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Comparison of Classical Monte Carlo Experiments with Improved Self-Consistent
Phonon Theory: Thermodynamic Properties of Solid Xe f
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The improved self-consistent phonon theory (ISC) is compared with classical Monte Carlo
experiments for a model approximating solid Xe. A Lennard- Jones (LJ) (12-6) nearest-
neighbor (nn) potential is used to calculate the lattice constant, expansivity, C„, C&, the bulk
modulus, and the thermodynamic Gruneisen parameter. The ISC is found to be only semi-
quantitative at high temperatures. By comparing the Monte Carlo results for high tempera-
ture and the ISC for low temperature with experiment we can see deficiencies in our simple
nn model of the interatomic forces in solid Xe.

I. INTRODUCTION

Equilibrium and dynamical properties of the
rare-gas solids (RGS) Ar, Kr, and Xe have now
been calculated over a wide range using a variety
of intermolecular potentials and different approxi-
mations. ' Thermodynamic properties are usually
derived from a model Helmholtz energy, and there-
in lie two difficulties. First one needs to know the
interatomic forces; and second one must solve the
dynamical problem. Progress in the former area
now seems quite promising, ' especially since the
advent of reasonable quantum-mechanical models
for the binding in diatomic molecules' '" and the
availability of precision molecular-beam scattering
data' ' and spectroscopic work. " Unfortunately
at present there is not yet a reliable pair potential
for Xe, and thus one is forced to use the familiar
Lennard- Jones potentials. The dynamical problem
also presents difficulties. At low temperatures,
for a heavy atom like Xe, the quasiharmonic ap-
proximation with suitable perturbation-theory (PT)

(a)

corrections for anharmonicity appears to be satis-
factory, but as the temperature is raised and the
vibrational amplitude increases, other approaches
are needed. Recent developments in the theory of
anharmonic effect in crystals have centered on self-
consistent theories. " ~ The best approach pres-
ently available is the so-called improved self-con-
sistent theory (ISC) of Goldman, Horton, and
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FIG. 1. Diagrammatic representations of anharmonic
contributions to the Helmholtz free energy. (a) is the
second-order cubic, and (b) is the first-order quartic
contributions based upon conventional perturbation theory.
{c) is the leading correction to the first-order self-con-
sistent theory (note the vertex renormalization), and {d)
is a higher-order correction.
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FIG. 2. Zero-pressure lattice constant of solid Xe.
ISC and PT were calculated using a (12-6) LJ potential
with &rsc and +sz, respectively (see Ref. 5) - Experi-
mental data are taken from a compilation in Ref. 19.
Monte Carlo results are shown as squares.
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FIG. 3. Zero-pressure expansivity for solid Xe.
Curves |AH, ISC, and PT were calculated using E+H, F&sz,
and EpT, respectively (see Ref. 5). Monte Carlo results
are shown as squares. Experimental data are from
Refs. 20 and 21.

FIG. 4. Zero-pressure C„ for solid Xe. The curves
QH, ISC, PT were calculated from F~H, Fzsc, and FpT
respectively (see Ref. 5). The Monte Carlo results are
shown as squares. Experimental data are from Ref. 19.

Klein. However, as we go to high temperatures in
a solid like Xe which melts at about three times the
Debye temperature, we are approaching a different
regime. At these temperatures solid Xe is essen-
tially classical in its dynamical behavior, and
Monte Carlo computer experiments provide a use-
ful alternative approach. Moreover, in principle
they provide an exact solution to the dynamical prob-
lem. For intermediate and low temperatures, and
for solids like Ne, the classical Monte Carlo ap-
proach is not applicable.

The present work is concerned with a test of ISC
at high temperatures where the Monte Carlo experi-
ments provide the exact results. We use a simple
potential that is known to give a fair over-all ac-
count of the thermodynamics. The outline of the
paper is as follows: Sec. II gives a brief statement
of the theory and the relationship of ISC to PT.
Section III presents the potential used, Sec. IV the
results, and finally Sec. V gives summary.

II. OUTLINE OF DYNAMICAL THEORIES

Quasiharmonic (QH) theory yields the standard
expression for the Helmholtz energy of a collection
of oscillators

++a= C'c+Z f,&, f,&= (1/P) ln(2sinh-, '
hPcc, &),
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rived. These are shown diagramatically in Fig. 1.
The lowest first-order PT correction is shown in
Fig. 1(b); this is due to the quartic term C4. The
lowest second-order contribution in PT is due to C3
and is shown in Fig. 1(a.). To this order

+p T =+qH+~4++3 3 ~

where the notation is self-explanatory, and explicit
expressions ean be found in the literature.

where Cc is the static lattice energy, P = 1/kT, and

, &
are the normal modes derived from the usual

dynamical matrix. Corrections to F&„arise from
terms C„C4, 4~, etc. , which are the higher-order
terms in the Hamiltonian that are, respectively, cu-
bic, quartic, etc. , in the particle displacements.
Using PT the leading eorreetions to Ez„can be de-
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FIG. 5. Zero-pressure bulk modulus of solid Xe.
The curves QH, ISC, and I'T were calculated from E~H,
F&sc, and EpT, respectively (see Ref. 5). The Monte
Carlo results are shown as squares. Experimental data
are from Ref. 22.
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It is now possible to treat classical many-body
problems exactly using a computer. ' In classical
Monte Carlo experiments the independent variables
are usually the temperature T and the size and shape
of the system. Once the potential energy is speci-
fied as a function of the particle coordinates, C

