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Properties of Excitons Bound to Ionized Donors
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Binding energies, interparticle distances, oscillator strengths, and exchange corrections
are calculated for the three-particle complex corresponding to an exciton bound to an ionized
donor. The results are given as functions of the mass ratio of the electron and hole. Binding
of the complex is obtained for mass ratios up to 0. 426. The interparticle distances are up to
50 times larger than the corresponding exciton radius. The oscillator strengths are about 104

times greater than those of free excitons, while the exchange corrections for the complex are
comparable to those of free excitions. The results are applied to CdS and ZnO and compared
with experimental results on these.

I. INTRODUCTION
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The ground-state energy of the three-particle
complex was calculated by variational means in the
effective-mass approximation. The effective-mass
Hamiltonian H for the complex is conveniently
scaled as follows:

H' = H/2E,
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Here R„and B, are the distances from the ionized
donor to the hole and the electron, respectively,
while B,„is the distance between the electron and
hole. Further,
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The three-particle complex consisting of an elec-
tron and a hole bound to an ionized donor is the
simplest possible bound-exciton complex. Hopfield'
has estimated the binding energies of bound-exciton
complexes by extrapolations of molecular binding
energies. More accurate calculations of binding
energies for the three-particle complex were car-
ried out by means of variational methods by Sharma
and Rodriguez and Suffczynski et al.

Here we compute binding energies of the three-
particle complex for a practically important inter-
val of electron-hole mass ratios m, /m„by adding
a long-range tail to the variational function. The
wave functions obtained in this variational procedure
are then, furthermore, used for computing other
characteristic quantities of the center, such as in-
terparticle distances, oscillator strengths, and ex-
change corrections as a function of m, /m„.

II. GROUND-STATE ENERGY

are energy anu radius for the hydrogenlike accep-
tor in the semiconductor. The e is the electronic
charge, m, and m„are electron and hole masses,
respectively, &p is the permittivity vacuum, while e
is the low-frequency value of the dielectric constant
of the material. The primed coordinates are then
measured in units of a„. They are thus scaled with
the dielectric constant and the hole mass. It is seen
that the scaled Hamiltonian depends on only one pa-
rameter, the mass ratio m, /m„. In case of aniso-
tropic masses or dielectric constants a transforma-
tion to the isotropic case can be applied. Hence,
only the isotropic solutions will be considered here.

The trial function was of the form,
N

f(H„H„)= R'„~ Z X, exp[- (A,R,'+ B,R,'„+ C,R'„)]
i~1
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where the variational parameters are Xi, A, , B, ,
C, , Co, and C, whereas 1/Ao is the radius of the
donor. P and N were usually 2 and 4, respectively.
Previous calculations3 of the ground-state energy
were performed only with the first part of this trial
function. The inclusion of the last term which is
similar to that used by Rotenberg and Stein' is
particularly useful when m, /m„ is close to the value
where this complex ceases to be bound. Near this
limit the center is characterized, approximately,
by an electron in the donor level and a loosely bound
hole as described by the last term in the trial func-
tion.

By means of (4) the variational estimate of the
ground-state energy was obtained as a function of
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where E„is the binding energy of the free exciton.

III. INTERPARTICLE DISTANCES
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FIG. 1. Binding energy E for the three-particle center
relative to the donor energy &d as a function of the mass
ratio. me/m& = 0 corresponds to the H2' molecule. The
binding energy of an exciton to an ionized donor may be
found from Eq. (5).
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m, /m„. The results are given in Fig. 1. The
ratio of the ground-state energy E to the donor en-
ergy Ed varies monotonically with the mass ratio.
We obtain binding of the complex up to m, /m„
=0. 426 where we found (E —E~)/E, = (1.Sx10 4}%.
The binding energy given in Fig. 1 is that of a hole
bound to a neutral donor. The complex may equally
well be visualized as an ionized donor binding an
exciton with a binding energy

It is important to know approximately the dis-
tances between the particles in the complex since
the validity of the effective-mass equation (1)
breaks down when these distances are too small.
It is, furthermore, of interest to calculate these
distances because they yield the extension of the
center and hence the largest possible concentration
of bound excitons before their envelopes substan-
tially overlap. The expectation values of the dis-
tances are computed by means of the trial functions
which gave lowest ground-state energy. The re-
sults are shown in Figs. 2 and 3. It is seen that
all the distances are greater than the donor radius.
The use of the effective-mass equation is therefore
justified. In the limit m, /m„-0, (R, )-(R,„)-0.69
x(Rz) as for the Hz' complex. In the limit where the
complex becomes ionized (R,„) and (R„) are large,
and (R, ) is slightly larger than the donor radius a~.

