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In this paper we derive from first principles, equations describing the kinetics of luminescent
transfer. We apply the Pauli equation to an appropriately defined density matrix to derive,
under one formalism but under opposite limiting assumptions, both the usual nonlinear kinetic
rate equations and the equations which form the starting point for the calculations of Forster
and others. The transition probabilities entering these equations are discussed. It is shown
that they permit multiparticle processes, with great increase in the possibility for resonances
that exist if only two-particle processes are considered. Further, in the rate-equation approxi-
mation, the concentration dependence of the transition probabilities and of the yield reflects
only the number of particles participating in one energy-conserving transfer, andisnotassoci-
ated with the spatial dependence of the interaction. Such an association does exist in the Forster
approximation, but a direct correspondence between powers of concentration and multipole
orders appears valid only under severe constraints. The observednonlinearities of decays and
bf yields, and dependences on the excitation mode, are easily handled with rate equations. Some
of the experimental evidence that the rate-equation approximation applies, in fact, to many sys-
tems, particularly to rare earths in inorganic hosts, is briefly discussed.

I. INTRODUCTION

The theory of luminescent transfer has been
developed by many authors' over a long period
of time. From the copious experimental investiga-
tions we cite a sample of those in which yield and
decay characteristics have been studied in their
quantitative and functional dependence on concen-
tration and other factors. 3~ ~' Since the problem
of fluorescence transfer and quenching first ap-
peared inthe context of the kinetics of organic mol-
ecules, the interactions initially considered were
contact potentials. ' Forster established the role
of long-range potentials and the resonant nature of
the process. Dexter' ' applied the concept of
resonant luminescent transfer to impurity systems
in inorganic materials. He associated the resonance
condition with observable overlap between fluores-
cent absorption and emission bands; he showed
that the interaction potential could usefully be ex-
panded in multipoles, but that this multipole series
converges much more slowly than for radiation;
he investigated the concentration dependence of
transfer and showed that even dilute concentrations
could be effective, and he placed cooperative ener-
gy absorption within the same framework. There
remain certain ambiguities in Dexter's discussion
of the concentration dependence of transfer, how-
ever, and their resolution will be one of the results
of this paper. Colbow' '" and Inokuti and Hira-
yama" explicitly treated exchange interactions.
The effect of phonons on transfer has also come
under scrutiny. '4' 3' Much effort has gone into
finding experimental evidence for specific terms
in the interaction potential. Usually one attempts
to infer the coordinate dependence of the interaction

from the concentration dependence of the decay or
of the yield. On the other hand, in studies using
rate equations to interpret the data, the multipole
question is absent. It is also a curious fa.ct that
the concentration dependence follows a square law
in the vast majority of cases (though powers up to
three are not uncommon), and this is true even
where the relevant transitions are high-order for-
bidden. There has not yet appeared a thorough-
going attempt to assess the effects of the nonlinear
nature of the process.

To resolve these problems we derive in this
paper the theoretical apparatus for luminescent
transfer, from first principles. The starting equa-
tions in previous treatments '6 ' '~ are the final
result of our main calculation. The assumptions
underlying these equations and the results derived
from them, their region of validity, and their re-
lationship to each other come into clear perspective
in this fashion. We also derive a number of new
results.

In Sec. II we derive an equation for the time de-
velopment of a fine-grained probability density of
the population of single-particle states. We define
the ensembles appropriate to the luminescence
problem, and then avail ourselves of the density
matrix formalism. We briefly review the assump-
tions implicit in the Pauli equation for the time
development of the density matrix. We transform
the Pauli equation, whose variables are occupation
numbers, into an equation with particle coordinates
as variables. In this way we obtain an equation for
the time dependence of the fine-grained probability
density. We also examine the assumptions implicit
in configuration averaging. In Sec. III we derive
the usual kinetic nonlinear rate equations, from
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V, =V~+ MC

where

(la)

(Ib)

x'=Q x', , .
$&j

(lc}

We assume that X' has no terms that commute with
X p Although this is not entirely necessary and not
always physically realistic, it simplifies the dis-
cussion.

We define our ensemble as follows: The ensem-
ble is a set of particle distributions, each with the
identical spatial configuration, but differing from
each other in the states assumed by different atoms.
Each member of the ensemble specifies a specific
state for each individual particle. (The "individuals"
within a given species are distinguished by their po-
sition. Since we are asking questions about the dif-
fusion and migration of excitation, the position of

the results of Sec. II. This is possible under cer-
tain limiting assumptions. We also derive the
equations used by Forster, Colbow, and Inokuti
and Hirayama (FCIH) as their starting point in their
calculations. These require, in essence, the op-
posite limiting assumptions. In Sec. IV we examine
in more detail the transition probability that enters
into the equations. Among other results, we find
that multiparticle processes are highly probable
in certain circumstances, and that the concentra-
tion dependence of the transition probability re-
flects the number of interacting particles and not
the spatial dependence of the interaction. In Sec. V

we analyze the experimental quantity called fluores-
cent yield. We find that the yield measured in de-
cay and the yield measured in steady-state emis-
sion do not, in general, coincide. We distinguish
as carefully as possible the experimental situations
and the material properties required for the validity
of various expressions found in the literature, and
we indicate the derivation of alternative expres-
sions for models obeying nonlinear rate equations.
Section VI is a summary of our results.

II. MICROSCOPIC EQUATIONS

Consider a given spatial distribution of impurities
in a crystal. The Hamiltonian for impurity i, in
the absence of other impurities, is denoted by V
X; includes all atomic effects, the effects of the
crystal field, coupling to phonons, and in some
circumstances, exchange terms. The 'K, are not
all necessarily the same —there may be different
species or inequivalent sites. The interaction be-
tween impurities i and j is denoted as )X,,&, where
X is a smallness parameter and X,&

depends on the
coordinates of both particles. The system Hamil-
tonian is

0
Q c~Q~ (4)

The degeneracy is partially lifted by 3C . In gen-
eral, a gk corresponding to an energy E, -E„will
contain mainly (IJ)„'s corresponding to E'„; converse-
ly a given P„will, in general, be a significant com-
ponent only in gk's which correspond to an energy
very close to E„. This is not absolutely true, how-
ever, since linear combinations of P„s exist such
that higher-order diagonal contributions of X' can
become appreciable. It is also possible to have
positional distributions of excitation that are long-
range correlated, locally correlated, or uncorre-
lated. We assume that for a given energy the num-
ber of gk's corresponding to correlated states is
small.

Since the (~k are eigenstates of 'K, transitions be-
tween them never occur (unless one widens the
system by contact with a bath}; transitions occur
between the @„. At t =0, we specify not an energy
eigenstate g„but a state Q„, which specifies where
the excitation is. The excitation migration involves
the decay of P„. The natural tool for this problem
is the density matrix.