= 4 (fx,' }), the computer samples many configura-
tions in the vicinity of the initial one, weighting
them with their relative probability e+, which cor-
responds to a canonical-ensemble average. The
Helmholtz energy E and internal energy F. are

1J = ——lnZ
P

= ——in/&-'"
I
-",e-"d Exm'}/,

E= 2(N/6) +(4),
FIG. 6. Zero-pressure Gruneisen parameter for solid

Xe. The curves QH, ISC, PT were calculated from F~H,
and FpT, respectively (see Ref. 5). The Monte

Carlo results are shown as squares. Experimental data
are from Refs. 20 and 21.

where Z is the canonical partition function and A

is the thermal de Broglie wavelength. The canoni-
cal-ensemble average is

&0(( ))) = . . . 0 -~. d Ex'}

Thermodynamic properties based upon E» have
been reported. In particular, the PT approach was
shown to be unsatisfactory at high temperatures. '
An alternative approach has been developed based
upon self-consistent procedures. " '7 In lowest or-
der the free energy is then

1~
Eac (@0)8c+~ fas ~ seJ ~

cS 2 ed

where u@ is the contribution of the mode , &
to the

energy. Self-consistency arises because the aver-
aging of the force constants has to be carried out
with a displacement-displacement correlation func-
tion which itself depends upon the force constants.
Explicit details can be found in the cited references.
This lowest-order self-consistent theory has no ex-
plicit contribution from odd derivative terms of the
type in Fig. 1(a). To remedy this one should strict-
ly go to a fully self-consistent second-order theory
or even higher. ' This does not appear to be prac-
tical at present. A hybrid theory, the so-called
ISC which contained the leading term omitted in Esc,
was introduced2:

&csc =&sc+ &+
~

where hE is shown diagramatically in Fig. 1(c).
The chief difference between r E [Fig. 1(c)] and E, ,
I Fig. 1(a)] is the appearance of thermally averaged
third-order force constants, which manifests itself
as vertex renormalization in the figures. Finally,
Fig. 1(d) shows a further higher-order term analo-
gous to F4 4 in conventional PT. This term has been
used in explicit calculations recently by Koehler. '

%e have chosen to work with a simple nearest-
neighbor (nn) Lennard-Jones (LJ) (12-6) potential
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FIG. 7. Zero-pressure Cp for solid Xe. The curves
QH, ISC, PT were calculated from F~H, F~sc, and FpT,
respectively (see Ref. 5). The Monte Carlo results are
shown as squares. Experimental data are from Ref. 19.

The 6's below the integral sign are appropriate to
the solid phase and indicate that particles are re-
stricted to their own regions of space.

Thermodynamic properties follow from the free
energy in the usual way.

III. CHOICE OF POTENTIAL
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with parameters taken from Horton's review
article':

y(r) =4e[(o/ft)"- (o/Z)'] .
This potential gives a fair account of the thermo-

dynamic properties. The restriction to nn inter-
actions is not essential. ' However, since the all-
neighbor (12-6) potential does little better in ac-
counting for many of the thermodynamic properties,
there is no reason to favor it here.

IV. RESULTS

Figures 2-7 show the results of calculation of
thermodynamic properties of solid Xe using the LJ
(12-6) nn potential and the various approximations
for the dynamics outlined above. In the specific
heat and the expansivity, the Monte Carlo experi-
ments differ considerably from all the other dynam-
ical models. Although the ISC appears to be the
best model available, corrections to it appear to be
large at high temperatures. This confirms findings
of Koehler, who recently showed that the diagram
in Fig. 1(d) makes a significant contribution to the
high-temperature thermodynamic properties of solid
Ar. Independent calculations for solid Xe at
160 'K incorporating the diagram in Fig. 1(d) also
predicted far too large a lattice constant. It thus
appears that as yet we do not have an adequate dy-

namical theory for high temperatures. However,
a combination of Monte Carlo calculations at high
temperatures and ISC at lower temperatures would

probably enable one to span the whole temperature
range of solid Xe adequately. It is clear from
Figs. 2- f that the LJ (12-6) nn potential used in
this fashion gives only a semiquantitative account
of the experimental data. This is not very surpris-
ing in view of the gross oversimplification involved
in using this potential.

V. SUMMARY

We have compared the thermodynamic properties
of solid Xe calculated using approximate treatments
of anharmonic effects with an "exact" classical
Monte Carlo experiment. The ISC theory appears
to give the best results, which is encouraging to
some extent, since this is the most sophisticated
theory yet applied to explicit numerical calculation.
However, it is clear that at high temperatures cor-
rections to ISC are significant.

We have also shown that the simple LJ (12-6) nn

model is not really an adequate representation of
the interatomic forces in solid Xe. Further calcu-
lations using more realistic interatomic potentials
of the kind already used4' in solid Ar and Kr would
be most valuable.
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