We have also computed the average interaction
energies between the particles which we define as
(e /SveoeR), where R is the distance between the
particles in question. These energies are two
times smaller than the expectation values of the
corresponding potential energies. The results are
given in Fig. 4. It is seen that the binding energy
of the complex appears as the sum of the interac-
tion energies between the particles. It is interest-
ing to note that there exists anupper limit of R„
(and R,„) since curves (a) and (b) cross at m, /m„
= 0.426. Here, the repulsive potential energy of the
hole equals the attractive potential energy, and the
hole ceases to be bound. At this point R„and R,„
are about 50 times greater than ad, the donor radi-
us, corresponding to the largest possible extension
of the complex. This relatively large extension of
the wave function in the direct space is consistent
with the observation of Reynolds et al. that the
phonon side bands for three-particle complexes are
sharper than for four-particle complexes. This in-
dicates a more localized wave function in A space
for three-particle complexes.
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FIG. 2. Expectation values of the interparticle dis-
tances in the three-particle complex in units of the ef-
fective Bohr radius of the hole az (a&=4m&p&I je mz). The
case of m, /m&=0. 20 is explicitly shown (in scale 1:2).

I

0.1
me mh

0.2 0.3 0$

FIG. 3. Ratios of the expectation values of the inter-
particle distances in the three-particle complex.



514 SKE TTRUP, SUF FC Z YNSKI, AND GQRZKOWSKI

'100

2C=-
81lg

C C C /Ew'w% /
'4

50
v

i I

0.1 0.2

tnt/mh

I

0.3 0.4

IV. OSCILLATOR STRENGTHS

The oscillator strength f, of the complex may be
obtained by computing the momentum matrix ele-
ment (P) between the crystal ground state and the
excited state corresponding to the three-particle
complex. From the definition of the oscillator
strength, one then finds

FIG. 4. Expectation values of the interaction energies,
defined as half the potential energies. It is seen that
above the limit mass ratio the repulsive energy for the
hole is larger than the attractive energy, and the complex
cannot exist.

Q
f,=f„'* '* Zf(R, R)

(dp R
(6)
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where co„and a„, respectively, are the resonance
frequency and the radius of the free excitons. By
computing 15'f(R, R)1, the ratio f, /f„may be ob-
tained. Rashba and Gurgenishvili' and Henry and
Nassau have done this with a wave function for a
short-range potential representing very loosely
bound-exciton complexes. Here we compute
lgf(R, R) I for excitons bound to ionized centers by

means of the wave function Eq. (4) obtained in the
variational procedure.

The computed values of Ig f(R, R)1 for the three-
particle complex are given in Fig. 6 vs m, /m„. It
is seen that these values are of the order of 10
which means that the strengths of these complexes
are of the order 10 times greater than the strengths
of free excitons.

It is interesting to know the limiting value of the
oscillator strength when the center ceases to be
bound. To calculate this we use Eq. (6). Now, the
complex consists of an electron in the donor level
and a free hole in the valence band. For this com-
plex we have

Zf R, R)
21(p) I 21p,„ln 1
3mg&uo 3m 1~0

where N is the number of unit cells of volume 0 in
the crystal, a„ is the donor radius, and k is the
wave vector of the hole. Then,

P Z f(R, R) (6) Qf(R, R) =Z Ef-(R, R)
R k

where m is the free-electron mass, cop is the fre-
quency of the transition, and f(R„R„)is the enve-
lope function for the three-particle complex in Eq.
(4). The f(R„R~) should be normalized such that

~ lf(R. R)l'=I.
l„Ng

The p,„ is the usual one-electron p-matrix element
between valence and conduction band, and P is the
value of the terms in the brackets. Cardona re-
ports that the value of P~ is remarkably constant
within the different groups of materials. For II-VI
compounds he finds P = 21 eV, and for III-V and
IV-IV materials, P = 23 eV. The modifying factor
Igf(R, R) I, which multiplies the pure band-to-band
strength in (6), is not just the probability that the
electron and hole are in the same unit cell, as is
usually assumed in optical transitions. The factor
is the square of the sum of the amplitude probabil-
ities that the electron and hole are in same unit cell
or, if Fourier transformed, that the electron and
hole have opposite k vectors.

