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When an orbital triplet in cubic symmetry is equally coupled to both Ez and T2~ modes, the
Hamiltonian describing the Jahn-Teller effect has a symmetry much higher than cubic. This
fact allows to reduce to a great extent the number of vibrational states coupled to an electron-
ic state. The general expression for the fractional parentage coefficients involved in the cal-
culation of the matrix elements of the interaction is given. A general relation between Ham
factors is deduced from symmetry considerations. This model seems to apply very well to
the excited level of the F' center in CaO.

I. INTRODUCTION

In a recent paper, O' Brien' showed that a very
special kind of dynamical Jahn-Teller effect might
occur when a T, orbital level in cubic symmetry
is coupled to both E and T2 modes of vibration.
As pointed out by Ham, a quenching of physical
quantities such as the orbital angular momentum
occurs in the ground vibronic state as a consequence
of the Jahn- Teller interaction: This quenching is
described by reduction factors or Ham factors K
which in many problems depend only on the sym-
metry of the associated operator. If modes of E
symmetry are the only coupled ones, then it is
found that parameters of E symmetry are not
quenched at all; i. e. , K(E) = l but K(T2) and K(T, )

both decrease to zero as the strength of the cou-
pling is increased. On the other hand, a coupling
to T2 modes leads to a quenching of Ty and E pa-
rameters, but K(Tz) is left larger than -', . One
would have guessed that equal coupling to both E
and T2 modes would have reduced the three kinds of
parameters. Instead, O' Brien' found, using the
adiabatic approximation, that this is not the case:
Though the Ham factor K(T, ) is zero, as expected
in this approximation, K(E) and K(T2) have the large
value of '-, . At about the same time experimental
work showed that this model might very well apply
to the case of the CaO:F'-center problem. The
zero-phonon line did not show any spin-orbit split-
ting, though Kemp et al. and Bessent et al. mea-
sured values of A of the order of 40 cm ' in the
broad band by the Faraday rotation technique. This
indicates that K(T,} is smaller than 0. 05. On the
other hand, the stress effect on the zero-phonon
line' showed that the coupling coefficients to strains
of E and T2 symmetry were not much reduced.

This led Hughes to apply the O' Brien model to

this system. He showed that strong coupling to E
and T, modes could explain the qualitative features
of the absorption band shape and the relative in-
tensity of the no-phonon line. Merle d' Aubigne and
Roussel, through a moment analysis of the mag-
netic circular dichroism, measured K(T, ) =0.02
and showed that indeed the contribution of noncubic
(E and T2) modes to the width of the band is much
stronger than that of the cubic (A&) modes. More
recently measurements of the linear dichroism led
Duran et al. ' to the values of K(T,) =K(E) =0.4.

However, as pointed out by Hughes and measured
by Merle d' Aubigne and Roussel, ' the value of E»
was not large enough, as compared to the energy
h(d of the vibrational modes, to make the adiabatic
approximation valid. Only a purely quantum-
mechanical solution of this problem could give such
factors a,s K(T,), which would be zero otherwise,
or the zero-phonon line intensity, which requires
the knowledge of the exact vibronic wave function.

We shall present here a calculation which uses
the fact that the complete Hamiltonian may be
written in such a way that it behaves as though it
had a symmetry much higher than cubic, as soon
as E and T2 modes are considered to have equal
energy and coupling strength to a T, electronic
state. We shall show that, without going into the
numerical calculations, a very simple relation is
readily found between the two factors K(T, ) and
K(E) =K(T2). This relation is to be compared to
the one which links q=K(E) and p=K(Az) in the case
of E-mode coupling to E electronic state. In order
to determine the vibronic eigenfunctions and eigen-
values, one would have to diagonalize the Hamil-
tonian by numerical techniques. The formalism
we describe allows us to reduce to a large extent
the order of the matrix to be diagonalized. We
present in the Appendix the calculation of the frac-
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tional parentage coefficients which are necessary
to determine the matrix elements.

