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for the Boltzmann factor. According to Fong's
theory, however, C4„sites should dominate C&„
sites at all temperatures up to the melting point of
the crystal. Either the binding energies used in
the calculation are wrong or the populations are

uncorrelated with the spectrum. Regardless, any
attempt to utilize the fluorescent spectrum in de-
termining the site distributions must start with
the correct identification of the lines.
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The Knight shift K, and nuclear spin-relaxation time T~ have been calculated in liquid Mg
using the pseudopotential theory. The results of this calculation show that both K, and T&T are
independent of temperature T within the error in our calculation. The calculated value of K,
at the melting temperature (651 'C) is (0. 10 ~ 0. 005)% which compares well with the recent ex-
perimental measurement (0. 112+0.004)% made between —196 and 230 'C. From this evidence,
it can be concluded that there is no significant change of K, upon melting, contrary to what has
been observed in Cd. The theoretical value of the Korringa ratio, (K, T~T) th,~/(K, T)T),d,~l,
departs from its ideal value of unity by about 17%. This departure is attributed to the differ-
ent role of exchange enhancement on the uniform and nonuniform spin paramagnetic suscepti-
bilities.

I. INTRODUCTION

In this paper, we have investigated the ternpera-
ture T dependence of the Knight shift K, and nu-
clear spin-relaxation time T, in liquid Mg. Mg is
a divalent metal and has hexagonal-close-packed
(hcp} structure similar to Be and Cd. In general,
these metals exhibit very interesting band struc-
ture and hyperfine properties. The nuclear-mag-
netic-resonance properties of this divalent group
have been extensively studied both experimental-
ly ' and theoretically'~ 6 in the solid state. It is
interesting to note that Cd shows a strong ternpera-
ture dependence of EC„ IC (anisotropic Knight
shift), and T, T in the solid state. Qn the other
hand, K, in Mg3 and presumably Be is independent
of temperature. Furthermore, K, and T, T in

liquid Cd~ exhibit no temperature dependence. The
source of the temperature dependence has been
explained in the solid' to be mainly due to the role
of electron-phonon interactions and in the liquid
through the temperature dependence of the ob-
served ionic interference functions. However,
no such investigations have been made either in
liquid Be or Mg. We will extend the theory de-
veloped earlier for liquid Cd, to study the nuclear-
magnetic-resonance properties of liquid Mg and
attempt to understand the liquid-state properties
as compared to those in the solid state.

The purpose of the present work is to calculate
K, and T, using pseudopotentials and interference
functions in liquid Mg. The role of the
Korringa constant and the effects involving the ex-
change interactions among conduction electrons in
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where

=ox 2
(3)

Oq = 1- b~ k~ e~ 0
na

(4)

and P~r(R, ) is the pseudo-wave-function with mo-
mentum kr. N, in Eq. (4) is the normalization
factor. 0 (0) corresponds to the value of the core
function"~" at the origin, and

b„,(k) = &0 „,(r) Ie"'} (6)

is the orthogonalization parameter which measures
the overlap of the plane wave with the core state.
It should be noted that in deducing Eq. (3) from
Eq. (2), one has to make the approximation

b„.(k) b (k, ), (6)

i.e. , b„,(k) is a slowly varying function of k. This
approximation has been made earliere for solid
Cd, and was found to prpduce 10% enhancement

liquid Mg will also be discussed. In Sec. II, we
will outline the theory of K, and Tj pertinent to
liquid Mg, and in Secs. III and IV, we will, re-
spectively, present and discuss the results.

