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The wave velocities were obtained from the phonon
curves by computing phonon energies and dividing by the
wave vector. Thus dispersion has some effect as can be

seen from the $ dependence of the Kr 2.5'K results.
However, dispersion causes C & C which therefore tends
to reduce the effect discussed in this paper.

PHYSICA L RE VIEW B VOLUM E 4, NUMBER 2 15 JULY 1971

Theory of Resonant Raman Scattering in Crystals: A Generalized Bare-Exciton Approach*

Bernard Bendow and Joseph L. Birman
Physics Department, Nese York University, Bronx, Near York' 10453
(Received 4 August 1969; revised manuscript received 1 March 1971)

The bare-exciton theory of light scattering in crystals is generalized to include dispersive
effects, and to incorporate damping in a first-principles calculation. The theory is applied
to exciton-mediated Raman scattering; expressions for the first- and second-order Raman
cross sections due to a single discrete exciton level are derived, and the resonance behavior
investigated. For small couplings and intermediate dampings the predictions of the present
generalized theory are very similar to available bare-exciton and undamped-polariton predic-
tions, while differing, however, for large couplings. The cross sections are resonant when
the incoming or outgoing photon frequencies lie near an exciton frequency, end peak sharply
for small photon-exciton couplings and dampings. Actual calculations are presented for vari-
ous choices of the parameters, among them parameters appropriate to CdS. A comparison
of the present theory with other theories and with experiment is carried out.

I. INTRODUCTION: HAMILTONIAN, BACKGROUND
EFFECTS, AND GENERAL CONSIDERATIONS

A. Introductory Remarks

Encouraged by recent advances in laser technol-
ogy, Raman scattering (RS) from crystals at optical
frequencies has emerged as a useful tool for study-
ing the electronic, as well as the lattice, properties
of crystals. ' A fundamental class of electronic ex-
citations in a large variety of crystals (including
ionic, molecular, and semiconducting ones) are
interacting electron-hole pairs, or excitons. RS
enables an investigation of exciton energy levels
and the nature of their interactions with light and
lattice vibrations.

A number of papers have employed, in various
forms, a "bare-exciton, "or perturbation-theory,
approach to light-scattering problems, which has
the advantages of being relatively simple and in-
tuitively appealing. Toyozowa's treatment of light
absorption, ' and Ganguly and Birman's (GB) treat-
ment~ of RS, provide examples of the application of
this approximate procedure. Its major advantage,
as will be seen later, lies in enabling a fairly
straightforward analysis of certain of the seemingly
more complex aspects of a given problem. We will
develop the bare-exciton framework here because
we believe it leads to a useful approximate theory
of resonance RS, in a form which may be followed
by experimentalists and nonexperts in the field. In
this situation, we feel, its full exposition and ex-
ploitation constitutes a highly desirable adjunct to
the development and implementation of more rigor-
ous and more elegant approaches.

An example of a more elegant (and, from a com-
putational point of view, much more complicated)
approach to light-scattering problems is that of
polariton (composite-quastparticle) theory. ' ~ We
have, e.g., applied polariton theory to certain as-
pects of RS in insulators, in a, parallel paper. The
purpose of the present work, on the other hand, is
(a) the generalization of the bare-exciton framework
in a number of ways especially relevant for calcula-
tions of resonance phenomena; (b) a detailed appli-
cation of the theory to first- end second-order RS
in insulators in the optical frequency regime.

The results of the present approach, which will,
from here on, be referred to as "generalized-exci-
ton theory, "will be contrasted with those of po-
lariton theory~ ~ for certain special cases.

The present generalizations include:
(a) A derivation of aformalismwhichaccountsfor

background effects, including, as well, the presence
of background absorption. This is important in re-
ducing the complexity of various calculations by
allowing one to concentrate on a limited number of
interactions of interest (cf. Secs. II B and II C).

(b) An introduction of scattering theory so as to in-
clude damping effects from first principles. Such
a procedure is essential in the resonance regime,
where, if damping were omitted, the resonances
would appear as singularities in the cross section,
thus limiting the usefulness of the results (cf. Sec.
II A and Appendix).

(c) A proposal of an empirically introduced, but
physically motivated, procedure to account for dis-
persion of light near resonance, which may be
shown to lead to results in agreement with more ex-
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act theory for certain cases where more exact re-
sults are available (cf. Sec. II B).

In the application of the theory to resonant RS,
we focus attention on the model problem of discrete
weakly dispersive exciton levels, interacting weakly
with light. We present, for this case, various cal-
culations of the RS cross section as a function of
incident photon frequency, and compare the results
with other theories and with experiment. In nu-
merical computations parameters appropriate to
insulators such as CdS will be employed.

B. Light-Scattering Hamiltonian

To describe light interacting with a crystal, we
employ a model Hamiltonian as discussed in de-
tail by GB, involving photons, phonons, and exci-
tons, and their mutual interactions V"':

H=H, +~& V"' .
$~1

Let a-' be Bose creation-destruction operators,
where q is the wave vector, for photons of frequency
qc; let (bL, &oo,(q)) and (BI„, E(qX)) be the anal-
gous quantities for phonons and excitons, respective-
ly, where s and X are branch indices; in E(q), q is
the wave vector associated with the center-of-mass
motion of the exciton. Let fc and p indicate wave
vectors as well. Also, let us use e for exciton, L
for phonon, and R for radiation in labeling interac-
tions. Employing simplified forms appropriate to
a single-photon polarization, the unperturbed (free
field) Hamiltonian Ho and the interactions V"' may
then be written as (If= 1)

Ho = ~ qc a-' a=+ L &uo, (j) k-' k= +Z E(X q) B';~ B-„,

=+g,z(Q&)&tB g, z+ ~ g,z, (Q&s)B~ b a
q)td: 4~

V"' = Z [g.'..(qk~~'s) k~, B;;„B;-„, (1.2)
kqM! as', +

+g,',„(q%XX') a,'g B-' - Bf .

+gag J (q&~« ') BVtl kk(R i), 8 be 8

g"„(Kqp xx'«')
KiNM', Sa', a

fk +~44)y B +So &

The g's are appropriate coupling functions; these,
as well as additional interaction terms in a Ham-
iltonian of more general form, are given by GB,
for example. Following GB the photon-exciton cou-
plings are taken of the form (long-wave limit)

Ig, (~g)l'=- lg.. I'(hack) ',

where the g,„and g „are appropriate constants
(we set ff= 1 in what follows). Various terms with
+'s come in with factors of + i in H (cf. GB).