Introducing the oscillator strength f„per unit
cell 0 of the free excitons, one obtains '

(2n)' g NQna~ (1+a~ I k I
')'

(1O)

where the contribution from each k vector has been
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FIG. 5. Enhancement factor for the oscillator strength
of the three-particle complex. The strength may be ob-
tained from Eq. (6) or (8). Above the limit mass ratio,
the enhancement factor is 1, corresponding to the inte-
grated strength of the recombination of a free hole and a
bound electron.
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whole system of centers is due to the long-range ex-
change interaction. It may be computed in the same
way as for free excitons. " From Eqs. (14) and (16)
in Ref. 14 one then obtains for the total exchange
correction of the three-particle complex

&C
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FIG. 6. Factor determining the exchange correction
for the three-particle complex. 0 is the volume of one
molecule in the solid in units of the effective Bohr radius
of the hole a&. Since /If(R, R) I

t is proportional to 0,
the factor shown in this figure is the proportionality con-
stant $ I f{R, R) I /Q. The exchange splitting may be ob-
tained from Eq. (13).

I
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taken into account. The oscillator strength for the
recombination of a free hole and a bound electron
therefore is

f=P /K&us .
Note that this strength is independent of the mass
ratio and the donor radius.

V. EXCHANGE CORRECTION

The levels corresponding to parallel and antipar-
allel orientations of the electron and hole spins are
split by the exchange interaction. Only the state
with antiparallel spins is optically allowed. Thomas
and Hopfield' mentioned that the exchange splitting
is proportional to the probability that the electron
and hole are in the same unit cell, i. e. , Qa I f(R, R) I .
Henry et al. ' applied this result to weakly bound
excitons. Here, we compute the exchange splitting
of the three-particle complex by means of the wave
functions of Eq. (4).

The exchange splitting may be computed from
first-order perturbation theory. This has been done
for free excitons. ' We modify these results to ap-
ply to the case of the three-particle complex. Eq.
(19) in Ref. 14 then becomes

ns=~o~ttlf(R R)l (12)

where Jo is the exchange integral of the conduction-
and valence-band Wannier functions for the
same unit cell. Equation (12) represents only the
short-range part of the exchange interaction. The
long-range part [Eq. (11) in Ref. 14] vanishes for a
single isotropic center. If, however, all three-
particle complexes in the crystal are taken into ac-
count, a long-range exchange splitting is found.
The optically active excitations of this system of
centers have different energies, depending on its
transverse or longitudinal character. This splitting
between longitudinal and transverse states of the

~r =&o~gl f(» R) l'--'() sN. /&s&') l~af(R R)l'

(k& p), (12)

~t, =&sZa
l f(R, R)ls+ ', ()ts-N, /ess')lZa f(R, R)l'

(kll u) (14)

+r R = +free Nc~ fc/fee ~ (16)

Since f,/f„ is of the order 10', N, should be of the
order 10' cm to get ~L„comparable with ~,~,
(+free 3 Ez.T, where Ez,r is the splitting between
transverse and longitudinal free excitons' ). This
high content of impurities will, however, because
of the large oscillator strengths of bound excitons,
give rise to a bound-exciton absorption comparable
to the free-exciton absorption. This results in a
broad absorption edge below the band gap without
any structure. For most measurements on bound-

Here ~& is the exchange energy of the transverse
states (optically active), n~ is that of the longitudi-
nal states, p,„ is the magnitude of the dipole moment
associated with a valence-conduction-band transi-
tion, &0 is the permittivity of vacuum, whereas &'

is the background dielectric constant at the transi-
tion frequency, and N, is the concentration of cen-
ters. A detailed calculation, based on the assump-
tion that the random distribution of centers may be
replaced by an ordered distribution, shows that

Igf(R, R) I appears as the factor due to the centers
in the long-range terms and not/If(R, R)I which
only is present in the short-range terms.

Note that the long-range exchange splitting be-
tween transverse and longitudinal states depends on
the concentration of complexes in the crystal, and
that it is proportional to the oscillator strength
(6) of the complex. It should be noticed that there
are three relevant energy states for the complex:
The state with parallel spin which is not affected by
exchange, and the states with antiparallel spins for
which the transverse and longitudinal states are
split.

The pl f(R, R)l is given in Fig. 6 for the three-
particle complex. It is of the order of 10 which is
the same order as for free excitons. Hence, the
short-range exchange correction for free and bound
excitons should be comparable. The long-range ex-
change correction &LR for the bound excitons may
be expressed in terms of the long-range exchange
correction ~„„for free excitons and the oscillator
strength ratio (6) as follows:
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TABLE I. Results computed for CdS and ZnO compared with experimental results. Only the three experimental

values of m, /mq, m, , and E,x are used in the calculations.

a= m, /m„

me

E„(meV)

Cds

0 20

0. 20

27a

Parameters

ZnO

p. 21

0. 24

59

(E E )/E (%)

E —Ez (meV)

E —E [Eq. (5)] (meV)

Qf(R, R)

3. 1

1.0

6. 4

Computed results
2. 7

1.9
13.4

[ = (E —E )/E x E (1 +0)]

f [Eq. (6)J

fc~fe~'