II. FORM AND SYMMETRIES OF HAMILTONIAN

When treating the coupling of an electronic state
to its neighborhood, one has to make many sim-
plifications in order to reduce the number of de-
grees of freedom of the problem, which would
otherwise be untractable. Very often one can limit
oneself to the even modes of vibration of the sur-
rounding octahedra which span the A, + E+ T~ ir-
reducible representations (IR) of the cubic sym-
metry group. If more modes are involved, one
tries to find the linear combination of the same
symmetry modes which carry most of the coupling
strength: These are known as the interaction
modes. ' We shall thus make the assumption that
we have been able to analyze the problem in terms
of two degenerate modes of E symmetry and three
of T2 symmetry (the A~ mode, having only diagonal
elements, is very simple to handle) and, in addi-
tion, that these have the same frequency and cou-
pling strength.

The Hamiltonian representing the vibration of the
five harmonic oscillators can be written as

'i0 =Z, h(u(a, a, + —,
' ),

where i stands for EO, E&, T~(, 2'2q, T2), or any
linear combination of them, and a~ and a are the
phonon creation and annihilation operators.

The interaction Hamiltonian is

fc) =Z( K sq(g~g+gq)

K is related to the parameters V~, V~, and p, de-
fined in Abragam and Bleaney" by

K= VE — = Vr

The 6 s are electronic operators having the
same symmetry as i. The matrix elements of these
five operators are the ones which can be found in
calculating the matrix elements of the five real
components of a second-rank irreducible tensor in

a triplet P state as defined in the full rotation group
R,. Indeed, it is well known that a set of operators
spanning &z is split in E+ T2 by a cubic field and
the P state is left unchanged. If the K and Sco pa-
rameters are the same for E and T~, the restric-
tion of the symmetry does not appear in the mathe-
matical form of the Hamiltonian. Instead of con-
sidering a real basis for the phonon states, it is
worth using some of their linear combinations so
that the five 6,'s can be written as the five standard
components of a second-rank irreducible tensor.
Each phonon can be thought of as having an orbital
angular momentum equal to 2, the projection of
which is equal to i; the a; appearing in'Ko are then
the creation operators for such phonons.

The full Hamiltonian 'K =%0+%& has been trans-
formed in such a way that it seems to exhibit the

symmetry of R3, though the physical problem is
certainly not invariant under the elements of R3.
However, it would be if we were considering the
coupling of a P state with an isotropic continuum

of matter surrounding the defect. Then the defor-
mation would be represented by a nine-component
tensor,

of which the even part spans the $0+X)2 IR of the

R3 group. The vibration and coupling of five modes
of $2 would be represented by exactly the same
Hamiltonian we have written.

III. CLASSIFICATION OF EIGENFUNCTION OF
VIBRATIONAL HAMILTONIAN Ko

We have seen that the vibronic Hamiltonian X
has a symmetry higher than cubic; here we shall
show the vibrational part has a still higher sym-
metry. It is indeed a simple matter to demonstrate
that Ko is invariant upon the application of the 25
operators a, a& (their effect is just to move one pho-
non from state j to state i, thus leaving energy
unaffected). These can be thought of as infinitesi-
mal operators of the continuous U, group of which

R3 is a subgroup. ' The eigenfunctions can be
classified according to the IR of this group: The
states which correspond to the excitation of n pho-
nons span the [n, 0, 0, 0, 0] IR which have

(n+ 1)(n+ 2)(n+ 3)(n+ 4)
"'4 1X2X 3X4 dimensions.

(We should label IR by their highest weight as usu-
al, but shall sometimes drop the zeros as all IB
of the problem have this same form. ) In just the
same way the three-dimensional harmonic oscil-
lator is invariant under U3, which explains the
additional degeneracies one observes in that case.

In order to classify the states, it is worthwhile
to consider the chain of reduction U&- R5- Rz. In
reducing U, to R5 one chooses as infinitesimal op-
erators

W, „=a,a"( —)"—a „a '( —)", p=1-5, v=1-5.
Among these 25 only 10 are linearly independent.

The [n, 0, 0, 0, 0] can be shown to split according
to

[n, 0, 0, 0, 0] —[n, 0]+ [n —2, 0]+ ~ + [1,0] or [0, 0],
where the [n, P] IR of R5 are labeled by their high-
est weight as usual.

Again this reduction is comparable to the Us- R3
reduction in the three-dimensional oscillator in
which
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[n, o, o]-n„+&„2+. . +u, or n0 .