In the calculations it will be assumed that the
various coupling functions g appearing in H all
satisfy Ig l ~«co, where ~ is an optical frequency;
throughout the calculations we take the variable (d

to refer to optical frequencies.
To maintain a parallel with GB, the contribution

of the A~ term from the vector potential' is not in-
cluded explicitly. For frequencies lying in the op-
tical regime, and for small coupling of light to ex-
citons, it may be included formally by shifting the
refractive index and photon-exciton coupling func-
tions. 8 Also omitted in this idealized model (and
because we are concerned with optical frequencies)
is the direct photon-phonon coupling; for reasons of
simplicity, trilinear exciton and phonon anharmon-
icities' are omitted as well.

We emphasize an important convention which will
be employed throughout the calculations: The oc-
cupancy of phonons will be treated at finite tempera-
tures, while the effects of finite temperature on
photons and excitons will be neglected. This will
lead to the appearance of factors involving the pho-
non-occupancy function s~(P) = (e"~'+~- I) ', where
p is the inverse temperature, in the expressions for
the cross section.

C. Notational Coventions

We will employ the following conventions and no-
tation regarding the state occupancies of various
quasiparticles: no tilde, photon; single tilde, ex-
citon; straight bar, phonon. The occupancies will
be always ordered photon, exciton, phonon, from
left to right. Vector notation will be omitted in in-
dicating the exciton and phonon occupancies, but
the vector character is to be understood. Illustra-
tions are (a) the state 12k, k' ) contains two photons
of wave vector %, and one exciton of wave vector R';
(b) the state Ik, 5', k") contains one photon 1t, one
exciton R' and one phonon %"; (c) the state I k, k',
k") contains one exciton R and two phonons P and
k"; (d) (k!Vlf'; k-k', s) is the matrix element for
scattering via V, of an exciton k to an exciton fc',
accompanied by the creation of a phonon f-fc' from
branch s.

We note again the previously mentioned conven-
tions regarding the labels e, L, and R; some ex-
amples are: g,„is the coupling between an exciton
and a photon; V„~ is an interaction involving two
excitons and one phonon, etc.

D. Roles of Various Interaction Terms

In the present work we will employ the Ham-
iltonian H, which is appropriate to an infinite crys-
tal, to describe light scattering involving photons
incident from, and scattered to, the outside of a
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in carrying out the developments of a number of
well-known treatments. ' '" But more significantly,
these assumptions will be shown to lead to results
which agree with certain we11-known or more exact
ones, in certain limiting cases where the latter are
avaQable-a fact which argues strongly for their
adoption.
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II. ABSORPTION CROSS SECTION AND COMPLEX
DIELECTRIC FUNCTION; GREEN'S FUNCTIONS

In this section we present a calculation of the ab-
sorption cross section and complex dielectric func-
tion in the system described by H [Eq. (1.2)], quan-
tities to be made use of later. The calculation also
introduces the philosophy and methods to be em-
ployed in treating RS, including the use of scatter-
ing Green's functions (GF) and the concomitant
incorporation of damping effects. The calculation
leads to a familiar form for the dielectric function

FIG. 1. Typical RS1 process, viewed in different
degrees of approximation. G's indicate GF, or propaga-
tors, as introduced in Sec. II. A wavy line indicates a
photon; a straight solid line, an exciton; a dashed line,
a phonon. (a) Totally "bare" view of scattering: A pho-
ton incident from exterior, which is dispersed only by
the background, creates an exciton, which subsequently
scatters producing a phonon; a reverse process then leads
to a scattered photon. Go represents the bare-exciton
propagator. {b) Inclusion of interaction effects on Go.
While the remainder of the previous picture is unchanged,
inclusion of "complex self-energy" effects of the electron-
phonon interactions lead to the replacement of the bare-
exciton propagator Go with the new propagator G (cf. Sec.
II for details). (c) Inclusion of photon dispersion: The
photon line (not a propagator here) is dispersed as dis-
cussed in Sec. II and as illustrated in Fig. 2, and is now
represented by double wavy lines. Double straight 1ines
indicate the new exciton propagator G as in (b).

W'e begin by considering the absorption cross
section o& due to a single discrete exciton level
E(k). More specifically, one first computes
az(k, v) (although we may suppress the k for nota-
tional simplicity), where the relation between k and
~ near resonance is, due to interactions, no longer
simply k = &u/c, but of a more general form to be
specified in the development. However, once the
relationship between % and ~ has been specified,
v„' becomes a function of the external photon ener-
gy (d alone.

A. Calculation of 0&

The absorption cross section c„(&u), i. e., the
probability per unit length of crystal of absorption
of a photon of frequency ~, may be expressed by
use of the optical theorem" a,s

&x„(k &u) = [2/v(k)] [ —ImTee(u&)], (2. 1)

finite crystal. As such, when applying perturba-
tion theory to Ho, it is useful to distinguish between
physically distinct roles which various interactions
are assumed to play. Specifically, we adopt the
following views.

As indicated schematically in Fig. 1, we consider
photon-exciton interactions to act in the dual role
of transforming photons incident from outside the
crystal to excitons in the interior (and vice versa),
and in altering the photon's dispersion (relation be-
tween )t and &u inside the crystal). We consider the
propagation of excitons to be altered, rather, by
their interaction with the lattice, i. e., via the ex-
citon-phonon interaction. The physical picture of
a scattering process corresponding to the above de-
scription is indicated schematically in Fig. 1.

It may easily be seen that these conventions are
entirely equivalent to those implicit (and essential)

where v = 8(kc)/Sk = c is the velocity associated with
photon k. The quantity Tg is the diagonal matrix
element in the photon state k of the scattering op-
erator T, given by

T=- V+ VG V,
V=-H-Hz, G=(E —H+ic) '. (2. 2)

The matrix elements of this operator yield transi-
tion amplitudes for the various possible light-scat-
tering processes in the system.