Q 1 f(R, R) I /0

g)f(R R) (
2 t

[ag ]

255

1.OX10

0.45 X 10

0. 195x10

180

0. 69x10

0.49xlp 3

0, 375x10

Ap [Eq. (12)] (meV)

bLR [Eq. (15)J (meV)

h (meV)

0 ~ 49

—0. 044

0.45

0. 83

—0. 061

0. 77

(for 10 centers/cm )

Experimental values

r„, (eV)

(E —Eex)Expt (meV)

(+exch)Exyt (meV)

2. 55266"

4 66 7 lph

0.31j

3.3758~

11.3, 17.0, 20. 9 i

0 9

Reference 4.
Reference 15 ~

W. Baer, Phys. Rev. 154, 785 (1967).
"D. G. Thomas, J. Phys. Chem. Solids ~15 86 (1960).
'D. G. Thomas and J. J. Hopfield, Phys. Rev. 116,

573 (1959); Ref. 14.
Qcds =49.4 A. , &zn0=23. 7 ~ (per molecule), alt is

found from a~ = 0. 53 A [13.6 eV x o /E~ (1+cr) m, ]
~Jp=2. 2 eU (ZnO, Ref. 14). For CdS, Jp is found from

Jp =3 (61 + 24&) 7I'aex /~, where br =A& —A& and 6& =A —A+

from Ref. 4, and a,x is the exciton radius [see also Eq.
(28) in Ref. 14]. Result: Jp=2. 5 eV for CdS.

"Reference 17.
~I. Filinski and T. Skettrup, Proceedings of the Ninth

International Conference on the Physics of Semiconduc-
tors, edited by S. M. Ryvkin (Nauka, Leningrad, 1968),
p. 216.

~Reference 12.
"Reference 16.

exciton levels one is therefore restricted to use
samples with N, &10"cm ' so that 4LR~+f +o.
Hence, 4» is usually only a minor correction to

VI. COMPARISON WITH EXPERIMENT

The properties of the three-particle centers in
CdS and Zno have been computed by means of the
results obtained in the previous sections. The val-
ues are given in Table I and compared with experi-
mental results on these materials. The parameters
used in the calculations are m, /m„, m, , and E„.
The values for m, and m& determined from experi-
ments vary somewhat. We have chosen m, /m„
=0. 20 for CdS and m, /m„=0. 21 for' ZnOboth of
these being obtained from measurements on exci-
tons. Thus, there are no adjustable parameters in

the calculation. The experimental energy separa-
tions which should be compared with the computed
ones are those between the optically inactive states,
because only these are insensitive to exchange.
The optically inactive free exciton (I'8 „„}has been
observed for both materials. The optically inactive
bound exciton (F6 ~ ~} is found from the observed
I

& b, d line by subtracting the experimental ex-
change splittings. ' ' The binding energies quoted
in Table I are the energy separations between the
rs

~ f...and the I 8 b, , exciton lines.
The observed values vary somewhat because the

binding energies depend on the type of donor which
bind the exciton. ' These effects of central-cell
corrections for the different kinds of donors are not
included in our calculations of the binding energies.

For CdS we compute a binding energy of 6. 4 meV



PROPERTIES OF EXCITONS BOUND TO IONIZED DONORS

whereas the experimental values vary from 4. 6 to
7. 1 meV. For ZnO we obtain 13.4 meV and experi-
rnental numbers range from 11.3 to 20. 9 meV.
Thus, for both materials we obtain a good agree-
ment, since central-cell corrections are not con-
sidered here. Also the computed exchange split-
ting agree well with the observed values. The os-
cillator strengths are predicted to be 255 for CdS
and 180 for ZnO. The oscillator strengths have not
yet been measured. The computed values are
10-100 times greater than those reported for exci-
tons bound to neutral centers. ' However, the fact
that the three-particle centers are actually ob-
served at helium temperature where only a few do-
nors are ionized indicates that the strengths must be
quite large.

VII. SUMMARY

Properties of the three-particle complex, con-
sisting of an electron and a hole bound to an ionized
donor have been computed as a function of m, /m„.

The ground-state energy was calculated in the ef-
fective-mass approximation by the variational
method. The energy depends only on the mass ratio
m, /m„and varies monotonically with this. The
wave functions derived from the variational pro-
cedure were used for computing interparticle distances
and oscillator strengths of the complex. The ex-
change splitting between states with parallel and

antiparallel electron and hole spins was also com-
puted, and it was found that long-range effects may
be important when the concentration of centers is
large. Finally the properties of the three-particle
complexes in CdS and ZnO were calculated. By
comparing with experimental values, good agree-
ment was obtained.
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