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{000) minima band and #, the number in the (111)
band, then the total number of electrons is given
by n=ny+n,. Figure 5 shows the variation of m*
with » from Table I. It may be seen from this
figure that m* increases with the increase in n.
One can also correlate the density-of-states ef-
fective mass m* with m§ and m{ by the following
relation:

1/m*=y/m¥ +(1 -v)/m¥ ,
where
y=ny/lng+n1) =no/n .

Since the values of m} and m¥ are known from
magnetoresistance measurements, it should be
possible to calculate the number of electrons in the
(111) minima band for a given value of n. Table
II gives the values of n, and »n; for different values
of n. It may be seen from this table that at low
concentrations of the order 1-2x10!" cm-? the
phonons are scattered by electrons in the (000)
band. For large concentrations, n exceeding
1x10'® cm™3, the phonons are scattered by elec-
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trons in the (111) minima band. For intermediate
concentrations, the phonons are scattered by elec-
trons from both the bands, and this is the reason
that m* lies in between the two extreme values

0.05 and 0.5. It may be further concluded that with
the low electron concentrations the impurity states
merge with the (000) minima band and with further
increase in the concentration, they also merge with
the (111) minima bands.

It is also concluded that the contribution of elec-
tron-phonon scattering to the lattice thermal re-
sistance is maximum at the lowest temperature
and a reduction is obtained at temperatures above
the conductivity maximum.

It is also observed that electron-phonon scatter-
ing is strongly dependent on frequency and the low-
frequency phonons are scattered most effectively.
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The statistics for an arbitrary distribution of traps under nonequilibrium steady-state con-
ditions is derived, and it is seen to be identical in form to the Shockley-Read expression for
a single trapping level. The energy dependence of the statistics has been investigated, and

several interesting features have been deduced.

It has been found appropriate to describe the

occupancy of the traps in terms of two modulated Fermi-Dirac functions—one associated

with trapped electrons, the other with trapped holes. It has been found possible to categorize
the traps (into species) in terms of the ratio of their electron and hole capture cross sections.
Detailed discussions are given for the electron and hole fillings of the traps as a function of
energy, temperature, and illumination intensity for various trap distributions. The distinc-
tions between shallow traps, recombination centers, and dead states are defined and discussed

in detail.

I. INTRODUCTION

Shockley-Read ! statistics have been extremely
successful in describing nonequilibrium steady-
state processes in semiconductors. The original
work was concerned with the recombination pro-

cesses occurring through a single discrete trapping
level. A formal extension of the theory, using

the traditional Shockley-Read approach, to more
than one distinct trapping level results in equations
of extreme algebraic complexity.? As a result the
problem has rarely been treated beyond this level
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in a strictly formal manner. This is not unduly
restrictive if the theory is to be applied to the
technologically important semiconductors such as
silicon or germanium. These materials are
normally grown to such a high degree of crystal-
line perfection and purity that the nonequilibrium
recombination and generation processes are often
controlled by one dominant trapping level.

In the case of crystalline insulators, experi-
mental evidence suggests that the trapping levels
are distributed throughout the forbidden band
gap. 3% In polycrystalline materials one intuitively
expects to find a wide variety of trapping levels.
As regards amorphous solids, both theory and ex-
periment suggest the existence of localized levels®
throughout the band gap. These localized levels
are an intvinsic property of amorphous materials
and arise from the lack of long-range order in
such materials. Thus one cannot analyze such
systems with a theory, the applicability of which
is limited to one or two trapping levels.

Rose has attacked the distributed trap problem
using a semiquantitative approach (and some re-
markable physical intuition) with a good deal of
success.’ However, such an approach is limited
in the sense that it is difficult to obtain much quan-
titative information about the system. Also it can
be applied only to simple systems, because of the
very complexity of the problem which involves
several simultaneous and interacting processes.

In this paper we have tackled the distributed
trap problem on strictly formal grounds. The
approach is quite general and the results are ap-
plicable to an arbitrary distribution of traps and
an arbitrary distribution of trap cross sections.