We consider the case of a single exciton level
E(R) interacting with light. The lowest-order con-
tributions in (2. 1) arise from the term T„ in T,
where

(2. 3)

One has, employing Ref. 14,
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(T„)II= i (k I V,'„' l k )1 G (k E)

+i (kl v,'2s'lk, 2k) I G,(kz), (2. 4)

where 6 and 6, are GF, or propagators, defined

G =-(kIGI&&, G. -=(k, 2kIGIk 2k). (2. 5)

The explicit evaluation of these functions proceeds
in the manner outlined in the Appendix, upon in-
corporating the considerations discussed in Sec. ID
regarding the roles of the various interaction terms.
For the weak coupling case under discussion, one
has

G,(k E) =+ [E+E(R) + h(k E) +-,' ir(R E)] ', (2. 6)

where, in lowest order [E» &uo,(fc)),

r(l z)=2v KI(kIV„",'Ik-q, qs)I'(6 +n&.)

x 6(E —E(k -q) + &u„(q)),

~(kz)=BI(KI v.',"Ik)I'(6 + &.)[E~ „(k)] ' (2. v)

all k, as functions of frequency, i.e. , k, =k, (&u, ).
The a&, for example, would then become just a func-
tion of the frequency of the externally incident pho-
ton alone.

If dispersive effects are sufficiently weak, then
far from the exciton energies involved, the free-
space approximation k = u&/c is appropriate; various
perturbation-theory corrections may, in principle,
be calculated as well. However, for &u =-E(0), or if
E(k) is strongly dependent on k, k may differ sub-
stantially from ru/c, and perturbation theory is in-
applicable. '

In treating the strong-dispersion problem with v
as the supplied parameter, it seems best suited to
adopt the semiclassical approach to dispersion de-
tailed in various places, such as Hefs. 3 and 10.
In this picture, an isotropic crystal, for example,
is characterized' by a complex dielectric function
e(k&o), which is directly related to c„(k~), in a
fashion to be specified below in Sec. GC. A photon
normally incident in the x direction, say is char-
acterized' by the wave function t)I)0- e'"' " outside
the crystal, and by f,-e' " inside, where k satisfies
the relation

+pp Q I (kI V"r, Ik —q)I'[E —E(R —q)+(ua, (q)]',
k = t(k&u)ur c (2. 11a)

-Im(~~)H= ~l cafes I @&~)(ck)
where

(2.8)

Q(k(u) = 4r(u-z'(k)([(u' E'(k)-']'+[(u'+E'(k)']

x gr +fsr j (2 9)

and where E'(k) =E(k)+&. We then have for the
cross section o„' due to the single level E(k)

o„'(~)=
I gÃ I

'q(r~)c-'k-' . (2. 10)

where pp indicates principal parts; 5 is unity for
the minus sign and zero for plus; and g~, is the
thermal phonon occupancy (cf. the end of Sec. IB).
d and F are called the energy shift and damping
functions, respectively. These forms for b and I'
correspond to the physical picture indicated in Fig.
1(b).

Using in (2. 4) the explicit form for the matrix
elements as given following Eq. (1.2) in Sec. IB,
one finally obtains

More specifically, one obtains, in general, a num-
ber of solutions for k', each of which may be ex-
pressed in the 'arm

kf=a, ((u)&u c ~, (2. 1 lb)

(o)

where e&, a function of ~ alone, is the dielectric
function characterizing the ith mode of excitation in
the crystal. The relations (2. 11) are, of course,
equivalent to the familiar polariton dispersion rela-
tions exhibited in a variety of places. In Fig. 2
we indicate schematically the sorts of interactions
which are involved, and which we will include, in
the evaluation of E.

When the exciton levels E,(k) are either nondis-

B. Dispersion Theory
(b) Vea VeR "

~ ~ ~ ~ ~ ~ ~ e~~
In the present treatment we evaluate various cross

sections as functions of both wave vectors k, and
frequencies ~, associated with the photons involved
in the scattering. ' We note, however, that only
the frequencies are supplied parameters (fixed by
external measurements) in the present problem
Consequently, the most natural procedure to fol-
low' in determining the explicit frequency depen-
dence of a given cross section would be to express

(c) 2)
~ ~ ~ ~ ~ ~ oQ~~+

FIG. 2. Inclusion of photon dispersion in scattering
processes (Ref. 14) (cf. Fig. 1 for meaning of various
lines). (a) Photon dispersion is indicated in RS1 process
vta an interaction blob. (b) In lowest order the blob con-
tains all possible interactions via V~. (c) Inclusion of
exciton damping yields a further refinement to the inter-
actions considered in (b).
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persive (independent of k) or very weakly dispersive,
then one can showa'~ that just a single solution with

I Re k I » I imk } exists at any given value of &a. In
the presence of dispersive E&(k), however, a mul-
tiplicity of solutions for k may, in general, arise.
However, it can be showne that for almost all fre-
quencies, only a single mode from among these is
transmitted at the crystal boundary with a sizable
probability. For simplicity, we therefore limit
ourselves to the case where k is a single-valued
function of v. ShouM it be desired, one may
straightforwardly generalize the present considera-
tions to apply to the multiple-mode case as well. '

We now briefly outline the semiclassical interpre-
tation of the propagation described by (2.11). Since
k is, in general, complex, onehasg, -e' ' 'e
where e+ix -=c', for the previously introduced ex-
ample. Clearly, f, describes pure propagation with
real wave vector n~c ', coupled with a simultaneous
exponential decrease with distance of the wave's
amplitude (attenuation with coefficient 2«&uc ').
Evidently the quantities z and o& are closely related,
a fact which is exploited in Sec. IIC. Note that both
s and « include the effects of exeiton damping (cf.
above), once these have been incorporated into «,
as will be done in Sec. IIC.

Let us employ the above observations to extend
the cross sections obtained here to apply to scatter-
ing of excitations characterized by complex values
of the wave vector. We introduce the following fun-
damental assumption: Scattering events in the crys-
tal proceed via just the propagating (unattenuated)
portion of the g's (e. g. , e'" ' in the previous ex-
ample). Consequently, all cross sections are now
to refer to just the unattenuated scattering, disre-
garding any concomitant spatial attenuation of the
scattering waves. Once the details of the scattering
geometry are specified for a particular actual ex-
periment, one may proceed to incorporate spatial
attenuation (and reflections at the boundaries as
well) via well-known techniques [cf. discussions and
references given following Eq. (3.11)]. The latter
corrections enable the direct comparison of the the-
oretically predicted cross section with experimental
results. The theoretical cross section is, then,
obtained as a function of frequencies alone by em-
ploying for k's just the real part of the solutions
following from (2. 11)(i.e. , k - n&oc ).

