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Measurements of dipole relaxation by the method of ionic thermocurrents have been made

on CaF~. Gd
+

and peaks at 140 and 60. 5 K have been observed. Analysis yields reorienta-
tion energies and TQ's of 0.395 eV and 1.2&10 3 sec for the upper peak and 0. 167 eV and

2 X10 sec for the lower peak, respectively. Opportunity is taken to correct the previously
reported parameters for the low-temperature peak in CaF2 . Er '. The correct values are
0. 147 eV and 3&10- 3 sec.

In a recent letter' a study of the dielectric relax-
ation of impurity-defect dipoles in CaF&. Er ' which
involved the use of ionic thermocurrent (ITC} tech-
niques was reported. Two relaxation peaks were
observed, one at 138 K and one at 54 K for nominal
heating rates of P=0. 2 and 0. 1 Ksec ', respective-
ly. Computer fitting of these peaks according to the
first-order kinetics applicable to dipole reorienta-
tion in a dilute system yielded values for the activa-
tion energy E'~ and the reciprocal of the frequency
factor 70 of 0. 380 eV and 2&&10 ' sec for the upper
peak and 0. 167 eV and 3&&10 "sec for the lower
peak. The magnitudes of 70 and I-„ for the upper
peak compare favorably with values obtained on
CaF& doped with other rare earths using both ITC
and EPR methods and it is concluded that this peak
is associated with the relaxation of Er'-F (int)
complexes in which the F occupies the r.earest-
neighbor (nn) interstitial position with respect to the
Er ' ion. The origin of the lower-temperature
peak, which had not been observed previously, is
less certain. However, for reasons stated in Ref.
1, it has been tentatively ascribed to the relaxation
of a complex in which the F occupies a next-near-
est-neighbor (nnn) interstitial position.

In further experiments on CaF&. Fe ', it was dis-
covered that there was a small systematic error in
the heating rate used in the ITC measurements be-
low 80 K. The purpose of this paper is to report
in brief form the new results obtained on CaF2Gd '

and to correct the previously reported values of To

and E& for the low-temperature peak in CaFz. Er '.
Measurements of ITC were made over the range

40-160 K on a crystal of CaF2 containing 0. 01-
mole% GdFz. The crystals had been annealed pre-
viously in HF to reduce the extent of compensation
of the Gd '

by 0 . The ITC spectrum of the crystal
was quite analogous to the one' obtained on CaF&.
Er ' except that the amplitude of the low-tempera-
ture peak was smaller by nearly an order of mag-
nitude. Although ultraviolet excitation had no ap-
preciable effect upon the low-temperature peak,
quenching from 425 K resulted in a substantial en-
hancement relative to the high-temperature peak.
The last observation suggests that the two peaks in
Gd-doped CaFz, like the ones in Er-doped CaF&,
may be associated with two forms of the F (int)-
rare-earth impurity complex, e.g. , nn and nnn

complexes. In this interpretation the nnn form is
less stable relative to the nn form and a potential
barrier exists which prevents the F (int) from
readily transferring between them.

Values of To and E~ obtained from a computer fit
of the two ITC peaks are listed along with the peak
temperatures T~ and heating rates P in Table I.
Also listed are the corrected parameters for CaF2.
Er3' as a result of using the proper heating rate for
the low-temperature peak. It is gratifying that the
corrected Tp is much more nearly the normally ex-
pected value for atomic motion than the one previ-

TABLE I. Parameters for the relaxation of dipolar complexes in doped CaF&. T& is the ITC peak temperature, p the
heating rate, TQ is the reciprocal of the relaxation time, and E~ the activation energy. The uncertainty ranges for Tp

and Ez were obtained from the least-squares computer fit.

Crystal

CaF2. Gd +

GaF2. Er

Peak
Tp
(K)

139.8+0.4
60. 5+0. 2

137.9 +0.4
53.6+0.2

P
(K/sec)

0. 203
0. 105

0.203
0. 105

TQ

(x 10 ~3 sec)

1.2 +0. 7
2 +1

2 +0.3
3 +2

(eV)

0.395 + 0.01
0. 167 + Q. 005

0.386 + 0. 008
0. 147~ 0.004
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ously reported.
We wish to thank A. D. Franklin and S. Marzullo

of the National Bureau of Standards for supplying

the CaFz ..Gd ' crystal used in this work. A more
complete account of this work will be publisht, d
elsewhere.
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In a previous paper, ' the authors gave the first
exact solution of the nonlinearized Boltzmann trans-
port equation for particles with a linear dispersion
law (e. g. , phonons) subject to point scattering in
an infinite slab. The two faces of the slab were in
contact with two heat reservoirs at different tem-
peratures, and from the knowledge of the phonon
distribution function, the temperature distribution
in the slab and the thermal conductivity were derived
as a function of all pertinent parameters. These
were the temperature, the scattering cross section,
the impurity concentration, the slab thickness, and
the sound velocity. Hence, one had a model of heat
transport in insulators at low temperatures. The
results were compared with experimental data ob-
tained on specimens of prismoidal and cylindrical
shapes, and good agreement was found despite the
fact that an infinite slab is geometrically very dif-
ferent from either a prism or a cylinder.

It is the purpose of the present comment to show
that the solution given in the cited paper is valid
not only for the infinite slab, but also for a straight
prism or cylinder of any cross section and of finite
length, provided that the phonons are specularly
reflected at the side walls.

First, a heuristic argument: Suppose that people
with identical features are milling around in a room
of infinite extension on all four sides. Among them
is the reader as an observer. Now mirror walls
perpendicular to the floor are erected around the
observer, making him a member of a sufficiently
large crowd enclosed in the prismatic room so
created. Can the observer tell by looking around,
whether he is in the finite room or in the infinite
room V It is intuitively clear that he cannot tell
the difference as long as the dimensions of the en-
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FIG. 1. Projections of a cylinder of arbitrary cross
section inscribed into the infinite slab. Bottom: Projection
on the x-y plane. Top: Projection on the y-z plane. The
slab rests on the x-y plane, and is topped by the plane b.
One and two primes denote the x-y and y-z projections of
the labeled quantities, respectively. The incident phonon
wave vector is k&, the reflected wave vector is k2 at the
point P. The tangential plane at P is t, the normal vec-
tor is n. The figure shows that only the azimuthal angle
y, and not the polar angle e, is changed in the reflection.