II. PRELIMINARY REMARKS

It is sometimes assumed in the literature that
electron and hole traps are distinct physical en-
tities. This is not the case. A trap is amphoteric
in the sense that it acts both as an electron trap
and as a hole trap, and it is its state of occupancy
that determines in which capacity it is acting.
When the trap is empty, it is ready to receive an
electron, and thus it is operating as an electron
trap. When the trap contains an electron, it is
ready to receive a hole, and hence is a hole trap.
(We are assuming that the trap is monovalent. )

It is convenient to assume that the traps existing
below the equilibrium Fermi level are neutral
when filled with an electron and that the traps
positioned above the equilibrium Fermi level are
neutral when empty. (This is the condition we
have assumed here for convenience, although it
is not necessarily the case.) Thus a trap positioned
above the equilibrium Fermi level is neutral when
acting as an electron trap and negatively charged
when acting as a hole trap. On the other hand a

trap positioned below the equilibrium Fermi level
is neutral when acting as a hole trap and positively
charged when acting as an electron trap.

At first thought, it would seem that a positively
charged electron trap would have a greater pro-
pensity for capturing an electron than a neutral
electron trap. This is not necessarily the case
but is probably so. However, it should be noted
that the efficacy of an electron trap is determined
solely by its capture cross section for electrons
and not by its state of charging, since the cross
section of an electron trap implicitly includes its
state of charging. Thus, a charged and neutral
electron trap having the same cross section will
capture electrons at exactly the same rate. Simi-
lar remarks pertain to neutral and negatively
charged hole traps. In the following discussions,
then, we will not be concerned with the state of
charging of the traps but rather its cross section
for holes and electrons.

III. THEORY
A. Emission and Capture Processes

According to Shockley-Read statistics! the four
processes which determine the trap occupancy of
a discrete trapping level are as indicated in the
Fig. 1. Process a is the capture of electrons from
the conduction band by the trap; its rate is

7,=v0,nN,(1-f) , (1)

where 7 is the free-electron density in the con-
duction band, v is the thermal velocity of the elec-
trons, o, is the capture cross section of the trap
for electrons, N; is the trap density per unit vol-
ume, and f is the probability of occupation of a
given trap level. Process b is the rate of emission
of electrons from the trap; its rate is

Yo=e,Nef (2)

where e, is the emission probability from the trap
for electrons. Process c is the capture of holes
from the valence band; its rate is

¥, =v0, PN, f (3

where p is the free-hole density in the valence
band and o, is the capture cross section for holes.
Process d is the rate of emission of holes to the
valence band; its rate is

_F.
J l c FIG. 1. Transitions
a b taking place under nonequi-
G librium conditions (Ref.1).
_Fy
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Ya= e, N1 -/) (4)

where ¢, is the probability of hole emission from
the trap.

The emission probabilities e,, e, are related to
0, and 0,, respectively, from the fact that in
thermal equilibrium

Ya=7p, V=7 , (5)
and®

I . (®)

T leexp[(E, - Ego)/RT],

where Ej is the equilibrium Fermi level. This
yields

en:vanc C(Et-EC)/kT > (7)

e,=vo, N, e By E)/RT (8)

B. The Distribution Function

Consider now the case of a semiconductor or
insulator having an arbitrary distribution of traps
N(E) per unitl volume per unit energy throughout
the energy gap, when the solid is uniformly illumi-
nated resulting in a constant generation rate per
unit volume G of electron-hole pairs. The sta-
tistics of occupancy for the traps may be derived
from two different points of view. The first of
these is to consider the rate equations for the
conduction and valence bands which is used in the
Shockley-Read approach. The second is to con-
sider the rate equation for a particular trapping
center. Consider the first approach. In non-
equilibrium steady state the rate at which electrons
enter the conduction band equals the rate at which
electrons leave the conduction band; that is,

a‘it’_' =G - f ke nN(E)(1 -f(E)]dE

+/E° e, NE)f(E)dE=0 . (9)

Similarly, the rate at which holes leave the val-
ence band equals the rate at which holes enter the
valence band which is

Z—? - G—-[Ec P N(E)f(E)dE
E

+AE° e,N(EY1-f(E)dE=0 , (10)

v

where E, is the energy of the bottom of the con-
duction band, E, is the energy of the top of the
valence band, #=vo,n, and p=vo,p. From (9)
and (10) we have
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fy. e NE){ -7 [1 ~1(B)] + e, (E)

+Df(E)-e,[1 -f(E)]}dE=0 . (11)

Because (11) is valid for an arbitrary distribution
of traps N(E), the quantity in braces in the inte-
grand can be equated to zero:

e, f(E)-n(1-f(E)) -pf(E)+e,(1-f(E)=0 . (12)

Thus the probability of occupation f(E) of a trap
level at any energy E is given by

- nte
fE)= e,+i+p+e, ’ 13)
which is just the statistic originally derived by
Shockley and Read for a single-trap level. How-
ever, as we have shown, (13) is a quite general
statement and is independent of the energy distri-
bution of the traps.