In the present approach, then, we have assumed
that scattering in the case of complex k may be cal-
culated by treating the spatial attenuation of the
beams entirely separately from the scattering via
their unattenuated portions. We believe this proce-
dure is consistent with the semiclassical picture
detailed above; since we have not presented a rig-
orous justification of the present procedure, we will
characterize it as "empirical. " In what follows, we
will demonstrate that the present assumptions do,

in fact, lead to results in agreement with various
familiar existing ones.

We now proceed to introduce the concept of back-
ground absorption, which turns out to be of consid-
erable convenience for treating scattering problems.

In a system with many levels, each one contrib-
utes a term a~"(&d), similar to o~, to the total ab-
sorption cross section rr» so that

c„((u)=2 og" ((o) + o„'((u) . (2. 12}
f

C. Compex Dielectric Function

In order to obtain c = cg+ gf p we use the fact that
a& is, in fact, the absorption rate of the incoming
beam per unit length, so that it may be related to
c1via [k=k(~)]

o„(ka)) = 2(uc '«(k&u) = &uc '«,(k(u)s '(k&u) (2. 13)
or

«I(k&u) = (o 'i g,'„"
i

'Q(k&o) + «',(k(d), (2. 14)

where «I is the background contribution to «z, i.e. ,

«',(k(u) = ctd 'c„'((u) s(k(o) . (2. 16)

Using the Kramers-Kronig relations" to obtain cg,
the full «(k~) follows as

«(ks)) =e'(k(o) —[4~ g,'„"~' E'(k /}&a']

x [to E'(k) ——,'I' +-i&el'] . (2. 16)

If one takes I' = 0 at this point, one arrives at the
classical form' for «(k&o). The present result for
c& differs in the appearance of I' terms, and in the
coefficient of 1", from classical theory and the
Toyozowa~ results; the latter, however, can be
made to agree with the present result once anti-
resonant terms [cf. Eqs. (2.4)-(2. 6)]are included
in the analysis, as indeed they must be to satisfy
causality, i.e. , so that

«1((d) = —«2( —(d}, «1((d) = «1( —id) ~ (2. IV)

However, awhile a wouM then be identical in the two

Now very often we are interested only in the scat-
tering due to a particular level or group of levels
in a system. All other levels may then be hunped
into a background which may include not only all
levels outside the particular frequency range being
dealt with (which lead to a nearly constant, i.e. ,
nondispersive, background), but all levels which
simply are not involved in the particular scattering
process under consideration (and which may lie
within the frequency range, and do contribute to
dispersion}. We then take, say, c„'(&u) due to a 8111-

gle level E, and a background o„(rd), with total c„(ru)
= oz(td) + c&0(e). The v~0 might be obtained in a par-
allel fashion to 0&, experixnentally measured, or
approximated in some other fashion.

We now proceed in evaluating «(k&d).
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x[1+« „-,(P)] p(k, k'), (3.1)

where v(k) is the velocity~ T is the scattering oper-
ator (cf. Sec. II); p(k, k') is the density of final
states; and nI is the LO-phonon occupancy (cf. Sec.
IS).

The part of T contributing in lowest order to RS1
is T& =- T»+ T,2+ T~3, where

T» = Vea Gi Veer. G2Vea
(8) (S) (2)

T~2= Ves G~VeegG2Veg, y

(2) (S ) (I)

Tis = Ver, Gi Vee jm GIVes
(2) (3) (2)

(3. 2)

Here G& may be chosen as either G or G, with the
complementary choice for G, (cf. the following dis-
cussion) where

G=(E H+ic) ', C=-(E -8+is) '

theories, the present results for e& are still more
general due to the inclusion of dispersion, i.e. , the
appearance of dispersive n in o„[Eg. (2. 10)]. The
necessity of including "self-dispersion" in comput-
ing the absorption was, in fact, pointed out, 4 but
not treated by Toyozowa; our procedure accounts
for just this effect. We have computed o&, and
found that its frequency dependence, for values of
I'/E- 10 ', agrees generally with the Toyozowa pre-
dictions, although the dispersion of n in our theory
does lead to some differences in the shape of the
absorption line in the two theories.

One thus obtains familiar results for e employing
the techniques introduced above. In Sec. III, we
extend these techniques to the calculations of RS
cross sections.

III. FIRSTARDER RAMAN SCATTERING (RS1)

In this section we obtain the cross section for
first-order Stokes RS (one-phonon creation) in gen-
eralized exciton theory, and investigate its reso-
nance properties. The resonance behavior is dom-
inated by discrete exciton states, '~ and we therefore
specialize to the consideration of such states. For
simplicity, we consider in detail the contribution
due to a single such discrete level; we will present
actual calculations for various choices of the param-
eters in the theory. For definiteness, we will con-
sider the cross section for LO-phonon BS; the prin-
cipal origin of exciton damping may be considered
to be interaction with acoustic phonons.

Definition of cross section. In RSl an incident
photon (&u, k) is scattered to a final photon (~', k ')
with production of a phonon (~„k—k') in the pro-
cess (cf. Fig. 1). The differential cross section
for Stokes HS of a photon (d- v' is, by the golden
rule,

H-=H + V(2),
p

G =6+GV' 'G=G+GV 'G .

&k I T»l k'k -)")= &kl v."'I k)G.(kE)

&&&kI v.",,'I k', k k')G.,(kk-'E)

&3 4)

where, as noted above, either G, or G,L, must be
taken with a tilde. We have retained only diagonal
matrix elements of the operators (E -H) and
(E H), a prac-tice we shall follow throughout.
This approximation is equivalent to replacing H by
Hp everywhere except where the denominator could
blow up.

We determine the choice of G and G in the follow-
ing manner: For the small coupling case, such a
choice could be important only near the resonances
(singularities in energy) of the operator Go
= (E Ho)

' S-ince th. e two GF's in our case are
singular at values of the energy differing by an optical-
phonon energy, one can choose the full G for which-
ever one of the factors is nearest to resonance.
For simplicity in notation, this choice will always
be understood in what follows. All of the various
GF's encountered are defined and evaluated in the Ap-
pendix.