II. RESUME OF THE THEORY

A perturbation formulation of K, and Tj T in the
liquid metals using the nonlocal pseudopotentials
has been recently carried out. We will apply this
theory to calculate the spin density up to second
order in perturbation theory for liquid Mg using
the local pseudopotential. For the sake of brevity,
we will, however, outline a few basic steps in the
theory, as they pertain to the particular case of
liquid Mg. The expression for the Knight shift"
is written as

K, =/vs, NAOS, (1)

where X,„AO, and N are, respectively, the Pauli
spin paramagnetic susceptibility, ionic volume,
and number of ions in the entire liquid under con-
sideration. The spin density 9 in the liquid can
be expressed as

9 =&(I/N)Z, Iy,, (%,)I') . (2)

in Eq. (2), g, (5,) is the value of the conduction-
electron wave function, normalized ovei the entire
volume of the liquid NG„at the Q,th ion site As.
mentioned in the earlier paper, ' the spin density 8
needs to be averaged over all the dynamic ion
sites. A Fermi-surface averaging is not needed
since the Fermi surface in the liquid is generally
assumed to be spherical.

The spin density' in Eq. (2} can be simplified
to the form

g =o, '&(I/N)G
I ei, (&~)l'&

P =P (00)+P (01)+P (11)+P (02),
where

(10)

P,(oo) = (I/N) &Q, I y,",'(4 ) I
'), (11)

Pr(01) = (1/N) &Z( 2 Re/~ '(Q ) Q,'"(Q)), (12)

P,(») = (I/N) &Z, I4,',"(4)
I 0, (»)

P (02) = (I/N)&Q, 2Rep' '(%,) Q'~@(g) } . (14}

In the above, the spin density P~ is broken into
four parts purposely, because we want to see clear-
ly the role of the various perturbation terms as
well as to test the convergence of perturbation
theory. Equations (11)-(14)have been derived for
numerical evaluation in liquid Cd using the nonlocal
pseudopotential. For the case of liquid Mg, we
have, however, used the local pseudopotential;
reasons for doing so will be discussed in Sec. III.
The final expressions appropriate to the first- and

over the value obtained without this approximation.
A similar calculation in solid Mg,

' however, in-
dicates2 that this approximation influences the spin
density by about 1%. As can be seen from Eqs. (3)
and (4), the spin density 9 contains terms such
as b»(kr)b~~(kr)O" »(0)O~~(0). For a multicore
system, the orthogonal parameters b„,(k) for the
inner cores are slowly varying functions of k,
whereas for the outer cores, they vary appreciably
with k. In addition, b„,(k) have smaller values for
the inner cores than those of the outer ones. On
the other hand, e „,(0) is the largest for the inner-
most core. Thus, there is a competition between
b»(kr) and 8„,(0) as to which core will contribute
most to the spin density. It is generally found that
the outermost gs core contributes most to the
spin density. Thus the approximation in deducing
Eq. (3) will be more valid for metals for which
b (k) corresponding to the outermost ns core
varies slowly with k for the momentum region of
interest.

Using Eq. (3), the Knight shift in Eq. (1) can be
rewritten as

ff. =kvX.N"OOa 'Pr (&)

where we define P~ to be the pseudospin density,
i.e. ,

P, =(I/N)&Q, Iy„(%,)I');
the pseudofunction P~r(gt, ) is then expanded by per-
turbation theory up to second order,

where Q,
' ', Q& ', and Q,

' ' are respectively, the
standard zero-, first-, and second-order pertur-
bation terms. '5 The pseudospin density P~ in Eq.
(8} can now be expressed in terms of the various
perturbation orders as
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FIG. 1. Comparison between the HS and experimental

I(q) for liquid Mg at 700'C. The experimental I(q) were
taken from Ref. (10), and the HS were obtained with the
packing density g = 0. 47.

second-order spin densities in Eqs. (12)-(14) are
presented in the Appendix.

The spin density in Eq. (10) can also be used to
calculate the nuclear spin-lattice-relaxation time'
through the equation

I/T& T = ~i, m'I'y, y„'II'(er} ks(NAOO, P&)', (15)

where y, and y„are, respectively, the electron and
nuclear gyromagnetic ratios, k& is the Boltzmann
constant, and g(c~} is the band density of states per
conduction electron. Had there been no complica-
tion due to the exchange enhancement, exchange
core polarization, and orbital effects, we could
have obtained T& T using a calculated K, and the
Korringa relation

(16)

The ratio between T& T calculated in this way and
that of the e~erimental value will be utilized to
analyze the importance of the core polarization and
exchange enhancement effects.