Consider now, the rate equation for a particular
trap. In the nonequilibrium steady-state condition,
the occupancy of any trap is constant and thus the
four processes which fill and empty the trap are
in balance. Therefore,

AN(E)(1 - f(E)] - e,N(E)[1 - f(E)]

-DPN(E)(E)+e,NE)[1~f(E)]=0, (14)

and the probability of occupation f(E) of a trap
level of any energy E is given by

__n+e
fE)= e,,+ﬁ+5+e, ’ (15)
which agrees with (13) above.

The two approaches discussed above may appear
prima facia to be no more than just alternative
means of deriving the same statistic; however,
each approach inherently contains additional in-
formation. Equations (9) and (10) apply to the
traps taken collectively. They relate the method
of stimulation to the trap distribution and the free-
carrier concentrations and are essential if the
free-carrier densities are required. On the other
hand, f(E) as derived via (14) applies to the traps
taken individually and shows that the statistic is
independent of the means of stimulation. This
observation shows that f(E) can be multivalued at
a particular energy without being irregular. For
example, if we have three traps positioned at the
same energy having different cross sections, then
clearly f(E) will take three different values.

From the foregoing it would appear that, in a
distribution of traps, each trap having different
trap cross sections for electrons and holes would
require its own distribution function. However,
consider a group of traps in the distribution for
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which the ratio R of the cross sections for elec-
trons and holes,

R=0,(E)/0,(E)

’

is a constant. By inspection of (15) it is seen that
all traps in this group are defined by a unique func-
tion f(E). A species of traps is defined by that
group of traps characterized by a particular value
of R. It will be noted that the cross sections
0,(E) and o,(E) of any trap in a species may be
independent of E or may have the same functional
dependence on energy since it is sufficient that
R be a constant independent of energy to define a
species.

At all energies above the intrinsic Fermi level, ®
E;, e,in (13) may be neglected in comparison with
e,, 7, and p to yield

n

_— <« 7D . 16
e"+ﬁ+p ) ep en’nyp ( )

f
Similarly for all energies below E;, e, in (l3) may
be neglected in comparison with e,, # and p to
yield

f__rL*'_e.L_ e,<e,, W, p . 1)

e,+n+p’

C. Insulator Containing a Single Species of Traps

As we are dealing with only one species of traps
we are concerned with only a single distribution
function.

Figure 2, which illustrates typically the occupa-
ncy of traps before and after illumination, con-
tains several interesting features. It will be
noted that above the equilibrium Fermi level?

Ep, the occupation probability has increased mark-
edly, Below Ep, the occupation probability has
considerably decreased. !

a. Conditions above Eg,. An important feature
of (16) for the case in hand is that it has a mod-
ulated Fermi-Dirac form about an energy E%, de-
fined by

vo, N, exp[(Ec-E;t)]:ﬁ*'ﬁ . (18)

This is readily shown by writing (16) in the fol-
lowing form:

@ 1
) {“ /@ 9] } : 19
and substituting (18),

7 1

—= m . 20
n+p { 1+exp[(E; - E},)/RkT] } (20)
The quantity in the braces will be recognized as

the Fermi-Dirac function about an energy E%, ;
the modulating factor #(m+p)™* is a constant for

f:

a given light intensity.