We give special attention to the damping function
I" in each GF, when a singularity occurs in the ab-
sence of T'. Returning to T», the I', is given in
Eq. (2. 7); I',s is similarly given by

I'y, (kk'E)/2s=
I &k ', k'-k 'I v,".,'I k) I'5[E -E(k)]

+BI &k', K K'I 'VI
' -kq, qs, k-K "I'(~ +n;, )

s&

(3.3)

We have employed these relations between G and

(G, V, G) to obtains Eq. (3. 2). In considering LO-
phonon HS we employ in T those parts of V which
involve only LQ phonons~ for simplicity, we will
omit the subscript s when the LO phonon is being
referred to, but include it when other phonons are
referred to.

We now evaluate the matrix elements of the TtJf,
which will be used to obtain the full cross section
do/dQ defined by Eq. (3.1). Rather than study the
explicit form for the full do/dA, however, we will
use the T«elements to obtain cross sections ap-
propriate to each acting alone, independently of the
others. This enables us to more simply investigate
details of resonance behavior and frequency depen-
dence. We will here give special attention to the T»
contribution, which is often the only one consid-
ered~' in treatments of R81.

T» cross section. We study the various factors
in Eq. (3.1) via a detailed treatment of the T„con-
tribution. The transition element becomes
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I&
&'I l""

I
& '& I'I 1'!l'&k, k ')

I

'

x &[ E(k) n ]&+ l.~j-~

x( [e —E(k ') —&oo( k —k ') —n, l, ]~

where

+-,'1",, )"p(kk'), (3.6)

v,".,'(k, k') -=&a
I v.".,'Iu', K-1 '&

and where the energy conservation condition

kc =k'c+ u&0(k —k ')

is obeyed for the pair k, k'. Taking

p(kk ') = (2v)-'c-'(u')'

(3.7)

(3.6)

(3.9)

and combining Eqs. (3.6) and (3.9), one finally ar-
rives at the result for do/dA

" =(2w)'(—)lz'"I'I&"'(0 &')l'

x[&&u-E(k) -n,,)'+-', r,']-'

x [(~' —E(k') —n„)'+ —,'r,',]-' . (3.10)

One notes that two resonances occur, at

(u = E(k) + n, and (o' = E(k ') + n,g, , (3.11)

corresponding to incoming and outgoing photon fre-
quencies lying near the shifted bare-exciton levels.

To complete the actual evaluation of do/dA, here
as in all cases, we must employ the relation be-
tween k and ~ given in Sec. II, which accounts both
for background dispersion, as well as the disper-
sion due to the self-same levels involved in the
scattering event. Note also, that when relating
theory to experiment, one peeds to incorporate
two other considerations (which we do not treat
explicitly here). First of all, the absorption o„
must be accounted for (cf. , e. g. , Ref. 21); sec-
ond, the reflection of the initial and scattered
beams at their respective boundaries should be ac-
counted for (cf. , e.g. , Ref. 22). The do/dA de-
fined and calculated here provides only the cross
section inside the crystal for scattering by the
propagating (unattenuated) part of the photon beam.

We assume, as discussed in Sec. IIB, that the

x6[E E(k' —q) —~0(k —k')~~0.(q)].
Strictly speaking, phonan anharmonicity is ex-

pected to contribute ta damping effects in all GF's
involving phonons. 'o As noted previously, we omit
this interaction for reasons of simplicity, but it may
be incorporated in an exactly parallel fashion as the
other interactions (cf. Ref. 20).

Employing Eq. (3.4) and the Appendix, one has

I " = 2ve-'(k~)I&&I V,'„"Ii&I'
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exciton E(k} depends very weakly on k; otherwise
the appearance of "extra eaves" complicates the
above given correspondence in the frequency range
spanned by the exciton.

Let us consider polariton theory results for the
T» cross section. y First-principles calcula-
tions of the cross section have been carried out in
explicit form only for F = 0. Comparison of the
present results with polariton results, for I'= 0
and E(k) ~ E(0), shows that the predictions of the
two theories are identical for this case. In addi-
tion, of course, the present theory predicts the
variation in do/dA for I'e0 as well, but results of
more exact theory are not available for compari-
son.

Numerical corn putat joys. The dependence of
do/dA on the coupling function g,'g, and on the
damping function I', is illustrated in Figs. 3 and 4,
respectively. These calculations have included,
as indicated, a nondispersive background dielectric
constant c&. One notes the in-out double resonance
mentioned above; as expected, the resonances be-
come very peaked and narrow for small g and I'.
The resonances broaden as these parameters are
increased, and, i.n addition, for large enoughg,
one observes structure on the high-energy side of
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v.',"(a a') = &a-- k'I-v,',"
I
k k')- (3. 13)

and 6, has been discussed with regard to the T«
contribution. G,„, a nondivergent factor, will be
approximated as (cf. Appendix) (employing a prime
to indicate an energy-shifted exciton)

G,„=- [~,-E'(k-k')]-' . (3.14)

The result for T„acting alone, employing (3.12)

9.20

the outgoing resonance. The dependence of do/dO
on 40-=cg is illustrated in Fig. 5.

f we assume I'= j.O s-10 4eV for CdS values
in general agreement with available ref lectivity
data, then the expected behavior of the contribu-
tion of the a= 1 level of the A exciton in CdS is given
approximately by the solid line in Fig. 3, the dotted
line in Fig. 4, and the solid line in Fig. 5. The
predictions are meaningful only close to resonance,
where interference with the continuum and other
levels can be neglected. ~~

Contributions of T,2 and T» to d&r/dQ O.ne has,
for T,~, the transition element

(a IT alk' a -a') =&a
I v,'„"I&) G

x V~»~& (k, k' —k) G,a (k ', k —k ', E) VII,
' (k —k '),

(3.12)
where
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x Ig»& (k, a ) I
'[[~ -E'(k)]'+-,'r,')-'

x[&uo-E'(k-k')] . (3.15)

We note that the T&3 contribution is resonant only
at a& = E'(k).

Similarly, one has for Tg,

&a IT„Ia', a -a') = v,',"(a k') G, (a, k-' k, k k')--
x(k, k' -» a —a'I v'e's' la' a —f') G.s(k'as)

x&a', k —k'IVN Ik' k —F) . (3.15)

Approximating for the nondivergent factor Gz,z as
in the Appendix, one obtains the contribution of
T„acting alone as

do(T») do(T», a, ~- k', ~'; ~,-- ~„r,- r~)
dA dA

(3. 17)

The only resonance for the T» contribution is at
~' =E' (%').

