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The substantial deviations from additivity of electron-phonon and electron-impurity scatter-
ing [Phys. Rev. B 2 3833 (1970)] are shown to result mainly from an unfortunate choice of a
trial function in the variational calculation of the resistivity.

The purpose of this note is to comment on a re-
cent paper by Rice and Bunce' on the anomalous
electron-phonon transport properties of impure
metals. The basic effect was outlined by Rice and

further elaborated on in Ref. 3. It was shown by
the present author4 that the treatment in Ref. 2 leads
to a considerable overestimate of the deviation from
additivity of the electron-phonon and electron-im-
purity scattering. In this note we point our that the
same criticism applies to RB, in which the detailed
account of the effect outlined in Refs. 2 and 3 is
given.

In order to elucidate the general nature of the
argument let us consider the transport properties
of a system, in which two scattering mechanisms
are present simultaneously. The linearized Boltz-
mann equation may be written in a symbolic fashion
as

X=HQ= (H1+Hm)Q,

where H is the total collision operator, assumed
equal to the sum of the collision operators associ-
ated with each scattering mechanism. The un-
known deviation from equilibrium of the distribu-
tion function is Q, and Vis the driving term.

The well-known variational principle, which was
introduced in transport theory by Kohler, ' leads
to a lower bound on, say, the conductivity o of a
metal. If the conductivity is written as a scalar
product' of Q and X, that is, o = (Q, X), then the
resistivity p = 1/o may be bounded from above ac-
cording to

= pl+ pa+ +a y
(3')

where (3') defines the positive quantity n1. It is
apparent that b,& is an upper bound on the deviation
from additivity

&= P —(P1+P1), (4)

I+aoA [X /(1+X) —2X/(1+X) ]
(I —a A [X/(1+ X) ])

which is the quantity of interest in RB. One might
think that b, = 4& in the limit p&» p&. This was in
fact the (implicit) assumption made in Refs. 1-3.
To see why this is not necessarily true, we need
only consider the analogous bound obtained with
U= Qp.'

p& pi+&i+p~

If ~& is comparable to ~&, even though p&» p&,
then clearly the bound b,& cannot be trusted as a
reasonably accurate approximation to 4. If b&

«42, even though p&» p~, then && is obviously a
much better upper bound than 4&, and the identifi-
cation 4= &2 would be grossly misleading. These
remarks are important not only for the absolute
magnitude of the predicted b, but also for its de-
pendence on temperature and other parameters of
the system.

To see explicitly how these considerations apply
to RB we shall consider the case (treated in Ref.
4) where only the linear term in the energy depen-
dence of the impurity relaxation time is kept.
Then RB's equation (3.V) becomes (with bo 0)=

ps. (U, HU)/(U, X) (2) (6)
Here U is the trial function which one has to choose
in order to determine the bound (2). The exact
resistivities for each scattering mechanism con-
sidered separately are given by 1/p1 = (Q„X) and

I/p1 = (Q2, X), where Q, and Q1 are the exact solu-
tions of the Boltzmann equation (1) with H replaced
by Hj and H2, respectively.

Let us now consider the case where the first
scattering mechanism dominates the resistivity,
that is, p&» p2. It is then natural to use U= g& as
the trial function in (2). We then obtain

where for brevity A = —,'v (T /B'o') and X= p,,/po.
(The notation of RB is followed except when other
wise indicated. ) With the condition aoA « I [cf.
Ref. 4 or RB's (2. 19)] the result (6) becomes

n/a', P, =X/(I+X)'+A[X'/(I+X) ] . (8)

p, = po( 1+aoA[X /(1+X) ]j .
When this is added to p„as given by RB's (4. 2)
the following expression for n = p, ,+ p„—(po+ p~„)
results:

P KP1+ (Q1 Ha Q1)/(Q1, X) (3) This may now be compared with the result given
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n/as pc & A, (10)

which eliminates the peak exhibited by (8) when
plotted as a function of X.

The connection with our discussion prior to Eq.
(6) may now be made. The bound (9) is simply a
combination in parallel of the resistivities b,

& and
4s as defined by (3') and (5), since 4t = ao p,, and
As= asApc. Then (9) assumes the form

in Eq. (7) of Ref. 4:

a/a',pc ~ (1/X+ 1/A) ' . (9)

Since A = —', v (T /es ) «1, the bound (9) is much
smaller than (8). When viewed as a function of X
the right-hand side of (9) increases monotonically
with increasing X, the maximum (asymptotic)
value being A(«1), whereas (8) peaks at X-1 with
a peak value ~ —,'. The expressions (8) and (9) are
approximately equal only for X» 1/A and X«A .

The reason for the difference between the re-
sults (8) and (9) lies solely in the choice of trial
function. The result (9) was obtained with a trial
function, which was a variable linear combination
of the solution of the impurity-only problem with
the solution of the phonon-only problem. The trial
function of RB (2. 15), however, contains no varia-
tional parameter; it is an indication of how unfor-
tunate this ansatz is, that the simplest conceivable
trial function, namely, an energy-independent con-
stant [say r(c) = r, , ] would do far better than the
ansatz of RB (2. 15). Such a constant trial function
gives immediately

ha (1/d t+ 1/hs) (11)
Clearly (11) is in accordance with the requirement
that b, should be less than or equaI to the smaller
of 6& and bz. It is also apparent that the relative
magnitude of p& and p3 is of no immediate relevance.

With the obvious identifications the result (8) due
to RB is similarly written as

a=at[Ps/(P, +Ps) ]+d's[P, /(P, +P~) ], (12)

which has the form of a series combination of the
resistivities b& and b2 after multiplication with
weight factors involving the ratio p, /ps. From
(12) one may recover the form (11) only by the re-
placement p&- 4& and pz- hz in the weight factors.
Once again, this demonstrates the relevance of the
ratio d.t/as rather than p&/ps.

The plots shown in RB's Fig. 1 were obtained by
neglecting the second term in (8) compared to the
first one, that is, by writing

0X a pan
(1+X) (1+p, /po)

This approximation corresponds to setting A = 0 in
(9), which results in d =0. Therefore (13) should
be interpreted as nothing more than an upper bound
on the number zero.

We conclude that Refs. 1-3 seriously overesti-
mate the deviations from additivity of the electron-
phonon and electron-impurity scattering, and that
the predicted peaks in a(T) (RB's Fig. 1) do not
reflect any property of the model considered, but
only the inadequacy of the chosen trial function.

*See Ref. 1.
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A recent calculation by Weaire is shown to be a special case of an older and more general
theory.

In a recent letter, ' Weaire investigated the ener-
gy density of states of a particular model of an
amorphous group-IV semiconductor. The Hamil-

tonian used was based on the tight-binding approxi-
mation to the true Hamiltonian of an electron in a
disordered tetrahedrally coordinated network of