III. COMPUTATION AND RESULTS

For the calculation of the Knight shift and nu-
clear spin-relaxation time in liquid met&is, we re-
quire a knowledge of the interference function

l(q) and the pseudopotential form factors v(q) of the
ions. In the case of liquid 1UJg we have used both
the experimental and theoretical I(q) The experi-
mental" I(q) were taken from the work of Lukens
and Wagner, and theoretical" ' one's were ob-
tained from the hard-sphere (HS) model based on
the Percus- Yevic theory. ' Unfortunately, the ex-
perimental I(q} are available only at one tempera-
ture (VOO 'C) close to the melting point, and the
temperature dependence of 1(q) has not yet been
measured. We have, therefore, used the HS
model"' ' for the temperature-dependence study
of K, and T& T. The ppcking-density parameter
q was determined by comparing the HS and experi-
mental I(q) at VOO'C. Five temperatures appro-
priate to the available density data were selected;
the relevant information is given in Table I. For
ling, the suitable packing density was found to have
the value 0.47. It can be seen from Fig. 1 that the
agreement between the HS and experimental I(q)
is very good. A comparison between the spin den-
sities using both of these l(q} at VOO 'C will be made
in Sec. IV. The HS I(q) at five temperatures are
plotted in Fig. 2.

Next we discuss the choice of the pseudopotential
required to calculate the first- gnd second-order
spin densities. Recently, Ritter and Gardner" have
discussed the critical dept, cadence of the cgculated
spin density on the choice of the potential in liquid
Na, Ballentine, 'o in hip calculatipp of the elec-
tronic structure of several liquid metals, noticed
that the liquid-metal system behaves Qke a free-
electron gas if the first node of the pseudopotential
lies in the neighborhood of the main peak of the
liquid interference function. $haw and Smith" have
pointed out that the use of nonvocal pseudopoten-
tials, through thgir strong angular dependence,
eliminates the above critical dependence of the re-
sults on the position of thy node of the pseudopoten-
tiy, l form fq,ctor. Thy latter vi|;wpoint can sti&& be
achieved~0 with local psy@$ppotentials, if one makes
use of the form of the psegdopotential over a large
range [Eq. (A5)] and carries out the principal-value
intt;gration g,s sqggeytyd egr)ier. however, for

TABLE I. Particle density, hard-sphere diameter, and various terms contributing to spin density in liquid Mg as a
function of temperature.

Particle
Temperature density

in 'C in )(-3

Hard-sphere
diameter

in )( Ji, (1) Jl, (2 Jl (3) 2JI J'2 q 2J~

651
700'
700
750
850

1000

Q. 0390
0. 0307
0. 0307
0. 0364
0. 0340
0.0298

2. 845
2. 868
2. 868
2. 910
2. 978
3.112

~
Jz, 's are computed using HS I(q).

-0.658
-0.638

0. 613
-0.605

0. 560
-0.494

0. 108 0. 172 0, 002
0. 102 0. 161 0. 002
0. 094 0. 149 0. 002
0. 092 0. 146 0. 002
Q. 07S 0. 123 0. 002
0. 061 0. 084 Q. 003

~JI's are computed using

0. 043
0. 054
0. 035
0. 063
0. 084
0. 128

0. 254
0. 210
0. 224
0.162

-0.074
-0.094

experimental I(q).

0. 146
-0.108

0. 130
0. 070
0. 004

-Q. 033
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FIG. 2. Temperature dependence of Hs I(q) for liquid

Mg calculated for five temperatures.

metals, such as Cd, the additional effort required
for the nonlocal calculation cannot bo avoided since
Cd possesses d cores whj, ch have rather large over-
lap integrals. Additionally, the nonlocaUty of the
pseudopotential in Cd has been shown@ to be very
important in interpreting th9 bgnd Itrvcture and
Fermi-surface dimegliong in the solid state.