As a result of Eq. (20), E%, can be defined as
the quasi-Fermi level for trapped electrons.
This is because traps with energy greater than
E%, are essentially empty; that is, the traps are
filled according to a Boltzmann’s distribution

R
F=Fnp @I, = ER)/RT]

(e,>m+p)  (21)

and below E%, they are substantially occupied to
a constant level given by

Rn
Rn+p

f= (e.<@+p) . (22)
The quasi-Fermi level Eg, for free electrons
in the conduction band is defined by

n=N,exp[(Ep,-E.)/kT] . (23)

By inspection of (18) and (23) it will be apparent
that

E:‘t > EFn (24)

at all times under nonequilibrium steady-state
conditions. Thus the quasi-Fermi level for trapped
electrons is always positioned (energetically) above
the quasi-Fermi level for free electrons, as in-
dicated in Fig. 2. The two coincide when the solid
is in thermal equilibrium.

The demarcation level for an electron trap
E,, has been defined by Rose® as that energy level
at which an electron in a trap will have equal prob-
abilities of being thermally excited to the conduction
band or of recombining witha free hole. From this def-
inition and (2) and (3),

7y _ voNeexp[- (E, - E;)/RT] _ 1 (25)
v ool Brp- E/RT] =L

from which
Eqn=E, +(E,~En) + kTIn(o,No/0,N,) ,  (26)

where Ep, is the quasi-Fermi level for free holes.
Thus if an occupied trap lies higher in energy than
E,, then the electron will have a greater probability
of being emitted to the conduction band than of re-
combining with afree hole; otherwise, the converse is
true. Itwould appear attractive touse the demarcation
energy to distinguish between shallow traps and
recombination centers. However, it will be shown
that this is not the case, and that the quasi-Fermi
level for trapped electrons provides the most ap-
propriate distinction between shallow traps and
recombination centers. Nevertheless it is con-
venient to retain the concept of a demarcation en-
ergy for trapped electrons since it defines an
electvon dead state.

By inspection of (18) and (26) it will be seen that
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the demarcation energy is always less than the
quasi-Fermi level for trapped electrons. If
p># then from (23) and (26) the demarcation energy
is greater than the quasi-Fermi level for free
electrons; otherwise the converse applies.

b. Conditions below Eg,. For energies below
Epq it is more appropriate to write (17) as

1-f=p/(+p+e,) (27

for reasons that will become apparent shortly.
Similarly to (16), (27) also has a modulated Fermi-
Dirac form with respect to holes about an energy
E%, defined by

vo, N, exp[(E%: —E,)/kT)=7+p . (28)

This can be shown by rewriting (27) and sub-
stituting (28) to yield

A E, - ? -1

1-f=(—ﬁ—i"—7) l:l+exp <_‘k—f}i&) :, (29)
The quantity in the square brackets will be recog-
nized as the Fermi-Dirac function for holes about
an energy E%,; the modulating term p(@+p)! is
a constant for a given light intensity. As a result
of (29), E%, is now defined as the quasi-Fermi
level for trapped holes. This follows from the
fact that traps with energies less than E%, are es-
sentially full, or in other words the traps are
filled with holes according to a Boltzmann’s
distribution,

LA _
1-f= Rnp+p expl:(EukTE:):I (e,>7+5), (30)

and above E%, they are substantially filled with
holes to a constant level given by

1-f=p/Rn+p) (e,<7+p) . (31)
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The quasi-Fermi level for free holes in the
valence band is defined by

p=N,exp[(E, - Ef,)/kT] . (32)

By inspection of (28) and (32) it is apparent that
E%,<Ep, at all times under nonequilibrium steady-
state conditions; thus the quasi-Fermi level for
holes is always positioned above the quasi-Fermi
level for trapped holes as shown in Fig. 2. Here,
also, the two energy levels coincide under steady-
state conditions only when thermal equilibrium is
attained.

By analogy with E4,, we can define a hole-trap
demarcation energy E;, given by

Ey =E,~ (Ep,- E,) +kT1n(o,N, /o,N,) . (33)

Thus if the trap level lies below E;,, then from
(1), (4), and (30) the hole will have a greater prob-
ability of being emitted to the valence band (r,; /7,
>1). I the trap level lies above E;,, the hole

will have a greater probability of recombining with
an electron from the conduction band (7, /nl <1).
Again, the idea of using the hole demarcation en-
ergy appears suitable for the separation of shallow
hole traps from recombination centers. 35 We
will show in the discussion'® that the quasi-Fermi
level for trapped holes is a better way of distin-
guishing between the two. The concept of demar-
cation energy for hole traps will however prove
useful in defining hole dead states. E,, is always
greater in energy than E%,, the quasi-Fermi en-
ergy for trapped holes. It is also less than Ep,,
the quasi-Fermi level for free holes, if #>p, and
greater than Eg, if 7<p.