The complete differential cross section may be
constructed directly from the various matrix
elements obtained in the text as
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=GVGVG =GVGVG . (4. 1}

The lowest-order contributions to RS2 are taken
to arise from either one quadrilinear interaction

dfI
= (2") '

k I Ig's'I' v'«. (k «')

x[(o-E(tr)- a, +-,'fr, ] '[(u' —E$')- a«+-,'fr,~]-'

+g"' V,",'(k - k')g,",„'(k, k'}{[rd- E'(rt) ,'f—r,] -'

x f&ua —E'(k —k'}] ' —[(o' —E'$')+ ~f1',~]

x[~0+E'(tt- tt')] j I
' (3 18)

It is clear that all told there are two resonances,
one at (u =E((t)+ IL, and the other at e' =E((t}+L,~.
All contributions are finite at resonance; for
small couplings, various contributions may re-
main approximately Lorentzian about either of the
two resonances. In general, various contributions
may interfere either constructively or destruc-
tively, depending on the relative signs and mag-
nitudes of the various coupling constants, com-
plicating the dependence of do/dA on &u.

IV. SECONDARDER RAMAN SCATI'ERING (RS2)

In this section we investigate second-order
Raman scattering (R82) in a manner analogous to
the treatment of first-order scattering in Sec. III.
After demonstrating how various parts of the scat-
tering operator T contribute to Stokes LO-phonon
RS2, we investigate resonance properties and
specific examples of the contributions to the cross
section. We conclude with a brief discussion of
how the inclusion of the exciton's spatial dispersion
changes the character of intermediate resonances.

Eandamental considerations. RS2 is defined as
a process in which an incident photon ((t, tu) is
scattered to a final photon (ft', &u'), with the produc-
tion of two phonons tt-%" and ft" —R' in the
process. We assume that the two phonons are ap-
proximately dispersionless, so that conservation
of energy determines the allowed%' uniquely. In
this section, the methods of Sec. III in handling
RS1 are employed. The contributions to RS2 are
different from those of GB, where an equivalent
to the expansion G =G()+GD VGD+ ~ ~ ~ was employed.
The present section restricts all expansions to
the operators G and G, of the forms

G-G-GVG=GVGVG

or two trilinear interactions, where any set of in-
teractions involve two phonon operators all told.
With the appropriate scattering operator

Ta=»»,
jul

one has for the cross section

(4 2)

doesn( 1+ )
(2 )

2 (k&)R 2

dn

x I&«IqI«', k-k", k"-k'&I'

[& +sf I- (P)] [I+sf t"(P)], (4. 3)

where integration over %", and the energy con-
servation 5 function, will be understood.

The T2& we shall consider are of five types:

(a) Two V,'s»'s, one V,",z,~.
T2i = Ve~' Glair, G Vea'

(b) One each of V,"„', V,",s, and V,"L,'~:

T22= Veg G VeegG Vez J. i
(2) (3) (3)

T23= V,L,~G V„gG V,g.(3) (3) (2)

(c) One each of V,"„', V,",s, V,",~, and V,"~':

T2~ = V~g G V~~g G V~~L, G V~L, ,
(2) (3) (3) (2)

(2) (3) (3) (2)T26= VeL, G Ve&L, G V&eaG V&a

(2) (3) (3) (2)
T27 V~L, G V~~~ G V~~L, G V~g .

(d) Two V~'s and two V,",~'s:

T~= V~@ G V,'~gG V,',~G V,'

(e) Two V,'3~'s and two V,",'„'s:

Tm = Vif, G V~~s G V~~LG VZ .
The same remarks as in the previous Sec. III

apply regarding the choice of G or G; in the pres-
ent instance we may choose one factor of G and
two of G, in a manner dictated by convenience
[cf. Eq. (4. 1)].

Transition ma&is elements. We need matrix
elements of the T2& of the form

(4. 4}

Referring to the Appendix for the explicit form for
the various GF's, and employing the previously in-
troduced abbreviated notation for matrix elements
whenever clear, one obtains

T»= V~s (k)G, (k}V ~~(krak'k"E)G«, ~ (k', k —k",k" —k') V~„(k'),

T„=V,'„"(k)G,(k}V,",„'(kk')G,„(k',k —k') V,",'g, (k —k', k")

T„=&«IV'PI«, k' «, K k", K" -P&G„-„,(k, k'-k, k k", k- k )

x(k, k'- «
I
v„"„' Ik' &G„,(k', k —k", k" k') v&»(k'},
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T~- p",22~(k}G (k) V,'22„'(k, k')G,„(k', k —k') V,'2,2 (k —k', k —k")

xG~2(k', k —k",k" —k') V,'22'(k —k")+ (k" k+k' —k"),

T22= Vee'(k) Ge(k) Ve'ei'(» k")Ger (k" k -k") VeeR (k" k'}

xG2,2(k', k' —k", k —k"}V+~'(k" —k')+ (k"-k+0' —k"),

Z,2= V,'22'(k" k')G„,2(k, k' —k", k" —k'} V,",2'(k' —k", k' —k) G2,22(k', k, k —k", k" —k')

x V@2'(k', k) G,22(k', k —k",k"-k') V,s(k )+(k -k+k —k ),

T2~ = V,2~ (k" —k }6 s22 (k, k —k ",k"- k) V,'22 (k", k) G,2 (k", k —k") V,'22' (k", k')

xG 22(k', k- k", k" —k') V~(k'}+ (k" k+k' —k"),

T22= V+/ (k) G, (k) V~+2'(k, k")G,2(k", k —k "}V'22(k", k')

xG,22(k', k —k", k" —k') V,'~i(k')+ (k" k+k' —k"),

T22= V,'p(k —k "}Gs,2(k, k —k", k" —k}V~~(k", k)G,2(k", k —k") V,'~~»(k", k' —k")

xG2,2(k', k' —k", k" —k) V,'22'(k" —k')+ (k" k+k'- k"). (4. 5)

Examples from these interactioas are illustrated
diagrammatically in Fig. B

Resonance proP empties. Resonant behavior ap-
pears to occur (cf. following material with regard
to effects of exciton dispersion) for RS2 at the
points (neglecting the shifts d)

E(h) ~ &2 E(h )+&P

(u2=E(k')+2(O2 .
The v& is resonant in contributions from Tpg, Tpg,
T~, TII, and TIS,' the (ol is resonant in contribu-
tions from TI„T», T», and T, and co& is res-
onant in contributions from T&, TLI„Tzz, Tz&,
and T28.