The elements of the density matrix p are defined
in terms of the constants appearing in Eq. (4)

0
p pffft

=~ C „k C km
k-"1

and in particular

(5a)

(5b)

One interprets p„„as the probability of (I}„occur-
ring in the ensemble. This is identical, by defini-
tion, to the joint probability that particle i be in
state a&, particle j in state n„etc. ;

the particles carrying the excitation can be a rel-
evant variable. This is in contrast to the more
usual situation in relaxation, where only the total
number in each state is significant. ) A member
of the ensemble is specified by the state

~.=n. (;} (2)

The label e, denotes the unperturbed single-particle
states (with energy Eo ) of the particle at r, , and

y satisfies

(3)

If there are ¹,particles of species j, and S& states
are available to each particle, then the index n can
assume 0 =g& N&S& values. In other words a change
in any of the e's produces a new n. The (I}„are
eigenstates of Ko, corresponding to energy E„, and
are tremendously degenerate. Because of 3C, they
are not eigenstates of K. We denote the eigenstates
of 3C by g„ and they can be expanded in Q„'s:
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p..=P(e.)=P[X., (r } X.j(rj), "1 . (6a)

We will use the following shorthand, with obvious
meaning:

/ ~

pa=P„=P(z& nj&jt aj, ~ ~ ) (6b)

The Pauli equation describes the time dependence
of the density matrix,

p„=g„.(W„„.p„.—W„.„p„), (7)

where W„„. is the transition probability from (t}„,
to P„. (We discuss the transition probability in
more detail in Sec. IV. ) The derivation of this
equation has been intensely studied, the central
problem being the progressive removal of condi-
tions that are sufficient but not necessary. 97 The
equation applies, in general, to weakly coupled
dilute systems (but it is possible to derive more
general equations). By "weakly coupled" one means
that the states P„, and therefore y, remain suitable
basis states for all time; by "dilute" one means
that multiparticle collisions or interactions do not
dominate the relaxation process. More precisely
the following constraints apply: (i) The N/V limit
holds, i.e. , the effects are concentration depen-
dent, but not volume dependent. (ii) In Eq. (la)
the smallness parameter & goes to zero as the time
t goes to infinity, but & t is finite. This condition

guarantees that the perturbation remains small
even when applied for a long period of time. It
implies that the autocorrelation time of 3C is short
compared with the time scale of measurement. It
excludes, in particular, strong-coupling cases, as
may in practice be sometimes encountered with ex-
change. Such cases must be handled separately,
usually by redefining the "particles" in such a way
that the coupling terms are already included in F.o.
A derivation which particularly elucidates this con-
straint is given by Montroll. (iii) The off-diagonal
elements of p are initially zero, i. e. , the random-
phase approximation is valid at t =0. This con-
straint excludes effects which depend on the order
or coherence of the system, as may be encountered,
for instance, with phase-locked laser-driven sys-
tems.

We observe that with the interpretation of p given
by Eq. (6), the Pauli equation (7) is identical to the
master equation of Falkoff.

The final states Q„. can be classified with respect
to P„according to the number of particles that have
changed state. We focus our initial attention to
binary processes. This is notationally convenient,
and the generalization to higher-order processes
is easy. We consider one particular binary term,
in which atom i deexcites and atom j excites:

(p„);j--Q Q W(r;, r j, n„, n j, a j, n j)P (1, n» ~ ~ ~ i, n;; ~ ~ ~ j, n j,' ~ ~ ~ N, a+)
Qj Qf

—W(r, , r» n, , n» aj, nj) P(1, n„~ ~ ~ z, n, ; ~ ~ ~ g, n» ~ ~ ~ N, n„) . (8)

Here, the labels e denote the initial particle states,
as specified by P„and the e denote the changed
final particle states, as specified by Q„.. For
binary processes, only two of the final particle
states differ from the initial ones. The prime on
the sum over final states indicates that the initial
states are to be omitted from the sum. In general,
5' will depend on the initial and final particle states
and on the relative positions of the particles. In
particular it will be zero for transitions which do
not conserve energy. The time dependence of p
due to all possible binary processes is given by

p. =2 ZZ (p.);j, (8)
ffj

where (p„};jis defined in Eq. (8). We note that

-ZZ=ZZ .1
2 iAj f)f

P(k, n, ) =Q„'p„ (IO)

and its time dependence by

P(k, n, ) =Q„p„,

where the primed sum includes all n such that P„
contains y, (r~). To perform the sum in Eq. (11)
we sum Eq. (8) over all initial states, with fixed

We now transform Eq. (9}which deals with states
of the N-body system to an equatior which deals
with individual particle states. The probability of
finding particle k in a particular state, which we
denote by n„, is given by

p(k, a, )=—Qg Q g gg[W(r, , r, , a;, n, , n, , a, )P(l, a„ i, n;; ~ j,n„N, a„)
O] Cf flak Ot„

—W(rj, rj aj 'nj a' aj)P(l, n» ~ ~ ~ i, aj', ~ j, ajar NynN)]
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Here we indicate by the symbol II+~ Q that one

sums over all the initial states of all particles ex-
cept the kth. These sums allow us to contract Eq.
(12) by means of the summation theorem for joint

probabilities, g P(m, n)=P(n), where both m and

n may denote sets of variables.
Consider the sums over states for fixed i and j.

There are two cases: (a) Neither i nor j equals k.

(b) Either i or j equals k. In case (a), k does not

change its state n~. We would expect the contribu-
tions from such terms to sum to zero, and we now

demonstrate that this is indeed so. Using the sum-
mation theorem to sum the right-hand side of Eq.
(12) over all states except the initial and final
states of i, j, and k, we obtain, for fixed i and j,

2Q Q QQ W(r, , rj aj nj aj aj)P(i, n, ;j, aj,'k, n, ) —W(r;, rj, n, , nj, n;, nj)P(i, n, ;j, nj, k, nj) .
Of» Ofy I » ey

Since n» and n» run over the same set of states, as do ~& and o.~, the summation cancels the terms iden-

tically. On the other hand, if i equals k, the summation over all but n„n„and a, gives

2 Q Q Q W(r, , r» n, , n„, n, , nj)P(i, n;;k, nj) —W(r;, r„, n, , a„a;,n, ) P(i, n, ; k, nz) .
Q» e»f Ot»

Because e, is exempt from summation, these terms do not cancel. If j equals k, a similar expression
results, with the dummy index j substituted for the dummy index i. The double sum over i and j is there-
fore reduced to a single sum, and Eq. (12}becomes

P (k, n, ) =Q Q PQ W(r„r„n„n„n, , a, }P(i,n;; k, n, ) —W(r, , r„n;, n„n;, n, ) P (i, n„'k, a, ) .
a» Of» a~

(i3)

It should be noted that energy conservation enters
only through W, which must vanish if energy is not
conserved. If one is talking about a pair of levels
n, and a, in resonance with another pair n» and
a „ then only one term in the triple sum of Eq. (13)
will have a nonvanishing coefficient.