D. Insulator Containing Multiple Species of Traps

In this section we consider a solid in which the
arbitrary trap distribution consists of several
species S,each different species being characterized
by the ratio of the trap cross sections for electrons
and holes:

G"(S, E)/Up(s’ E)ZR(S) .

Thus each species may be treated on a separate
basis as described in Sec. IIIB.

Above Epq each trap species has a true Fermi-
Dirac form about an energy E%,(S) defined by

’U(I,,(S, E)Nc exp{[Ec - EnFt (S)] /kT}
=v0,(S, Em+ vo,(S,E)p , (34)

where 0,(S, E) and 0,(S, E) are the electron- and
hole-trap cross sections, respectively, for a
particular species. The electron occupation func-
tion f(S, E) for each species S may be written as



| v

R(S,Em E,-E%L(S) |!
f(S,E):M[1+exp—‘—k—;‘——] .

(35)

Below Eg( each trap species has an occupation
function f such that 1 - f has a true Fermi-Dirac
form about an energy E%,(S) defined by

v0,(S, E)N, exp[(E%,(S)-E,) /kT]
=v0,(S, En+v0,(S,E)p . (36)

The hole occupation function 1 -f(S, E) for each
species S may be written as

E,-E%(S) 1
I3 F.
1+exp——————L—kT

(37

The remarks made concerning the occupancy of
the traps above and below both the quasi-Fermi
level for trapped electrons and trapped holes for
a single species [see (21), (22), (30), and (31)]
apply equally well here to a particular species.
Figure 3 shows the occupancy of the traps before
and after illumination for three different species:
@i)R(1); (ii)R(2)<R(1); (iii)R(3)>R(1). [The dot-
dash curve represents the Fermi-Dirac distribution

(corresponding to equilibrium conditions), which
is the same for all three species. ]

P
116, )= 35 s [

E. Varying Ratio of Electron-Trap Cross Section to
Hole-Trap Cross Section

In the previous sections we have seen that each
species of traps is associated with a unique set
of demarcation lines and quasi-Fermi levels for
trapped electrons and holes. Consider now the
case of a monotonic variation of species with en-
ergy, i.e., every trap level is associated with a
different species. This means that each trap will
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FIG. 3. Occupational functions for three different trap

species.
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FIG. 4. Diagrams (a) and (c) illustrate two functional
forms of R(E), and (b) and (d) the corresponding occupa-

tional functions.

have associated with it its own demarcation lines
and quasi-Fermi levels for trapped electrons and

holes.

If there are many levels involved, this
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FIG. 5. Several occupancy-filling energy diagrams

for trap systems (constant species). See text for further

details.
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FIG. 6. Several occupancy-filling energy diagrams
for trap systems (varying species). See text for further
details.

method of characterizing the statistical properties
of the traps is cumbersome. If one can indeed
associate a functional dependence of R on energy,
say R(E), then it is more convenient to use R(E)
in (13) where appropriate. This provides a single
occupational function for describing the system;
however, one cannot associate with this function
demarcation lines and trap quasi-Fermi levels
for trapped electrons and holes. In Fig. 4 we

illustrate the occupancy for two functional forms
of R(E).

F. Electron- and Hole-Energy Density for a System of
Arbitrary Trap Densities and Capture Cross Sections

Figures 5 and 6 show several occupancy-filling
energy diagrams for trap systems which might be
encountered in practice. Figure 5 is concerned
with species which are independent of energy (i.e.,
that have a constant value of R in the energy gap).
Figure 6 is concerned with trap species which are
a function of energy.

a. Constant species. Figure 5(a)(i) illustrates
the case of four discrete trap levels in the energy
gap of an insulator. It is assumed that all the traps
belong to the same species; hence the occupancy
of each is described by the same function [see Fig.
5(a)(ii)]. The electron and hole fillings [F,(E) and
F,(E)] are shown in Figs. 5(a)(iii) and 5(a)(iv),
respectively.