As with R81, various contributions from the

T&& would show peaking about one or more of the
resonant points; the total cross section is a com-
plicated expression involving I T2& I terms as well
as cross terms, which may interfere either con-
structively or destructively in individual cases.

Let us, for simplicity, consider the contribu-
tions one obtains from the Tz& and T terms acting
alone. One has

x
~

V"' Ot }r.')
~

([(u —E'(}2)] + ' I') '

x[E'Ot)+ Ko2] 2, (4. 8)

where we have neglected damping in a nondivergent
factor.

These two parts of the total RS2 cross section
illustrate the typical resonant behavior. It is
seen that, in general, measurements of the cross
sections give us information about combinations
of the various interactions V' ' and V '. We note
that as with RS1 the theory presented here gives
finite results for the cross section throughout the
optical region.

It is important to note that when taking the dis-
persion of the exciton in account, one needs to
perform, in certain of the contributions, an in-
tegration over k", which plays a crucial part in
determining the "intermediate" resonance behavior.
For example, taking

E(k) =E(0)+-2'ak (4. 8)

in the case of the Tzs contribution, if one squares
amplitudes and then integrates, one has, instead
of

= (2v) 2(k'/k)~g, '/22'~2~ V,'222(k2, }2',}2")~ ([(O —E(0) —u) 2 ]2+ -,'r2) ', (4. 10)

x([(o —E'(k)]2+ '1"2) ~

x([~-E'(it' )-n, ]2+-,'r2 )'. (4. 7)

This result is similar in form and in the contribu-
tions at resonance, to the T,z contribution to RS1,
when V„& is replaced by V,',~~. For Tzz one has

the contribution

f dk" k"2([(u —E(k")-(u ] +-,'F ) ' (4 11)

which, if integrated 0 to ~ yields a frequency-de-
pendent modulation of the form

j (&) &-2/2Q-1/4(1+ [& E(0) ~ ]f1-1/2)-1/2

(4. 12)

( ) y~~- ( )~
t ~ &~I~

where

R-=[re —E(0) —sr2] + 4F (4. 13)
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For F=O, for example, one has

F((o)~ [(o —E(0)-(oo] '~~, (4. 14)

so that what would be originally a quadratic di-
vergence is reduced to a square root divergence. 3~

V. DISCUSSION AND COMPARISON OF RS RESULTS;
COMPARISON MTH EXPERIMENT

In this section we summarize the predictions of
generalized-exciton theory as presented here for
Stokes RS mediated by a discrete exciton level
interacting with light. After comparison with
other results and experiment, we comment briefly
on the differences in approach and nature of the
approximations employed in the various theories.

A. Summary and Comparison with other Predictions

The present RS results demonstrate the exis-
tence of a double resonance, corresponding to in-
coming or outgoing photon frequencies lying near
E'(0). For small photon-exciton coupling [Ig,'s~'I

«E'(0)] the peaks are symmetrically disposed,

with widths of order Ig„'I, I . As the photon-ex-
citon coupling increases, the peaks become asym-
metrical, as illustrated in Fig. 3. In the general
case of Nth order RS, resonances are predicted
for incoming photon frequency ur = E'(0)+neo,
where n = 0, 1, . .. , 1V. The existence and strengths
of the intermediate resonances depend crucially
on the nature of the exciton dispersion (cf. Sec.
IV). The E'(0) and E'( 0)+N~ Opeaks are sym-
metrically disposed for the small coupling case.

Thus, generalized-exciton theory predicts RS
resonance positions identical to those of bare-
exciton theory if one only replaces the bare ex-
citon E(k) with the energy-shifted exciton E'(k).
It turns out that the results for the cross section
are nearly similar in the two theories for the
case of small coupling if the GB results are mod-
ified in an ad hoc manner to include damping (cf.
Fig. V). Then one has a corroboration of the
quantitative validity of the GB results for RS fol-
lowing from a more detailed treatment for the
small coupling limit. As the photon-exciton
coupling is increased, however, the generalized-
exciton peakings, due to dispersive effects, be-
come more asymmetrical (cf. Fig. 6), in sharp
contrast to the symmetrical disposition of the peaks
in the GB result.

We indicate the comparison between the results
of a two-branch polariton-scattering calculation
and generalized-exciton theory. As pointed out
previously (cf. Sec. III), the results of polariton
theory for dispersionless excitons and F = 0 are
identical with those of the present approach; re-
sults for I'0 0 are not presently available. How-
ever, calculations have been carried out for I'= 0
which include exciton dispersion; although this
case is not, strictly speaking, comparable with
the present one in the immediate vicinities of +,
u&' = E'(0), it is nevertheless of interest to com-
pare their numerical predictions, especially in
view of the past implications by several sources'
that use of polariton theory is mandatory for cases
such as CdS. Reference to Fig. 8 shows that for
the reasonable choice of F= 0.0006 meV (cf. Ref.
25), the three theories yield very similar predic-
tions. It must be pointed out, however, that as
jg,'„'I is increased, the three theories begin to
differ more considerably. e

B. Comparison with Experiment

Let us compare the RS predictions of the bare-
exciton and generalized-exciton theories with ex-
perimental data for the case of insulators such as
CdS. An extensive review of experiment is given
in Ref. 27, and other discussions of theory vs
experiment are given in Refs. 6, 8, and 20. We
note that CdS falls within our above given descrip-
tion of small coupling; in this region bare-exciton
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light-scattering problems may be investigated. We
note, however, that a first-principles formulation
of the theory including damping has not been given,
and even the inclusion of dispersive effectse alone
for just a single level introduces nontrivial corn-
putational complications into the cross section.
In light of these practical limitations, detailed
consideration of the formulation and predictions of
generalized-exciton approaches to light-scattering
problems seem an appropriate adjunct to the de-
velopment of the more exact approaches. We
have observed above, e. g. , that for certain prac-
tical cases of interest various approximate de-
scriptions within various different theories may,
indeed, adequately account, even quantitatively,
for certain of the observed data.

Since the various theoretical predictions differ
most markedly for larger coupling, experiments
on substances fulfilling this requirement would
be of value in further evaluating their validity and
usefulness.