If no "bath" variables are implicitly integrated
over in W, then the W's for a process and its in-
verse are equal. This condition is verified for
resonant transfers (although it is not verified for
phonon-assisted transfers). To reduce notation,
we shall henceforth write W only once.

To facilitate progress, it is convenient to factor
the joint probability distributions of Eq. (13). The
assumption of factorizability means that correla-
tions among the populations of single-particle
states remain infinitesimal for all time; i.e. ,
there are no fluctuations into coherent many-body
states. For further discussion of this point we
refer to Ref. 99. At first sight, this seems to go
beyond condition (3) for the Pauli equation, which
requires lack of coherence at t=0. However, Kac' '

has proved that if the off-diagonal elements of the
density matrix vanish at t =0, then they remain
zero for all time, for isolated systems. Factoriz-
ability does not impose a constraint over and above
what is already required by the Pauli equation.
This fact would be difficult to establish without the
identification we have made between a spatial dis-
tribution and the density matrix. In factored form,
Eq. (13) reads

j (k, n, }=Q P'Q Q' W(r„r„a„a„n„n,)
~» ~» ~a

x [P (i, n, ) P (k, a, ) —P (i, n, ) P (k, n )] .
(i4)

We make two additional remarks:
(a) If there are two species, it is convenient to

group the terms in Eq. (14) with explicit reference
to the two species. We use A and B as subscripts
to denote each species, and we label the states
available to an A particle as o., and those available
to a B particle as P. Then Eq. (14) becomes

P~(k, aj) =+Q QQ Wzjj(rj, rj„Pj, nj„Pj, nj) [P~(k, aj) Pjj(j, P, ) —P„(k, aj) Pjj(j, Pj}]
&g ea

+Q Q'Q Q' W (r, , r, a. . . ,. , ) [P (i, n;) P„(k, n, ) —P„(i, n; ) P„(k, n, )]
I» Of ~ Ry

The first sum accounts for intersystem (A B) transfers. The s-econd sum accounts for intrasystem (A-A)
transfers.
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(b) If Wpermits interactions not between two but between Q particles, it is clear that the corresponding

terms on the right-hand side of Eq. (14) will be

~ Q' W(r„r„.. . r„a„n„.. . n„a„a„.. . o, )~ ~ ~ ~

j fzj oj j 0'g ag

x[P(i, o, ) P(j, a, } ~ P(k, u ) —P(i, n, ) P(j,n, ) P(k, & )], (16)

where the notation ~ ~ ~ indicates a total of (Q —1}
similar factors or variables, not counting k.

Of course, the equations we have derived are
only typical of a set, in the sense that a similar
equation can be derived for each state available to
each species.

The equations we have so far derived deal with
one fixed spatial configuration of particles. This
model is realistic in the sense that particles, of
course, do occupy some fixed configuration; it is
unrealistic in the sense that this configuration is
unknown and that, more important, the macro-
scopic properties cannot depend on it. In partic-
ular, sums over particles which appear in calcula-
tions are invariably replaced by sums over lattice
sites. Therefore, it is desirable to derive at the
outset the time development of a probability whose
variables include coordinates. Such a probability
is the joint probability that there is a particle at
r, and that it is in state n„de ntoed P(r, , n~ )—as
opposed to the simple probability that the particle
fixed at r, is in state e, which we have denoted
P(k, n, ) The de. rivation merely requires that we
enlarge our ensemble. That is, Eq. (2) is now
modified to

4.=~ x., ( .'},
where the superscript on r refers to the particle
and the subscript to its lattice site. Since we now
distinguish between a particle and its position, we
define, in addition to P(k, n~) and P(r, , e~), the
function P(r, , k, a~) as the probability that the
particle k is located at r, and that its state is n, .

We note the following relations:

Q„P (r. , k, o., ) = P (k, n, ), (17a)

Q, P(r, , k, n~ ) =P(r, , o.,),
Z,,P(r„k, a„)=P(r„k),

Q„P(r„u, ) =P,P(k, o, ) =X.

Q„P(r„k)=1.

(17b)

(17c)

(17d)

(17e)

where gyp means that the position r „of particle j
assumes successively the values 1 to M, where M
is the number of lattice sites, excepting only the
values of r occupied by the particles k and i. Equa-
tions (10)-(12) now refer to P(r, , k, o.~) rather
than P(k, n, ), and of course have g, preceding their
right-hand sides. All the arguments go through
essentially unchanged, and Eqs. (17) allow the con-
traction into P(r„n, ) rather than P(k, o.„). The
final result, paralleling Eq. (14), is

The joint probability corresponding to p„ is accord-
ingly

(6b')

There are no transitions between configurations.
Therefore Eq. (8} remains intact, except that the
joint probabilities are given by Eq. (6b ) and the
right-hand side is preceded by a sum over config-
urations. We note that the sum over configura-
tions is equivalent to

P(r„a„)=Z Z Z Z W(r„r, , n, , a„a;,a~)[P(r„o;)P(r, , a~) —P(r» n;)P(r, , )o],aj aj a~

and paralleling Eq. (15),

P„(r, , o, ) =+Q Q Q W„(r, r, , p, , a„pq, uq) [P~(ro o-'a)Ps(r~
xy Bg Bj

+Q Q Q Q W„„(r~,r, , n, , n„, n, , o'~) [P~(r, , o'a) P~(rn, ui) —P~(re~ o'a) P~(ra~ &~}]
Py I j I Oip

(14')

(15 }

In Eqs. (14 ) and (15 }we have produced, in the
strictest sense, equations for a microscopic den-
sity function.

The procedure leading to Eq. (15 ) is equivalent
to taking a configuration average of Eq. (15}. The
configuration average of an operator 0(r, , . . . , r„)
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is defined as the following integral over volume V,

or sum over M lattice sites:

(18a)

1 g O(r„,. r„) .
M" P I ~

(18b)

The difficulty with the configuration average, as
given, is that it does not exclude configurations in
which more than one particle occupies the same
site. One can easily exclude more than one par-
ticle from the specific sites under consideration
[e.g. , a and 5 in Eq. (14')]. But the excluded volume
problem in general is unsolved. It is disconcerting
to realize that the fraction of allowed configurations
is exponentially infinitesimal. There is a counter-
consideration, however: From the Ursell-Mayer 102

linked-cluster theory for the imperfect gas it is
known that the configuration average is valid in the
limit of vanishing concentrations. At worst, there-
fore, one is calculating properties of the interact-
ing system to an accuracy corresponding to the
first virial coefficient. The convergence of the
linked-cluster expansion hinges on the finite range
of certain functions f„. It is easily shown that in
the present context the corresponding functions
are 6 functions, except for a finite number which
can be handled separately. (The problem is there-
fore reduced from integration to counting. ) For
this reason we hypothesize that the configuration
average is valid in the present context even for
finite concentrations.