Figure 5(b)(i) illustrates the case of a uniform
trap distribution throughout the energy gap. The
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full lines in Figs. 5(b)(ii)~-(iv) represent f(E), F,(E),
and F,(E), respectively, for aparticular species, say
R(1). The dotted lines in Figs. 5(b)(ii)-(iv) rep-
resent f(E), F,(E), and F,(E), respectively, for

the case where the traps are characterized by a
different species R(2) such that R(2)<R(1).

Figure 5(c)(i) depicts an insulator with two uni-
form distributions of traps N,(E) and N,(E), cor-
responding to two different species of traps charac-
terized by R(1) and R(2), respectively [R(1)> R(2)].
In Fig. 5(c)(i)-(iv) the dot-dash lines refer to
N(E), f(E), F,(E), and F,(E) for the species de-
scribed by R(1). The dotted line refers to these
quantities for the species described by R(2), and
the full line in Fig. 5(c)(i), (iii), (iv) represents
the total values of N(E), E, (E), and F(E), respec-
tively. It will be noted that the resultant electron
and hole fillings (full line) in Fig. 5(c)(ii)-(iv) ex-
hibit two abrupt changes at the quasi-Fermi levels
of the occupancy functions corresponding to the
two species, R(1) and R(2). This fact can be gen-
eralized in the case of uniform trap distributions
by the statement that for every species present
there will be an abrupt change in the occupation
function both above and below Ep,.

Figure 5(d)(i) shows a trap distribution expo-
nentially decreasing with energy measured with
respect to the band edges. This is a trap distri-
bution corresponding to the postulated “density-of-
states tail”® which is typically found in amorphous
solids. Figure 5(d)(ii)-(iv) show for a single
species (constant cross-section ratio), the occupan-
cy and the electron and hole fillings [(F,(E) and
F,(E)], respectively. It is seen that F,(E) and
F,(E) become peaks at their respective quasi-
Fermi levels for trapped electrons and holes and
only reflect the trap distribution towards the
center of the energy gap, where the occupancy
function is essentially constant. The electron
filling in the upper half of Fig. 5(d)(iii) is inter-
esting because of its abrupt almost discrete nature.

Similar remarks also pertain to the hole filling
in the lower half of Fig. 5(d)(iv). This filling very
much resembles that of a discrete trap. Because
of this, it is easy to infer erroneously the existence
of discrete traps in experiments which require
optical stimulation prior to the observation of
trapping phenomena (e.g., thermally stimulated
conductivity!®).

b. Varying species. Figure 6(a)-(c)(i)-(v) il-
lustrate the parameters N(E), R(E), f(E), and
F,(E) and F,(E), respectively, for three trap dis-
tributions when the ratio R(E) has some functional
dependence on the position of the traps in the en-
ergy gap. Figure 6(a) illustrates the parameters
for discrete traps and a ratio R(E) which is rapidly
decreasing from both band edges towards the cen-
ter of the energy gap. As a result f(E) and hence
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F,(E) also decrease sharply towards the center
of the energy gap. It is seen that F,(E) increases
towards the center of the energy gap.

Figure 6(b) illustrates the situation for two dif-
ferent uniform trap distributions, N,(E) and N,(E),
each distribution having its own variable ratio,
R,(E) and R,(E), respectively, through the energy
gap. The dash lines in Fig. 6(b) correspond to
one trap distribution [N,(E)], the dot-dash lines
to the other [N,(E)] and the full lines in Figs. 6(b)
(iv), (v) to the resultant electron and hole fillings.
It is then seen that the rapid increase of R,(E) and
the rapid decrease of R,(E), as one approaches the
center of the energy gap from either band edge,
combine to affect the electron filling F,(E) by pro-
ducing a peak around the quasi-Fermi level for
trapped electrons as well as a substantial filling
in the center of the energy gap. On the other hand,
F,(E) shows a more or less equable filling through
the energy gap because the peaking effect of N,(E)
and R,(E) is smaller than that of Ny(E) and R,(E).

Figure 6(c) illustrates the case for the “density-
of-states tail” (exponentially decreasing from the
conduction and valence bands to the center of the
energy gap) characterized by a rapidly varying
ratio R(E). The resultant electron and hole fillings
[Fig. 6(c)(iv)-(v)] are similar to but somewhat
more pronounced than those of Figs. 5(d)(iii)— (iv).
Once again the former remarks concerning the in-
terpretation of peaks in F, (E) and F,(E) apply as
well to Figs. 6(b)(iv) and 6(c)(iv)-(v).

