Ts vs [ln(2a„/
n, —1)] ' should tend to a straight line with slope
= [&sos(0)/kT, )

' in this regime.
Figure 4 shows such a plot for Nb No. 8 at 105

MHz. For this sample, 2&sos(0)/kT, =3.84. This
analysis is also used to determine the absolute
value of the electron-phonon interaction contribu-
tion to the total ultrasonic attenuation. Other at-
tenuations and losses~' are assumed to be tempera-
ture independent, and therefore a constant amount
is subtracted from the total attenuation to take into
account these losses. This amount is chosen such
as to yield a linear extrapolation of the straight
line to the origin, as shown in Fig. 4.
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l.2—

I.O-

0.8— o Upward run
X Downward run

xo

FIG. 5. Low-temper-
ature data analysis for
Nb No. 2 at 135 MHz.
The slope as T 0 is
the inverse of the ener-
gy-gap parameter.

0.2

0
0 0.2 04 Tc

0.6 0.

Figure 5 shows the same analysis of data from
Nb No. 3 at 225. 5 MHz. The result is 2&sos(0)
= 3.64kT, . The scatter present at lower tempera-
tures is due to the smaLL size of the ultrasonic at-
tenuation in the superconducting state compared
to noise and drift.

In the region just below the transition tempera-
ture 4~(0) may be conveniently measured by com-
paring the experimental ratio of a,/n„with the ratio
predicted by (1). The theoretical value of o.,/n„
is found by letting

n (T) = [n(T)/3. 5kT, ] &„(0)
and varying &~(0}until a good fit to the data is
achieved. The experimental n, /a„values are found

by dividing ~, data by the corresponding &„ob-
tained from the smoothed data as discussed in

Sec. IIIA.
Figure 6 shows the data obtained from Mb No. 3

at 225. 5 MHz compared with two theoretical lines;
one line is the BCS weak-coupling value 2&(0}
= 3. 5kT, the other line with 2n (0) = 4. 24kT, is a
"best fit" for the region T = 7;.

Figure 7 shows a somewhat similar analysis for
Nb No. 8 at 105 NHz. Here the data are compared
to the "best fit" given by 2&„(0)= 5. 08kT, and with
the low temperature -value 26ec, (0) = 3.84k T, called
the BCS energy gap. In this graph, departure
from BCS-type behavior is similar to, but much
more pronounced than, that in Fig. 6. Further-
more, the points for T„&0.5 show an unmistakable
preference for the curve obtained using the smaller
ga

The ratios a (0)/dec, (0) are readily evaluated
for the three samples yielding 1.15, 1.21, and

1.50 for Nb No. 2, Nb No. 3, and Nb No. 8, re-
spectively. On the other hand, me can calculate
these ratios making use of x determined from the
mean free path in the normal state. Vfe find these
ratios to be 1.095, 1.11, and 1.24, respectively,
which would account for about one-half of the devia-
tion from unity of this ratio.

IV. DISCUSSION AND CONCLUSION

In our previous discussion, we mere concerned
with the electronic mean free path, which yields the
value for x. Making use of the x determined in this
manner, me can account for roughly one-half of
the deviation from unity of the ratio 4~(0)/4sc e (0)
observed. We will now turn the procedure around;
taking the observed ratio &~(0)/hscs (0) in Eq.
(27), we obtain x=0. 23+0.2, 0.40+0. 06, and

6. 8+2 for Nb No. 2, Nb No. 3, and Nb No. 8, re-
spectively. These values are roughly a factor of
3 larger than the corresponding x's determined
from the electronic mean free path in the normal
state. At present me are unable to explain these
discrepancies. However, the anisotropy in the en-
ergy gap wouLd most likely contribute to this dis-
crepancy, although we cannot give any reasonable
estimate of this effect.

Going back to the electron-phonon scattering part
of the electronic mean free path, we find for all
our samples B= 0. 85/ 'K' cm, which indicates
that the electron-phonon scattering contribution is
not influenced by the impurity scattering. This is
consistent with the idea that the contribution to the
inverse lifetime due to impurity scattering is
simply additive for Low-impurity concentration.
We can also estimate B purely theoretically by
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l.o—

0,8—

0,6—

04—

0.2—

o Upwar

x Oownwo FIG. 6. Attenuation ratio
o'J&„for Nb No. 3 at 255. 5

MHz compared with the theo-
retical (solid) line drawn using
26(0) =4. 24kT, . In taking the
ratio a smoothed average is
used for 0'„.

U 4

0 UV V

I I

0.2
I

0.4
I

og
T/Tc

I

0.8 I.O

making use of Eq. (2S). Of course, we do not know
the parameters involved for interband scattering.
For intraband scattering we have 8= 1.2/'K~ cm,
where we made use of the following values:
+= 0.82, ~a= 277 'K (here instead of ~a we made
use of the Debye frequency eo, which is of the
same order of magnitude), aa and va = 3 X10' cm/sec.
We may say that the B determined above is con-
sistent with this theoretical estimate. A few com-
ments are in order about the effect of the anisot-
ropy of the energy gap. Table I shows that there
is a slight variation in Dao, (0) for the three
niobium samples. It is reasonable to expect that
these values should be equal to each other if the
sound propagation were along the same crystallo-
graphic axis for the three samples, even though
they have different impurity contents. In fact,
this is a principal conclusion of the present work.
However, the orientations are different. One could
ascribe these differences to gap anisotropy, a fact
which has been observed using the ultrasonic waves
with ql &1.' In this high-frequency case, gap an-
isotropy should be observed, since the interacting
electrons have a velocity component in the direction
of the sound propagation equal to the sound velocity.
Thus, the sound wave is sampling a perpendicular
cross section of the Fermi surface. In our case,
however, ql &1 and the weighting becomes much
broader. In the case of longitudinal waves the in-
teraction samples the gap preferentially in some
directions, since the attenuation coefficient is pro-
portional to [Pz(z)] =[a(3z —1)), where z=cos8
and 8 is the aximuthal angle between the propagation
direction and the Fermi wave vector. Thus, when
sound is propagated along different orientations,
different portions of the Fermi surface are sam-
pled. ' Therefore, gap anisotropy may account for
the three samples. In addition to simple anisot-
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FIG. 7. Attenuation ratio o.~jn„for Nb No. 8 at 105
MHz compared with the theory (solid line) for two values
of 24(0), the low-temperature value (Fig. 4) and the best-
fitted value.

ropy, sample No. 8 shows a definite frequency de-
pendence in energy gap. This is taken to be the
same ql dependence as described above and pre-
viously reported. '

In the above theoretical calculation we have as-
sumed implicitly a weak electron-phonon interac-
tion; we calculate the effects of electron-phonon
interaction by essentially making use of first-order
perturbation.

Therefore, it may be possible to improve the
agreement slightly, if we take account of the strong-
coupling effect between electrons and phonons in
niobium.

In summary, we find that the anomalously large
energy gag measured near T = T, for pure niobium
using ultrasonic attenuation with ql & 1 can be under-
stood partly in terms of a shortening of the mean
free path of electrons with small excitation energy
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in the superconducting state. This shortening is
related to the fact that the quaslparticle velocity
vanishes at the gap edge in the superconducting
state. A detailed analysis of experimental data in-
dicates that this shortening effect explains about
one-half of the deviation of the ratio &~(0)/&sc, (0)
from unity. It is tlulte likely that the remaining
half can be explained as well in terms of the elec-
tron-phonon scattering, although we cannot discard
other possibilities 4 such as the anisotropy of the
energy gap for the moment. Further experiments

on purer niobium samples should clarify these
points.
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