We remark that the simplicity of our derivation
hinges on the choice of ensemble, which is an en-
semble in "1"space rather than in "p," space. ~
The Pauli equation is thus linear with respect to
the system states, but highly nonlinear with respect
to single-particle states; in the transformation the
dimensionality of its space has been tremendously
reduced.

We have packed exchange and phonons into 'K
&,

although in principle such interactions could be
explicitly treated. With reference to transfer,
phonons have four effects: (i) They cause line
shifts, including Stokes shift, which alter the
resonant condition. (ii) They cause (inhomoge-
neous) line broadening, which imposes a statistical
treatment on the resonance condition. These ef-
fects are significant for transition metals but not
in general for rare earths. (iii) They cause
electron-lattice relaxation, producing terms linear
in single-particle probabilities, which are easily
included. (iv) They produce a second-order ef-
fective interparticle interaction, which we have
discussed previously. 26 We shall not develop here
any of these effects explicitly.

&&[P„(r,, ag)P ( spr, ) —Pg(ro ag)PB(rb pf)] ~

(18)

$ince P„(r, , a~) and P„(r, , a~) are independent of
r„ they can be pulled out of the r, and r, sums.

Their actual value is

P„(r„a)a=P„(aa) =—n a, - (2oa)

P„(r„a)a= P~ (a a) na, =— (8ob)

where n is a molar concentration (i.e. , N/M; M
is the number of sites). We assume at this point

III. MACROSCOPIC EQUATIONS

To solve the equations for the density function,
in general, is difficult, because of their nonlinear
and nonlocal character. It is possible to devise
iterative procedures, and to limit artificially the
range of nonlocality. Rather than pursue this di-
rection, however, we shall restrict ourselves to
limiting cases which yield expressions actually
current in the literature.

In Eqs. (15) and (15 ) there are two sums —the
(AB) term which represents intersystem transfer,
and the (AA) term which represents intrasystem
transfer. We consider cases where the magnitudes
of (AB) and of (AA) are sufficiently different so
that one can define three time scales: t», t»,
and t, the time scale of measurement. The con-
dition t» « t « t» corresponds to the assumption
that internal thermalization within the A system is
much more rapid than A-B transfer. Under this
assumption we shall derive the usual kinetic non-
linear rate equations. The condition t « t» « t»
corresponds to the assumption that A -B transfer
is much more rapid than internal thermalization
of system A (or system B) Afte. r a number of ad-
ditional constraints, we shall derive the decay
equations used by Forster, Colbow, ' '" and
Inokuti and Hirayama. "

We now consider the limit t» « t « t». In
Eq. (15) or (15 ), as the (AA) term becomes very
large, one can neglect the (AB) term. In this
limit, the steady state is reached, or the (AA)
term becomes vanishing, in a time shorter than
any other relevant time. The structure of the
(AA) term is such that the steady state requires
P(i, a, ) = P(k, a„), or P(r, , a, ) = P(r» a, ), for
every i, k, and e, . Physically, this means the
A system follows any A-8 transfer adiabatically,
and the distribution of the various states a is spa-
tially homogeneous, on the time scale t .

We now address ourselves specifically to Eq.
(15 ). We sum Eq. (15 ) on r, . The (AA) term
vanishes identically upon summation, and, using
(17d), we obtain
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that 5' depends on r„and r, only through their dif-
ference (r, —r, }, an assumption which is physically
justified in nearly all circumstances. We define

P =n, /n„,
q„=n /n. ..„.

(24a)

(24b)

Qj k Pj, ak)&=Re, (. k—, Pj, ak, Pj, ak),
(»)

and we note that in virtue of our assumption, the
sum in Eq. (21) is independent of origin, that is of
the value of r, . Using Eqs. (2Q), (21), and (17d),
Eq. (19) becomes

n =ps Qk ~, ( wAjl (Pj, ak, P„a,) &

x [n ,, n;, --n, , n, , ] . (22)

This is the familiar form of the nonlinear rate
equation for binary processes. Frequently there
are only two pairs of interacting levels in reso-
nance, and then the sums over states would col-
lapse to one term.

We have chosen to derive Eq. (22) from Eq. (15'),
which is the configuration-averaged version of
Eq. (15). To see what price is paid if we wish to
avoid the configuration average, we now derive
Eq. (22) directly from Eq. (15). Equation (15) is
summed on A. Similar considerations as before
apply to the P&'s except that their constant value
is now n„/n„rather than n . What is different
is that we must now consider gk W(r„rj, Pj, ak,
P, , a, ) which is a sum over particles, not over
sites. To make this sum invariant with respect
to the origin r&, we must assume that each par-
ticle sees an identical configuration of particles,
with respect to its own origin. This means that
the spatial distribution is not random but forms a
lattice. To convert the sum further into a lattice
sum over all points, i.e. , to put

+k +(rk rj pj ak pj ak}

Abbreviating the notation to show only two pairs of

states, Eq. (22) then becomes

~.= «&n. (f;f.- -I.»),
q, = (w&nr(q-gk-q, qk) .

(25a,}

(25b}

The notation (25b) produces systems of equations
whose symmetry in a and P is more apparent.
(b) The sum over sites which defines (W& is con-
veniently replaced by an integral whose lower limit
is the distance to an effective nearest-neighbor
lattice site. This distance may be the true near-
est-neighbor distance, the radius of a sphere
whose volume equals the volume of a unit cell, or
a similar geometrical dimension. The error in-
curred is usually, though not always, small. For
a more complete discussion of this point, we refer
to a previous paper by the author. ' ' (c) Our der-
ivation of the rate equation has not involved any
assumption about tz&. Likewise, had we assumed
t» to be short, then without further assumption
about t» we could have derived an equation for
n~. Since the time dependences of n and nz are
rigidly coupled by energy and particle conserva-
tion, it follows that rapid thermalization of either
species, not necessarily both, is sufficient for the
appropriateness of the rate equations.

We now consider the limit t„« t»« t». In
Eqs. (15) and (15 ) the gA) terms can now be
neglected. In Eq. (15 }, P„(r„a)is now not con-
stant, however, and varies randomly with r, . To
disentangle the time dependence from this random
coordinate dependence is difficult. But Eq. (15),
in which only particle labels appear, can be solved
under this approximation.

We define

+pknA +(ra rkt ply aki pjs ak)

=nA( g (pj, ak, pj, ak) &, (23)

we must assume in addition that every lattice site
is occupied by n particle& in state a„by n Og

particles in state e2, and so on for every state e, .
With Eq. (23), one moves in straightforward fash-
ion from Eqs. (15)-(22). Equation (23), or essen-
tially similar ones, are very common in the liter-
ature. We feel that the implied physical model is
difficult to sustain, and we prefer the configuration
average, with its own difficulties. In the present
context, the results turn out the same, but this is
not always the case.