G. Effect of Illumination Intensity and Temperature
on Occupation Functions

Normally an increase in illumination intensity
leads to an increase in the free-carrier densities.
This results in the movement of the demarcation
levels [see Eqs. (26) and (33)] the quasi-Fermi
levels [see Eqs. (18) and (28)] for trapped electrons
and holes and the quasi-Fermi levels [see Eqgs.
(23) and (32)] for free carriers closer to their re-
spective band edges as shown in Fig. 7(a). For
very high illumination levels it is possible to have
the quasi-Fermi levels for trapped electrons and
holes coincident with their respective band edges.
When this occurs the occupation probability (11)
is a constant value[=#/(7 + p) | throughout the band
gap [see Fig. 7(a)).

Decreasing the temperature has essentially the
same effect upon the quasi-Fermi levels for trapped
electrons and holes and demarcation levels, as
that of increasing the illumination intensity. At
absolute zero of temperature the parameters e,
and e, reduce to zero with the result that the oc-
cupation probability becomes a constant value
[=7%/ (@ + p)] throughout the band gap as shown in
Fig. 7(b). This is true regardless of the intensity
of the illumination.

H. Charge Neutrality Conditions

An underlying feature of the condition of uniform
illumination in a solid is the existence of charge
neutrality at all times. Thus for illumination levels
such that the free-excess-carrier concentrations
are far less than the trapped electrons or holes,
then the number of trapped electrons in levels above
Ep, is essentially equal to the trapped holes in
levels below Ep,. This is illustrated by the equiv-
alence of the cross-hatched areas in Fig. 8.

1V. DISCUSSION

Let us initially assume that all traps in the for-
bidden gap belong to the one particular species.
Consider the traps positioned between the quasi-
Fermi level for trapped electrons and the bottom
of the conduction band. The roie of these traps in
the recombination process decreases exponentially
with energy from the quasi-Fermi level to the band
edge. Similar remarks pertain to trapping levels
positioned between the top of the valence band and
the quasi-Fermi level for trapped holes. Such
traps are essentially in thermal equilibrium with
their respective free-carrier band: in other words
a free carrier falling into one of these traps would,
with a high degree of certainty, be reemitted to
the band from which it came. These traps are
normally referred to as shallow traps.

On the other hand, all traps positioned between
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FIG. 7. Illustrations (a) (i)—(iii) represent the occupa-
tional functions for three different illumination intensities.
Illustrations (b) (i)—(ii) illustrate the occupational func-
tions for three different temperatures. Note that in (b)
(i)—(iii) the distributions around the quasitrap levels.

"¢ and E%, vary with temperature and are exaggerated
for effect.
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FIG. 8. Filling diagram of a solid (a) before illumina-

tion, (b) after illumination. The two cross-hatched sec-
tions are equal in area, indicating that the number of
trapped electrons above Ep is equal to the number of
trapped holes below Ep.

the two quasi-Fermi levels for trapped electrons
and holes are referred to here as recombination
centers. This is because the great majority of
recombination traffic passes through these centers.!
This observation is contrary to what is normally
expressed in the literature!* where the recombina-
tion efficiency is considered to be a maximum at
the center of the energy gap and to decrease
rapidly for higher or lower energies. Consider
now those traps positioned between the quasi-Fermi
level for trapped electrons E%, and the electron
demarcation line E,,. It will be recalled that an
electron in a trap positioned at E;, would have an
equal chance of being reemitted to the conduction
band or of recombining with a hole in the valence
band (Sec. IIIC). Thus a trap positioned above

E4, would have a much greater probability for
emitting an electron to the conduction band than of
losing it to the valence band by recombination.
(Similar remarks with respect to holes pertain to
the traps positioned between the quasi-Fermi

level for trapped holes E%, and the hole demarcation
line E;,). In contrast, recombination centers lying
between the E,, and E%, lose their electrons essen-
tially by recombination alone. Thus when an elec-
tron from the conduction band is captured by these
centers its life as a free carrier is effectively
terminated. Hence, the reason for designating
these traps as “electron dead states” (Fig. 9).
Similarly, those recombination centers lying be-
tween E,, and E%, are hole dead states (Fig. 9).