The remaining reduction consists of restricting
oneself to the three operators of h3,

L+1 (~ 10) +21 (~ 10)+10 ~

LO (~ 10) +22 (~ 10)+11

L, = (g —,', ) W, , —(0 ~)W „.
We get the splitting

[n, O]-Z, &, ,

where the set of the L cannot be expressed in a
simple way but has very interesting properties':
(a) L=1 never occurs and (b) L=o and L=2 occur
only separately, the first when n is a multiple of 3,
the second in all other cases.

We are now able to label any of the vibrational
wave functions by the set of quantum numbers

In, n, L, m&,

where n stands for the t,."~ IR, i.e. , the number of
phonons, n stands for the R, IR, and L and m

specify the SL, IR and its component in R3. L is
the momentum resulting from the coupling of n

orbital angular momenta, each being equal to 2.
It is the same problem we solve when we calculate
the different terms of a d" electronic configuration,
but here we are dealing with spinless bosons in-
stead of fermions.

IV. INTRODUCTION OF COUPLING

We are in a position to calculate the effect of the
interaction by searching for the vibronic wave func-
tions which diagonalize %0+3&,. Since K is R3 in-
variant, they span different IR of R3, but for the
physical problem we are involved in, it is enough
to consider only the P-like state for the following
reason. The ground state of the F center is an S
state and optical absorption can only reach the J= 1
state; during emission at sufficiently low tempera-
ture only the ground vibronic state will be populated
and this state is expected to keep the same sym-
metry as the unperturbed electronic one. The sym-
metry is now an over-all symmetry including elec-
tronic and vibrational coordinates; that is, we have
to couple two orbital angular momenta. The elec-
tronic one is equal to 1; the other must be chosen
so that the resulting momentum is also 1: It has
to be either 2, 1, or O.

As L = 1 does not appear, the only vibrational
wave function which will enter the problem can be
written as

In, n, D, m), In, a, S, O&

where S and D stand for L=O and L=2. To respect
the symmetry of the resulting IPp)& state, the
eigenvectors which we shall obtain have to be of
the form

Z y(n, n)
I n, n., S)

I
Pp)

n, a=3/

+ 2 y(n, u)ln, 12, D~ m)
I
pv)(21mvl 1V& ~

n, u2t88;1

The values of the Clebsch-Gordan coefficient
(21mv I 1 p) are found in tables. '

We use the double ket IPI1)& notation to keep in

mind that it involves both electron and vibrations
coordinates.

The values of y(n, n) are to be found numerically
by calculating and diagonalizing the matrix of X
in the I Pn)) base. This involves the calculation
of such elements as (n, n, L II a l~ n, 01, L' ) which
are directly related to the fractional parentage
coefficients. Their derivation can be found in the
Appendix.

Replacing P y(n, o) I n, o., S) by I S) and

7y(n, n) In, n, D, m) by I D, m), one can write

I »» = I I
s&+ (V k) I DO&]

I
»& —(&Pi) I

Dl) PO)

+u-', )ID2&IP-»,

I
Po» = (~~M)

I
D - » I »&+( I s& —(& 2 ) I Do&] I

Po&

+(lk)ID+»IP-1) .
Because of the presence of the y's, ID) and I S)
are not normalized states but the I Pp» are, so

S +D =1,
where S = (S I S) and LP =(Dm IDm).

V. CALCULATION OF REDUCTION FACTORS

The simple form the vibronic wave functions
display enables us to calculate very easily the ma-
trix elements of any electronic operator in its ir-
reducible tensor form T;. Thus the Ham factor
will appear in a nearly analytical way and depends
only on the symmetry of the operator. One finds
that the vibronic ((Pii T„ ii P)) double-barred matrix
element is equal to the electronic (P II T, II P) mul-
tiplied by the factor K„which is

K(=S —
p D2 1 2

K, = S'+~D' .
[The numerical factors appearing in K„might have
been calculated directly from Eq. (3.37) of Judd.
They are just equal to the 6j's

1 I1}.
multiplied by 3( —)'. ]

Taking into account that S + LB = 1, one finds that
the following simple relation holds:

5 K) —+K2 —
5

K, is usually called K(T, ) and K2 represent K(E)
or K(T,), which in the R2 symmetry have to be
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equal.