However, Mg does not have any d cores and the
is, 2s, and g cores are fairly localised. Kimball
et a/. found that both the nonlocal and local pseu-
dopotentials in solid Mg yielded results in good
agreement with the de Haas-van Alphen and mag-
netoresistance studies of the Fermi surface. Fur-
ther, the spin densities calculated at one point on
the Fermi surface of solid Mg using both the local
and nonlocai yseudopotentials were in good agree-
ment (within 5%) with each other (this was found by
one of the authors, viz. , P. J. , after actual com-
putations). We have, therefore, used the local
pseudopotential form factors to calculate the spin
density. This choice, in particular, simplifies to
a large extent the amount of computational effort
involved. For our calculation, we have used both
the local-pseudopotential form factors v(q) of Kim-
ball et al. and the model potential of Animalu and
Heine. The perturbation spin densities obtained
using the local pseudopotential form factors v(q}
were found to be negative and about 50% of the
zero-order spin density, This wouM indicate a sub-
stantial amount of p character in the electronic wave
functions in the liquid. This conclusion seems
rather unphysical since the Fermi electrons in Mg
in the solid state exhibit strong s character. '& ~

It should be pointed out that these local-pseudo-
potential form factors were obtained at the Fermi
surface for four values of K [(1010), (0002), (1010),

I

MS FORM FACTORS

-I 0

-l.5
0

I

I.O
I

2.0
q(aoI) ~

I

5.0
I

4.0 5.0

PlG. 3. Psegdopotential form factors (in units of
rydbergs) for liquid Mg. The solid curve represents the
local-pseudopotential form factors of Kimba11 et al. ,
while the broken curve represents the model-potential
form factor, Note that the positive and negative scales
are clearly different in the figure.

where A, 8, and Eo are constants. In the solid
state, K has to be the magnitude of a reciprocal-
lattice vector, and therefore it is discontinuous.
However, in the liquid state the periodicity of the
lattice structure is absent and E takes continuous
values, i.e. , q. While the above form of v(K} for
0.5 &q &1.25s, -' may be quite accurate, its validity
for all values of q ranging from Q to ~ is very un-
certain. %e have, ther@fore, used the model po-
tenti. al of Animalu and Heine' which at least does
not possess this uncertainty.

We have plotted these local-pseudoyotentig, l~ and
model-yet;@ntial9 form factors in Fig. 3. Et can be
Neon that thallus two hindi of form factors compare
very well in the momentum tratifer region 0.8 &q
& 1.~& '. Q,+ball et al, "have obtained excellent
agreement with the Fermi-surface data by using
v(q), where q lies in the above region Ho.wever,
for the calculation of spin density in the liquid
state, it will be shown later (for example, in Fig.
4) that the momentum transfer region /k' & q & 3k»
(&rMQ, 'fNSu ' fOr )Cg) happenS tO be themOStim-
portant region. It is clear from Fig. 8 that these
two king of form factors are very different from
each other ig thi@ region, the local-yseudoyotential
furm faCterS being Strunger. In VieW Of theae ar
garments, wo have used the model-potential form
factors for our present calculation.

The various terms in EIis. (Al)-(All) evaluated
numerically using the model-potential form fac-
tors of ~malu and Heine and the liquid inter-
ference functions'0 '~ are presented in Table I for
all the temperatures. We shall first camyare the
various terna in the Ieeqn4~r4er spin density.
The (11) term (Z~') has opposite sign to the (02)
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TABLE II. Contributions to spin densities Qn units of
1/PRO) from zero-, first-, and second-order perturbation
terms.