In insulators where p is of the order of # in the
excited state, it will be apparent from (18), (25),
(26), and (33) that the quasi-Fermi levels for
trapped electrons and holes are positioned very
close to their respective demarcation lines [see
Fig. (2)]. On the other hand, for a doped semi-
conductor (say = type), #>p for low-level injection
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conditions. Also n will be approximately equal to
its equilibrium value ny,. Thus E%, and Eg, co-
incide since

vo,N,exp(Ep, ~E,)/kT=Fi+p~7 (38)
and

vo,N,exp(Epo— E,)/kT=7, . (39)
On the other hand, since [see (28)]

vo,N,exp(E, - E%,)/kT=n+p=7
and [see (33)]

vo,N, exp(E, - Eq,)/kT =7 ,
then E,, and E%, practically coincide [see Fig.
9(a)]. Because of (38) and since

v0, N, exp(Eq, - E,)/kT =P , (40)

E,, will normally lie well below Ef, in energy [see
Fig. 9(a)]. Between the quasi-Fermi levels for
trapped electrons and trapped holes the filling of

the traps, #/@#@+p), will be constant and close to
unity for an n-type semiconductor [see Fig. 9(a)]
and close to zero for a p-type semiconductor [see
Fig. 9(b)]. Hence it follows that the traps lying

in energy between the quasi-Fermi level for trapped
holes and the equilibrium Fermi level are all re-
combination centers. However, the dead states
(those recombination centers between E4, and E,,)
will be a much smaller fraction of these recom-
bination centers than in the case of the insulator.

It follows that similar remarks pertain as well to
the corresponding energy levels in a p-type semi-
conductor and this case is illustrated diagramatical-
ly in Fig. 9(b).
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FIG. 9. Occupational functions for an arbitrary distri-
bution of traps in (a) an n-type semiconductor and (b) a
p-type semiconductor under low-level injection conditions.
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In the presence of several species the above re-
marks apply to each individual species character-
ized by its own E},, E%,, E,, and E;,. From the
definitions of shallow traps and recombination
centers, it is clear that the role of a particular
trap is determined entirely by the illumination in-
tensity G and the temperature T (see Sec. IIIG)
because these parameters determine the positions
of Ef,, E%,, E,, and E;,. Hence it is quite possible
to have an overlapping of shallow traps and recom-
bination centers belonging to different species, as
shown in Fig. 3.

There is a tendency to attempt to distinguish be-
tween a deep electron trap and a recombination
center. > But clearly, any trap between the quasi-
Fermi levels for trapped electrons and holes is a
recombination center. Of course it is possible for
the trap to have a very small cross section for
capturing holes, which means that an electron will
remain a long time in the trap, particularly if it
is a dead state, before recombining with a hole.
On the other hand, if the trap has a very large cross
section for capturing holes, then the electron will
remain only a short time in the trap before recom-
bining with a hole. In either case, the trap is a re
combination center. It thus seems appropriate to
reserve the term deep trap for the description of
traps in the condition of thermal equilibrium. !°

Deep electron traps would then correspond to those
traps lying below Ep, and would be identical with
shallow hole traps. Deep hole traps would be
synonomous with shallow electron traps and would
lie above Ep,.

In the past it has been considered that each group
of traps having a particular electron capture cross
section and a particular hole-capture cross sec-
tion had to have associated with it a particular set
of demarcation lines. (The use of quasi-Fermi
levels for trapped electrons and trapped holes is
a concept we have introduced here.) Thus, if the
cross sections vary with energy, a set of de-
marcation lines would be required to be associated
with each level under the old scheme of thinking.
The concept of species will normally considerably
reduce the number of sets of levels required to
categorize the system. In fact, even if the cross
sections vary rvandomly with energy, providing
that the ratios of their cross sections are a con-
stant in energy, one and one only set of demar-
cation lines and quasi-Fermi levels are required
to categorize the system.

If the light level were sufficiently high then
band-to-band recombination would occur. How-
ever it can be shown that band-to-band recombina-
tion does not affect the nonequilibrium statistics
derived herein. 2
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