We make three further remarks: (a) The rate
equation (22), which we have derived, is usefully
written in terms of the fractional occupation num-
bers

n lr (f) = P (fl r l } P(ifl r l }-, - (25)

where the subscript indicates the equilibrium value,
attained as t-~. Neglecting terms higher than
linear in &'s (and neglecting the possibility of mul-
tiple resonances}, Eq. (15) now becomes

=Qj W(rk, rj, a, p, a, p) [jkjjjP(k, a)„
+ jkk- P(j, p)„—njkP (k, a)„—jtk P(j, p}„).

(27)
This linearisation of Eq. (15) will be a valid approx-
imation provided (i) the displacements from equi-
librium n are small for all time, and (ii} the par-
ticle concentrations are low. The second condition
arises in physically more comprehensive equations
from the requirement that the quadratic terms
must be negligible also with respect to linear dis-
sipation terms which wiB in general appear.

A number of alternative additional simplifica-
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= —2Q) W~s (r)), r~, n, P, a, P ) &)))I,

with solution

(30)

n))o = exp[- 2+, W~ (r» r&, n, P, a, P) t] . (31)

It is at this point that we perform the configura-
tion average, in order to handle the sums over
particles in a random distribution. We then obtain,
for cases 1 and 2, respectively,

&nn &
= „J)exp[- W~ (r„r, , a, p, n, p) t ]

x dr& ~ ~ ~ dr„, (32a)

(aa) = f exp[- 2w„, (F„r„a,)), u, ))) ))

xdr, ~ dr„. (32b)

We point out that there is no conflict between the
nonexponential time dependence of Eq. (32) and the
linearized equation (27) from which it is derived.
The decay is the sum of N exponentials, and indeed
is equivalent to summing Eq. (29) or (31) on k.
Our inability to perform directly either this sum
or the sum in the exponent is, of course, what
motivates the configuration average. It is inter-
esting to note that the prescription (23) would lead
to a simple exponential in this case, in contrast to
the result of the configuration average.

Equations (32) are the starting equations of

tions are now required:
Case l. (a) P(k, a) =0, i. e. , the initially ex-

cited state (of the sensitizer) will be fully depleted;
(b) P(j, P) = I, i.e. , the initially fully populated
ground state (of the activator) will not be signifi-
cantly depleted; and (c) the backflow terms are
negligible.

Constraints (a) and (b) are in conflict, unless the
initial fractional occupation of the excited state is
very small. Constraint (c) implies physically that
the sensitizer have a concentration much lower
than the activator, and that t» as well as t» be
long. These conditions are in addition to the ones
required for linearization. They allow the neglect
of all but the last term on the right-hand side of
Eq. (27), which then reduces to

=-Qg W~ (r), rg, a, P, a, P}n), , (23)

with solution

n„=exp[-Q, W» (r» r» a, P, a, P) t] . (29)

Alternatively, in a process such as ionized
donor-acceptor recombination luminescence, the
particles deexcite in pairs. This is case 2.

Case 2. This requires (a) P(j, P)„=P(k, a)„=1,
(b) P(j, P) =P(j, a) =0. With these constraints,
Eq. (27) reduces to

Forster in his series of papers beginning in 1948.
They were applied specifically to exchange by
Colbow in 1965, and a number of generalizations
were subsequently made by Inokuti and Hirayama
in 1965. We shall refer to models in which the
assumptions underlying Eqs. (32) are verified as
FCIH models. It should be pointed out, however,
that equations of the form of Eq. (32) have a long
history outside the field of luminescence, and have
been used to solve problems as various as pressure
broadening in gasses, ' ~' calculations of equa-
tions of state, ' and the calculation of paramag-
netic resonance line shapes.

We have exhibited with some care, and in se-
quence, the assumptions underlying Eqs. (32). It
is apparent that they apply more naturally to case 2,
the context of the Colbow calculation, for instance,
than they do to case 1 or to transfer properly
speaking. There are important physical systems
to which the numerous restrictions are undoubtedly
applicable —in the context, for instance, of fluo-
rescent dyes, for which the theory was proposed
by Forster. Their applicability to conditions en-
countered in many inorganic systems must be
scrutinized carefully, however. In the context of
rare-earth impurities in crystals, for instance,
it seems that the concentration ranges encountered,
the levels of excitation that are achieved, and the
relative magnitudes of the various transfer times
all render this model inappropriate. We shall re-
turn to this point later.

IV. TRANSITION PROBABILITIES

In this section we discuss (a) the first-order
transition probabilities, (b) multiparticie transition
probabilities, (c) the effects of certain generaliza-
tions in 3C, and (d) the concentration dependence
of (W&.

(a) The first-order transition probability is
given by the usual expression

w(, „,p, , p) =(2 /h)lÃ„„, l p(E) . (33)

The initial and final states correspond to (t)„and
)t)„,, defined in Eq. (2). If 'tC contains only two-
particle operators, i.e. , if 3C obeys Eq. (lc), then
the transition matrix element written in full is

x„'„,=(x-.(r.» xI(r~&12&'(r~, r. &l x. (r.&, x~(ri&& ~

(34)
The density of states p(E} is simply 1 or 0, depend-
ing on whether or not (E -E )+(E~ Ef)) =0. T-h-is

is true only if 3C has no diagonal elements and is
time independent. Relaxation of these conditions
on 3C is discussed under (c).

(b) The transition probabilities for processes
involving more than two particles require higher-
order matrix elements (if 3C contains only two
particle terms). These can readily be obtained
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from standard perturbation theory. ' Such multi-
particle processes are well known in paramagnetic
relaxation, for instance. ' " We exhibit the
matrix element for three particles which change

from states n, p, y to states n, 0, y. We ab-
breviate the notation to indicate only states, not
coordinates, and we indicate intermediate states
by the subscript "m":

(y p!3C lying)(@a 13C I pa) + (ya13C'lya )(a p13C'Ia p)
E„—E~+Eq —E~ Eo —Eo +E~ —Eg

(Py 13C I Py )(y~ n13C lya) ~ (Pa 13C I Pa )(a y13C I ay)

~ (a P 13C I a P )(Qy 13C IPy) ~ (ay!3C lay )(y P 13C ly P)
E~ —Eg +E„—E„- E~ —E~+E„—E)-,

(25}

For Q particles (q& 2), there will be Q! sums,
each on (Q —2) indices. It is, of course, the square
of the absolute value of such expressions that enters
the transition probability. Interference does not,
in general, occur, and the cross terms remain.
Despite this plethora of terms, the multiparticle
interactions are limited by the large energy de-
nominators, and the "weak-coupling" requirement
of the Pauli equation guarantees precisely that such
an expansion will not diverge.