Temperature
in 'C

First Second
order order

Zero
order Total

650
7OO'

700
750
850

1000

-0.408
-0.396
-0.380
-0.375
-0.347
-0.306

-0.056
-0.042
-0.050
-0.027

0. 002
-0.013

1.0
1.0
1.0
1.0
1.0
1.0

0. 536
0.562
0. 570
0.598
0. 655
0.681

~Refers to the HS I(q).
b Refers to the experimental I(q).

term (Jz ) and is smaller in magnitude. The net
contribution to the spin density from the second
order is, therefore, negative but small. Among
the three terms of Z~ [see Rq. (AB) j, the J~ (1)
term contributes most to the spin density and bears
an opposite sign to that of Jz(2) and Jz', (3). If the
major contribution to these terms would have
arisen from the region around the singularity
(k'=kr), then one would expect J~(I) and Jz, (3) to
nearly cancel out while J'~ (2) would be the only
surviving term from the second order. However,
the major contribution to J'z and various terms in

Jl,
' comes from a region ~kq &q & Skz. This can

be seen floe Pig. 4, where ee have plotted the
integrand of the first-order contribution (i.s. ,
integrand of 2', ) as a function of Ij. Similar be-
havior was observed for the intOgdhn68 of the sec-
ond-order terms contributing to the Spin density.

It is interesting to note that the contributions
from various second-order terms are individually
smaller than the first-order contribution. In addi-
tion, cancellation among various seCond-order
terms makes the net second-order contribution
about a factor of 8 sma1. 1er than that of the first
order. In Table II, we have presented the aero-,
first-, and second-order contributions to the spin
density for the five temperatures under study.
The smallness of the second-order spin density
compared to the first order shows a definite trend
for convergence. The higher-order contributions
to the spin density are expected to be still smaller
since the major contributions arise from a mo-
mentum range —,'k~ & q & 3k&, and the energy denom-
inators increase rapidly with higher order of per-
turbation terms. This demonstration of convergence
is important and gives us confidence in using the
pseudopotential perturbation theory.

IV. DISCUSSIONS AND CONCLUSIONS

For the evaluation of the absolute value of the
Knight shift, we need the magnitude of the Pauli
spin paramagnetic susceptibility X,. Unfortunate-
ly, g, has not been measured either for solid or

FIRST-ORDKR INTEORAND
FOR Mg

«4

I

1.0
I I

?0 50
q(a, ')

I

4.0

FIG. 4. Intsgrand of first ardex' oontribution to spin
detisity {tiei, tnN+4fIIj fIf its) showing the momentum

1egien fren1 whish the n1exttnun1 oontribution results.

liquid Mg. We have, therefore, used the calculated
free-electrn valu

(17)y,""=p. 98&& 1p cga volume units,

and then corrected this X,
""for the electron-

electron exchange and correlation effects through
the Silverstein theory. Assuming the effective-
mass ratio m~/m = 1 for liquid Mg, the exchange
enhancement of the uniform susceptibility turned
out to be

g, =1.35 . (18)

Thus, the free-electron exchange enhanced sus-
ceptibility is

X, = 1.32~10 cgs volume units . (19)

O~ ~=108.36 .
In view of the convergence of the total spin den-

sity in Table II, we believe that our calculated
Knight shift using It, from Eq. (19) can be accurate
only up to second place of the decimal. Thus, for
the first three temperatures, i.e. , 651, 700, and
750'C, we find that K", =0.07+0.005%. However,
for the next two higher temperatures, i.e. , 850
and 1000 'C, K, = 0.08 a 0. 005% . From these re-
sults we conclude that K", in liquid Mg is almost
temperature independent within the error of our
calculation. For the exchange -core -polarization
contribution to the Knight shift, K, , we have taken

(2O)

The direct contribution to Knight shift, K„can
how be calculated for the five temperatures using
the spin densities in Table II, the spin susceptibility
in Eq. (19), and the enhancement factor 0, in
Eq. (4). To evaluate 0, ', we have calculated the
orthogonalization integrals b, ( k) in Eq. (5) using
the Hartree-Pock atomic core functions for Mg
tabulated by Mann. ~ The densities of the ns core
functions Q~„, were also taken from tables given by
Mann. Thus, for Mg
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the one-OPW result, namely, 0. 03/„and have con-
sidered it to be insensitive to the temperature in
comparison to K', (see, for example, Ref. 14).
Thus the total K, is about 0.10%.