We have discussed RS exclusively from the point
of view of quantum-scattering theory, assuming the
existence of simplified coupling interactions. While
this program has been generally useful in interpret-
ing Lo RS data in CdS, only certain features of the
70 HS are accounted for within this framework.
This situation emphasizes the necessity, in general,
for the detailed consideration of the microscopic
interaction mechanisms coupling light, electrons,
and lattice vibrations in insulating crystals.
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n(q, E) =
&y I v(E —-qHq)-'v

r(g E) = g lv&)(E @HO)-vIC),
(A2)

where Q is the projector onto the complementary
subspace to g.

Taking note of the physical interpretation of these
functions, 4 is the real energy-level shift of the
"unperturbed" level g, while I/r is the lifetime
associated with it. In perturbation theory 4 and I'
have forms

n=-pp~
I &tt I

v ltt'&I'(E-E') ',
(A3)

r=-2.p l&tt lvly )I o(E-E,.),

where g' indicates a set af accessible states for g
to decay into, and pp indicates principal-parts
integral.

We now discuss the various GF's appearing in
the text, employing the considerations of Sec. ID.
We are principally interested in the resonant be-
havior of factors divergent in the optical regime
in the absence of damping; for nondivergent fac-
tors, therefore, we omit the self-energy effects
described above (A, I'). Let us employ the sub-
scripts e, R, and L to indicate matrix elements be-
tween exciton, photon, and phonon states, respec-
tively, and introduce the notation

G[0, E] =- &kl(E-H+fe) 'ly) (A4)

The nondivergent functions are

G,„[k',k —k ', E] [E —k'c —E (k —k')]—

APPENDIX: GENERALIZED BARE-EXCITON GF

In this Appendix we evaluate various GF's (cf.
definition below) appearing in the text in perturba-
tion theory on Ho =H —V; as many terms as are
relevant to the problems treated in the text are
given. The energy E is always assumed to lie in
the optical range, thereby restricting various con-
tributions to I', and restricting the possibility of
singularities in the GF.

The GF denoted by the symbol G are herein de-
fined as the diagonal matrix elements of the oper-
ator (E —H+ic) ' Not. to be given explicitly are
the GF's G referring to the operator (E —H+ic);
to obtain 6 one simply keeps only contributions
arising from V' ' in I" or h.

The evaluation of various GF's proceeds along
the lines outlined in Ref. 14, which shows that if
g is an eigenstate of Ho, then

G (q, E ) -=&/
I (E H+ i—c) '

I y )
= [E —E(g)- d.(g, E) &fr(g, E)] ', (AI)

where
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G„„[k',k —k ",k" —k', E] Gs«L[k, k'- k, k —k",k"-k', E]:—[E —k'c —E(«- k")- o»o(«"- «')] ', =—[E —k'c-E(k -k)-2o»o] . (A5)

The GF's which require inclusion of self-energy effects are evaluated as

(a) G, [k, E) =[E —E(«)- & + oui', ] ',

&e:~ Ivy(k)I'(5-+ski)(E +o»o («)] '+I»I» ~ Iv' z(kq) I
(5-+»»s ii)[E-E(q)+~o («- q)] '

gk yak

I', /2»»=- ~ I vs«»(«q)
I

(5 +»»s. i=i) 5[E —E(q) + o»o («- q)] i

(b) G, [k', k —k', E]=[E—E(«')- o»o(« «'-}- a, +gji' ~ ] ',

~, =- & I
v'l»(«') I'(5-+s~ )[E~~o.(«')- ~o(«- k')] '

+
I
v.'o»(«- «') I' [E-»- «') -«')] '+

I
v.".», (««') I'Re(G. [«, El )

+I»I» ~ I Vl«(«'q) I'(5-+s„i ..-)[E-E(q) e ~o.(«'-q) - ~o(«- «'}] ',

I',/»=- Iv.",'(«, «')I'I (G. [k, E]) (A6)

+ ~
I ve«@ q}1 (6-+"I.i &) & ['E —E(q) + o»o, (k' —q) —o»o(k —k')];

(c) G«z [k', k — ",k" k' E]—(E E(«') 2~ A oi ]-»

~«i:-~
I
Ve~i'(k') I'(5-+»».a ) [E + o»o. («') —2~o] '

.( I
v"'(«- «")I'[E -E(k')- E(«- «")-

+ («- «"-«"-«'})+ (v„~ terms),

/2 =(Iv„(«', «") I'Im(G, [k",0 —k",E])+(«"-«'—« —«")]

z( q) I (5-++I,i w)5(E-E(q)- o»o (« —q)- 2o»o].
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The emissivities at various temperatures from 500 to 1200'K, together with the reflectivity
at 300'K in calcite, were measured on the spectral region 200-4000 cm ~. It was found by the
measurements that conspicuous changes with temperature occurred in the reststrahlen bands
of the lattice and molecular vibrations. By analyzing the reststrahlen bands, the temperature
dependences of vibration parameters of the lattice vibration E„~3~, 305 cm ' in frequency, and
of the molecular vibrations &2„g~ and E„&i},&, 886 and 1416 cm ' in frequency, were obtained in
the temperature range 300-1000'K. The results were interpreted in the light of the theories
on anharmonic crystals. The damping constants of the lattice and molecular vibrations were
found to arise from the quartic as well as the cubic anharmonicities; the contribution of
quartic anharmonicity was seen to become prominent with increasing temperatures. The fre-
quency shifts of the lattice and molecular vibrations due to anharmonicity were found to be
proportional to —T'; some explanations were given for this. The oscillator strength did not
show any change which exceeded the experimental error as expected theoretically.

I. INTRODUCTION &=1-R, (2)

The spectral emissivity is obtained by comparing
the thermal radiation of a specimen with that of a
black body at the same temperature, for various
frequencies. When a flat plate is used as a speci-
men, a theoretical calculation' shows that the nor-
mal emissivity a is given by the following equation:

c = (1- T)(1-R)/(1-RT),
where T and R are transmissivity and reflectivity,
respectively. In the spectral region where the
transmission is very small, the above equation be-
comes

while in the region where the reflection by specimen
surfaces is very small, it becomes

&=1 —7=1 —e

where K and d are the absorption coefficient and the
thickness of the specimen. Thus, the measurement
of the spectral emissivity gives the optical proper-
ties of the material at elevated temperatures.

The purpose of the present work is to study the
optical properties of natural calcite at elevated
temperatures by means of the emissivity measure-
ment. The infrared spectra of this material have