It may happen, however, that a particular multi-
particle process happens with high probability.
This occurs when a Q-particle process is forbidden
because of a near miss in resonance or because of
a vanishing matrix element, but a related (@+1)
particle process is allowed. Consider, for ex-
ample, the system of levels shown in Fig. 1. Sup-
pose the two-particle process 5-4, 0-4 is in-
hibited, either because one of the matrix elements
vanishes, or because (E, -E4) & (E, -EO). Suppose
that the three-particle process 5-1, 0-4, 0-4
is not inhibited by selection rules, however, and
conserves energy. In Eq. (35) there will occur
energy denominators like (E, +ED —2E,) which are
small, and which give rise to a large probability
for this process. The missed or forbidden reso-
nance for the two-particle process thus actually
appears in an associated three-particle process.
This will be the rule rather than the exception when-
ever a closely spaced subset of levels is available
which can provide intermediate Q-particle states
which differ only narrowly in energy from the ini-
tial state. This consideration is important in ap-
plications.

(c) We now consider modifications that arise
when 3C (i) has diagonal elements and (ii) is time
dependent. In general, 3C will have parts that com-
mute with 3C,. This is likely to be true even if Xo
and 3C are basically of different symmetry, since
both states and interactions are rarely pure sym-
metry types. Likewise, in general, 3C fluctuates,
often in a random way. The neglect of these fluc-

tuations is justified if the energy associated with
them is negligible. These are vast subjects, and
well known in the theory of relaxation. " '"' We
summarize the principal relevant results. It is
usual to redefine 'Vo so as to include all diagonal
contributions. Correlatively this redefines the
single-particle states of Eq. (3}and therefore the
states (t)„of the system. Factorization into the
states!!, defined by Eq. (3) is no longer possible,
since the particle states themselves now contain
interaction terms. For weakly interacting sys-
tems one can usefully define quasiparticles, with
energy levels similar to those of the bare particles,
except that they have a concentration-dependent
width. The time dependence of 3C not merely mod-
ulates 3C but has an energy of its own associated
with it, which depends on the frequencies present
in it. Both this energy and the level width operate
to relax energy conservation, to the extent that the
interactions can supply the balance. (As a rule of
thumb, this corresponds to the nearest-neighbor
interaction energy. ) Both factors again operate to
make the density of states that enters the transition
probability concentration dependent, in a compli-
cated fashion. [Again as a rule of thumb, for ex-

FIG. 1. Typical energy
levels for enhanced three-
particle process (solid ar-
rows) if two-particle process

il Ij (dashed arrows) is not qgite
resonant.
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tremely sharp resonances, p(E) is proportional
to n. ] Finally, both factors tend to make multi-
particle processes relatively more important.

(d) The solutions of the nonlinear rate equations
(22) associate with each transition probability (W}
a concentration dependence which reflects the num-

ber of particles interacting in a given microscopic
process. The usual two-particle resonance is
characterized by an na dependence, and a general
Q-particle process would be characterized by a n~

dependence. This is in conflict with the theory
used by Van Uitert and co-workers, ~ by Hollo-
way and co-workers, 6' ~ by Axe and Weller, and

by others. There, one associates the concentration
dependence with the electric multipole order of the
interaction, in such a way that, if the spatial de-
pendence of the interaction is r ~, then (W} has
associated with it a factor n~' . Since the concen-
tration dependence of the transfer process has been
the subject of voluminous investigation, we dwell
on this point in some detail.

First, the (W) which we have defined in Eq. (21),
and which enters as a parameter in Eq. (22), ex-
hibits no concentration dependence that can be
linked with a coordinate dependence. For so,

&
=r, ~~,

(W) = f"r ~4vr'dr=(3/P ') ro~vo, (36)

where rp is a unit lattice cell dimension and vp ls

ferro

We .note that ra~ reflects a dependence on
a geometrical lattice distance, not on the average
particle separation. Suppose now that we introduce
(incorrectly) the constraint that the interaction
must occur with the nearest available atom. Using
the nearest-neighbor distribution derived by
Chandrasekhar, "' we have

(W) = f r ~ e ' ""4vr'dr=ro~voE», (von},

(3'I}

where E»,(x) is an incomplete y function, """and
once again the ~p~ dependence reflects the lattice
dimension only. The incomplete y function does
contain a concentration dependence. Expanding
(W) in ascending powers of the concentration, one
obtains a series in integer powers, the leading
term of which is always a constant, (except that
one fractional power, namely, n ', will also be
present). The leading term for general p is

lim (W) =
~ ro~vo, (36)

n-O

in agreement with Eq. (36). To give an example of
the other terms in the series, for p =8 the first
few terms are

(W) =ra vo [0.6 —1.5nvo+26. 9(nvo)

—1.5 (nvo)'+O 5 (nvo)' 1 (39}

We stress again that the concentration dependence

beyond the leading term in Eqs. (31) and (39) arises
only from artificially constraining the interaction
to the nearest available atom.

The concentration dependence of the yield q or
of the transfer efficiency (1 —q} is discussed in
Sec. V.

V. YIELD

The directly measured quantity is usually not

(W), but the yield q, or the relative yield q/qo.
One either measures decays following a pumping
pulse, or one measures intensities under steady-
state conditions.

Forster and others have calculated the yield, on
the basis of the FCIH model, for transient decays.
If n(t) is the decaying population of the fluorescent
state, then the yield is defined as

rt(t)= f, n(t)dt,

and the relative yield is defined

(4o)

Ln =0, (42)

where L is a linear operator. Then one can define
a Green's function G(t) which satisfies

LG = 5(t}, (43)

where 5(t) is the 5 function. For a general excita-
tion P(t), n(t) will be given by

n(t) = f p(t') G (t t ')dt' . — (44)

Defining the Fourier transform as usual as

F(&u) = f e' 'F(t)dt,
one transforms Eq. (44) to

n((o) = p((u) G((u) .

(45)

(46)

In particular, for the steady state co =0, one ob-
tains from Eqs. (46) and (45)

n., =p., f G(t)dt . (47)

rl/q, = rt/f,
"

n, (t)dt, (41)

where no(t) is the population with transfer absent.
Forster has used Eq. (41) in conjunction with vari-
ous spatial dependences for w(r), namely, the Per-
rin interaction' (hard sphere), the Stern-Volmer
interaction"' (W= const), and the dipole-dipole in-
teraction (W-r s). Colbow has applied the same
scheme to exchange interaction (W-e "'"0), and
Inokuti and Hirayama have generalized to arbitrary
inverse powers of r.

It is usually assumed that the transient definition
of yield will apply to steady-state conditions as
well. This is true within the assumptions of the
FCIH model, but it is not true in general. We ex-
amine this point in more detail.