Unfortunately, no experimental measurement on

K, is available for liquid Mg. However, recent
experimental study' on K, (0.112+0.004%) in solid
Mg from -186 to 230 'C shows no variation of E,
with temperature. The predicted results indicate
that K, in liquid Mg apparently does not undergo a
significant discontinuous change upon melting, con-
trary to what has been experimentally observed in
Cd. ' This apparent difference between Mg and Cd
may be attributed to the different degree of free-
electron behavior as is exhibited by the shapes of
the Fermi surfaces in these two metals, @& ~y +
Mg possesses all the segments of the Fermi sur-
face (i.e. , monster, lens, butterflies, cigars, and

caps) that can be constructed from the Harrison
model for the free electrons. On the other hand,
Cd possesses only the lens and monster which have
substantial p character at low temperatures. With
the rise of temperature, these segments become
more s -likes and butterflies start appearing. Since
Mg is a free-electron-like metal even at low tem-
peratures, the Fermi surface and the angular char-
acter of the electrons are not expected to change
appreciably.

In computing the relaxation time T, 1' using the
Korringa relation~ and the calculated E„ it should
be recalled that the value of E, was derived using
the exchange enhanced X,. M|'.e exchange enhance-
ment effects on uniform and nonuniform X,, are dif-
ferent, one has to divide the E, values by the en-
hancement factor q, sad th6|| utilize the Korringa
oblation to obthin l&1. The vahies of T& 1 ob-
tained in this tilanner are 150' 10 deg sec for the
first three temyeiktuPON. The elect|.oh-electron
exchange and correlation effects on the relaxation
time, g„, are incorporated using the Moriya the-
ory, i.e. ,
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(NQO) Pr (00) = 1,
(NQ, ) P (01)= [Q, /(2v)']2 Her, ,

(NQ, )P,(11)= [QR/(2v)'Q, '

(NQ~) Pr(02) = [Q(~)/(2v)~]2ReJi

The expressions for the various J&'s are found to
be

(Al)

(A2)

(As)

(A4)

xv((kf, +k"-2k kx)" ) ted

which also can be written as

Jt, = —4' t I(q)v(q)ln qdq
ki q+ 2k@,

(AS)

Z,' = Z,'(1)+Z,'(2) +Z,'(8), (A6)

Following the procedure developed in the earlier
paper, we now write down the explicit forms for
the various spin densities as stated in Eqs. (11)-
(14). These spin-density functions are applicable
to the local pseudopotentials, and are much simpler
than those for the nonlocal pseudopotentials. We
can readily show that for liquid Mg,

(T, T)Mo, ~,= (Ti T)/re,
where for liquid Mg

a~=1 57

(21)

(22)

where

J'i(1) = —& I I(q)v(q)E(q) ln qdq,
kp J q+ 2k@

Thus the corrected relaxation time 82+ 7 deg sec is
also independent of temperature. The theoretical
Korringa ratio then becomes g,'(2) = -2va

J

t'" I(q) lv(a} I

-4k

(AV)

(A8)

(K.'Ti T)~h~, /(K' Ti T)i~sa| = 1 ~ 17, (28)
~f (3) 4 (0)

I(q)v(q) dq
(AO)

which departs from the noninteracting value of unity
by 17%. This difference is probably due to the dif-
ferent role of exchange enhancement effect on the
uniform and nonuniform X,. To establish this point
unequivocally, it will be worthwhile to study other
metals with particular reference to g, and g&. (Al0)

where p means principal part. Here, the inter-
ference function I(q) and the total pseudopotential
V(r) have forms

I(q) = (1/N) (Q&Z„e
'

& "')
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The function F(q) is given by

717

V(r) =Z„v(ir -% „i), (A11)

where v(l r —%„l ) is the potential of the single ion.

F(if)= + ' tf d0' f(if )v(tt)& hs is s i ~

'&e-tf"-tf' k-e'

q ky-q -q +
0

(A12)
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