Suppose the decay of the population n. is described
by a linear equation of the form
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Equation (47) establishes the identity between the
steady-state yield and the transient yield by iden-
tifying n(t} following a pulse with the Green's func-
tion. It is now clear what the requirements are for
this equivalence:

(i) The response must be linear. If the response
is governed by nonlinear terms, the equivalence
will definitely not hold.

(ii) In the transient mode, the pulse must be
short compared with any other time in the problem.
(This requirement in some circumstances conflicts
with the need to produce a signal of sufficient
strength so that its decay can be accurately mea-
sured. }

It is easy to multiply examples where the above
conditions are not met, and to which the expres-
sions for the yield of FCIH systems do not apply.
We illustrate with a schematic example. Consider
the nonlinear equation for the decay of x,

Dexter's calculation of the transfer efficiency g~,

'/}r=i-8/Ro, (s3)

interprets expressions such as Eq. (52) as appli-
cable separately to each sensitizer and its partner
activator. One then averages over separations,
constraining the interaction artificially to the near-
est available neighbors. Such a procedure would
seem to require the following assumptions: (a) The
process is linear. (b) There is only one set of
resonant pairs in the energy structure. These two
conditions are necessary for the correctness of a
form such as Eq. (52}. (c) Each activator-sensi-
tizer pair is a separate and isolated system within
which the transfer process occurs. (d} The con-
straint to nearest neighbors goes still further, and
it is not clear why it is justifiable in principle. It
probably does not introduce great error for very
low concentrations. With Dexter, we then have

x = —Wq, x —Wpx,2

and the associated steady-state equation

0 = —Wt, x —Wpx+ Wp .2

(46)

(49)

(s4)

For W-r 6, this integral is readily evaluated and
is

For yield defined as the time integral of the tran-
sient following a pulse, Ur=- v, Im[e' ~ E, (nvo+inv, )j, (ss)

Wp W't, xo+ Wp (so)

For yield defined as steady-state emission,

q/q, = (I/2y) [- 1+(1+4y)"'),

y = W„W,/W,'.
(5 la)

(51b}

These two functions are, of course, quite different,
and depend in a nonlinear way on the intensity of
the original excitation. If we now consider the
Iinearized form of Eqs. (48) and (49), replacing x
by 2x, then both definitions yield the same result,
namely,

ri/qo ——Wv/(Wv+ 2W„) . (s2)

Equations (50)-(52) are plotted in Fig. 2, but we
defer discussion of this figure.

W„{r)qr= '
(

}-4sr'dr .
ro

The value of this integral for all even p& 4 is

(ss)

where E, is again an incomplete y function, vo is
the volume per lattice site, and v, is a critical
volume such that for r, defined by v, =f wr'„
W„(r, ) = Wv . The quantities nvo and nv, corre-
spond, respectively, to Dexter's x, C'vo and y.
The result quoted by Dexter is the limit of expres-
sion (55) for large v, /v, . If one expands the result
in Eq. (55) in powers of n, one obtains, exactly as
with (W) in Sec. IV, an ascending series in integer
powers, the leading term of which is a constant.

What happens if we remove the constraint to
nearest neighbors'P We then have

(s7)

and is identical with the leading concentration-in-
dependent term of the expansion of Eq. (55). The
concentration dependence of Dexter's result is thus
due exclusively to the constraint to nearest neigh-
bors.

The conclusion to be drawn from this is not that
the FCIH model really predicts a concentration-
independent transfer efficiency, but rather that the
special assumptions underlying (54) are not tenable.

Wv
qo=J ( )

4wr dr
ro

(ss}

Specifically, it seems that the model of nearest-
neighbor pairs interacting as closed and isolated
systems must be rejected. This is underscored
by what happens when the same method is consis-
tently applied to quenching interactions. In place
of (56) one would then obtain
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FfG. 2. Yield for schematic model {48), {49): curve
A-transient yield, F0=0. 01; curves B and C—steady-
state yield, W&=1 and W&=100; curve D—linearized yield.

which diverges for all physical interactions, long
range and short range. The reason for this is that
quenching means precisely that particles within the
same system interact with one another, and is in
direct conflict with the requirement for isolation.

We have so far discussed yield with special ref-
erence to the FCIH model. We now look at yield
when the rate-equation approximation is valid. One
great advantage of this model is that it permits
dealing with the nonlinear nature of the process, a
feature that is precluded at the outset within the
FCIH model. If the process is described by macro-
scopic rate equations, it is of course simply a mat-
ter of solving these equations to obtain both the
time-dependent and steady-state populations, and

any functions dependent on them. Such a solution
may present formidable technical difficulties, even
with computers, but conceptually it is quite unam-
biguous.

Nevertheless, a few comments are instructive.
For nonlinear systems, the transient decay will
depend on the initial conditions. If the system is
excited by a pulse, the decay will depend qualita-
tively, and not just by a scale factor, on the inten-
sity and length of the pulse. In the steady state,
the emission will depend nonlinearly on the pump
power. In our schematic model, Eqs. (48) and
(49), the transient yield (50), and steady-state
yield (51) are not only different from one another
but depend, respectively, on x(0) and W~ which re-
flect excitation conditions.

In Fig. 2 we show yield as a function of concen-
tration, based on our schematic model. We have
taken 8'D=100 and W«=10'n, as arbitrary and not

I/f, =w, /(w, +(w„&) . (60)

In either case, the concentration dependence is the
ratio of two polynomials, since a power of n is as-
sociated with W„.

We note that Dexter has deduced an equation of
the form (60) by an intuitive argument. Neverthe-
less expressions such as (59) and (54) rest on ex-
treme opposite physical models.

Equations of the form (59) and (60) approximately
fit many experiments, with 8'„proportional to a

unreasonable values. Curve A is for the transient
yield taking x, =0.01. Curves B and C are for
steady-state yield taking S'~ = 1 and 100, respec-
tively. Curve D is the linearized yield (52). A

log-log plot tends to suppress differences between
functions. Nevertheless one striking difference is
the break point. For the transient yield, the break
point is n =(WD/W„)xo', for the steady-state yield
it is n'=(Wn/W„)(w~/W~), and for the linearized
yield it is n =0. 5(wn/W„). Curves A and B both
break at n=0. 01, curves C and D at n=0. 001. We
note that the break point depends on the excitation
level (e. g. , B and C) when nonlinearities are im-
portant. But even with identical break points, the
shapes at the knee and even the asymptotic behav-
iors are different for different definitions of yield.
Of course our example is schematic, but it illus-
trates the main points.

We also show, in Fig. 3, the decays associated
with Eq. (48) if the system is excited by a short
pulse. The pulse intensity is reflected in the initial
population xo of the excited state (0& x, & 1). The
condition x,n~& W„/Wn (curve A) produces decays
that are exponential on a time scale 8'~'. The con-
dition xon & W,„/Wz, (curve C) produces nonexponen-
tial decays. In curve B, xon = W„/Wu and the non-
exponentiality is just observable. Although the de-
tails are simplistic, the essentials are typical of
nonlinear relaxations. Both the excitation history
and the concentration determine the character of
the curves, and a critical condition can be defined
which marks the onset of nonlinearity, on some
characteristic time scale. We note the qualitative
similarity of the curves of Fig. 3 to FCIH decays
with multipole interactions.

For concentrations low enough and transfer prob-
abilities small enough so that the nonlinear equa-
tions can be linearized, a form similar to (52) will
usually be found in simple cases. The appropriate
average is

q/q, = (w„&/(w, + (w„& ), (59)

i.e. , one averages W over the system first, a
procedure which is, of course, explicit in the der-
ivation of the rate equations. In the quenching situ-
ation, the relative intensity, in simple cases, will
have a form such as
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power of n between 2 and 3. We propose that the
interpretation of this fact is that two-particle pro-
cesses are by far the most probable, followed by
three-particle processes. As explained in Sec. IV,
both can also occur together. We feel this is a
more satisfying interpretation than the association
of concentration dependence with multipole orders.
First, the low powers of concentration characterize
transfers involving metastable levels, which are
very-high-order forbidden and which require high-
order multipoles. Dexter showed that such multi-
yoles are far more effective in coupling particles
to particles than to radiation, and more recent
work ' again enhances this contention. Second,
the association of powers of the concentration with
multipole orders does not emerge from a consis-
tent treatment of yield under any model. Third,
the evidence seems to be that, at least for rare-
earth impurities in many inorganic crystals, the
conditions of the rate-equation approximation are
satisfied. We shall discuss these points further
below.

VI, SUMMARY

The main purpose of this paper has been to clar-
ify the origin and meaning of the equations that en-
ter the theory of luminescent transfer, and to clar-
ify the relation between experimental observations
and the parameters entering these equations.

We have related the equations to first principles
of quantum statistics and relaxation theory. We

have done this in two steps —by deriving equations
first for microscopic spatial probability distribu-
tions, and from these distributions deriving equa-
tions for macroscopically observable probabilities
or populations. If a given system distributes energy
internally in a time short compared with transfer to
another system, then kinetic nonlinear rate equa-
tions apply. If the opposite is true, and if in addi-
tion the microscopic equations can be linearized,
the FCIH equations apply in suitable circumstances.

We found that the averaged transition probabil-
ities (W), which enter as parameters into the rate
equations, depend on powers of the concentration,
and that these powers reflect the number of par-
ticles participating in one transfer. The form of
the interaction will affect the magnitude of (W) but
not its concentration dependence. Not only two, but
any number of particles can participate in a single
process. This lack of restriction greatly increases
the possibilities for resonance. We showed that an
inhibited (Q —I)-particle resonance tends to make
a Q-particle resonance highly probable.

We found that the Forster method for computing
yield is specific to the FCIH model. The Dexter
computation, on the other hand, implies constraints
that are too stringent to be sustained in most of the
applications where one would like to use it. For
the rate-equation model, the yield is found in terms
of the solutions of the rate equations. For non-
linear rate equations, the excitation conditions will
enter functionally. The concentration dependence
of the yield in the FCIH model is slightly sensitive
to the form of the interaction, but in the rate-equa-
tion model it is sensitive only to the number of par-
ticles in one transfer, through (W). In neither
model is there an association between multipoles
of the interaction potential and powers of the con-
centration.

The nature of the interaction is most directly
accessible to experiment, not through concentra-
tion dependence, but through the angular depen-
dence of selection rules. Such experiments have
been pursued particularly by Filipescu and co-
workers'~~~ and by Keller. 77 For short-range in-
teractions, the angular dependence of wave-function
overlaps gives direct information, and some of the
experiments of Blasse '~ allow interpretation of
this kind.

We now indicate some of the evidence that the
rate-equation approximation is indeed appropriate
for many rare-earth systems in inorganic materi-
als. An adequate treatment of the experimental
literature would require a monumental review
article. All we can do is sketch some of the argu-
ments:

(i) From their lifetime studies of rare earths
in trichloride crystals, "~ Gandrud and Moos con-
clude that typically 4 X10' transfers within the rare-
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earth system occur before a trap is reached. A

trap is an activator in reverse, and the kinetics
are symmetric. This would indicate intrasystem
transfer between pairs of resonant levels more
rapid than intersystem transfer by an overwhelm-
ing factor, in these materials. The same conclu-
sion has been drawn on the basis of more indirect
evidence for certain rare-earth systems in glass. 6 '

(ii) Actually, the Gandrud and Moos study pro-
vides a lower limit on the intrasystem transfer rate
considered in this paper. Intrasystem transfer oc-
curs most commonly and most rapidly between
pairs of identical levels, which are, of course, in
perfect resonance. Now the transition probability
has a peak at exact resonance, and this peak can
be very large for two-particle processes if in-
homogeneous broadening is small.

(iii) Where the rate equations have been used
to interpret experiment, ' ' ' ' ' ' ' they have
given a satisfactory account of the data.

(iv) The preponderance of n and n dependences
of the yield is Prima facie evidence of the correct-
ness of expressions similar to schematic equation
(60) which represents a rate-equation model. The
appearance of a critical concentration or break
point in the yield curve has commonly been inter-
preted in terms of the Dexter calculation, "'"'
but, in fact, this feature is common to all models.
On the other hand, there are cases" which exhibit
a power-law dependence but for which the FCIH
model cannot give a good fit for any assumed inter-
action.

(v} If one attempts to interpret powers of the

concentration as a multipole index, although there
seems to be no theoretical reason to do this, the
n2 and n3 dependences cannot be reconciled with the
matrix elements for forbidden transitions, such as
occur, for instance, between pairs of metastable
levels.

(vi) Regarding nonexponential decays: (a) Non-

exponential decays are a consequence of either the
FCIH model or the rate-equation model. Even
linearized rate equations can give apparently non-

exponential decays, because multiple exponentials
are notoriously difficult to distinguish from true
nonlinearities. (The FCIH model itself falls into

this category in a limiting sense, as composed of
N exponentials. } (b) Most experimental (Refs. 2'I,

30, 33, 36, 68, 71-73, 75, 79, 83, 84, 86, 89, 91,
93, and 94) decays appear ambiguous in this re-
spect without a detailed analysis. Such analysis
would include the corresponding steady-state data,
data concerning temperature dependence, and data
from directly related transfers, and it would con-
sider the relative strength of various hypotheses.
(c) Without impugning the FCIH model, we suggest
that in a significant class of systems the rate-
equation model forms a more consistent and more
natural framework for the data, including nonex-
ponential decays.

(vii) Analysis such as we have just indicated
will be the subject of a subsequent paper.
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