VI. CONCLUSION

forward as soon as the matrix elements of the type

M=(n, a', L, m a~ n, a, L, m)

The simple form of the general vibronic wave
function has been established without any calcula-
tion, by using only the fact that equal coupling to
F and T3 modes of equal energy introduces extra
symmetry. It leads to an expression of the Ham
reduction factors K in terms of one parameter, and
then to a relation between these K independent of
the strength of the coupling. In the limit of strong
coupling where K(T,} is expected to be very small,
a value of K(E}= K(Tz}= 0.4 is found, in agreement
with adiabatic theory of O' Brien. '

The formalism we have presented can be best
used in the calculation of the eigenvectors and
eigenvalues of the Hamiltonian. In order to set up
the matrix elements of X,, we calculated all the coef-
ficients of fractional parentage (cfp) necessary to
this problem. As we were planning to do the nu-
merical calculations we received a report, prior
to publication, of work by O' Brien, ' in which she
gives the numerical results of the diagonalization.
She obtained the cfp numerically. We thought it
useful, for future developments of the theory, to
publish our way of deriving these coefficients and
to show how the relation between K(Z} and K(T, )

comes out from pure symmetry considerations.
We shall now apply these results to the case of

the F' centers in CaO. When comparing the calcu-
lated and the observed shapes of the absorption
band, one has to take a full account of the effect of
the cubic modes of vibration. They (i) reduce the
intensity of the zero-phonon line by an amount e
(ii) shift the zero-phonon line towards low energies
by S, (h&u, }, and (iii) contribute to the second mo-
ment of the band by S,(h&u, ), where the Huang-Rhys
factor S, is defined as the average number of pho-
nons mitted when a photon is absorbed. The con-
tributions of the cubic and noncubic modes of
vibration to the second moment of the absorption
band were measured by Merle d' Aubigne and
Roussel' (see their Table II c), so that S, and S„„
the Huang-Rhys factor for noncubic modes, are
known. Using the numerical results of O' Brien, '
it is then possible to calculate K(T~}=0. 025 and the
intensity of the zero-phonon line which is given by
an effective Huang-Rhys factor S*= 5. 2. These
compare very well to the experimental values of
0. 02 and 5. 6.
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APPENDIX

The calculation of the matrix of K, is straight-

are found. n, &, I., m label the successive IR in the
chain of reduction U, -R, -R~-Rz.

We first apply the extension of Wigner-Eckart
theorem to U„noting that a~ transforms as the 1,
2, p, component of the [1,0, 0, 0, 0] IR of U, . M can
be written as

~ = (n II a lln)(n', a', L', m'
l
112', +n, a, L, m),

(Al)

where the second factor is a generalized Clebsch-
Gordan coefficient.

The double-barred matrix is easily evaluated by
choosing the particular wave function in, n, 2n, 2n),
where all phonons are in the same i = 2 state, and
letting a~ act on it. As the Clebsch-Gordan coef-
ficient is obviously 1, we get

(n' Ila Iln) (n+1) 5(n', n+1) .
The generalized Clebsch-Gordan coefficient can

be factorized according to a theorem due to Racah, '~

which we use twice:

(n, a, L, m
l
112' +n, a, L, m)

= (n, a
l
11+n, a) (a, L

l
12+a, L)

x (L, m
l
2p+ L, m) . (A2)

The last factor is a R3 Clebsch-Gordan coeffi-
cient, which is usually written as

«', m I2i +L, m)=(2, L L,ml2, L, &, m);
the product of the remaining two is a coefficient of
fractional parentage, '

(n, a, L ( n, a, L) = (n, a
l

1. 1+n, a)

x(a', L l12+a, L) .
The (n, a i ll+n, a)'s have been calculated by

Hecht. ' He finds that the only nonzero coefficients
are

(n + 1, a + 1
l
11+n, a) = (n + a + 5)(a + 1)

2a+5 n+1

(A4a)

(n + 1, a —1
l
ll +n, a) = (n —a+2)(a+2) '"

2a+1 n+1

(A4b)
These selection rules derive from the fact that

in R5, [n, 0] x[ 1, 0] =[n + 1, 0] +[n, 1]+[n —1, 0].
Figure 1 summarizes them by showing the only ex-
isting connections between IR.

Recursion Formula for Calculating Coefficients of Fractional
Parentage

We are left with the R, -RS coefficient, which we
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will better evaluate as a cfp:

(n, n, LI n + 1, n + 1, L ) = (n, L + 12
I
n + 1, I. ) .

We shall use the Redmond formula as given in

Judd, "slightly modified by the fact that we are
dealing with spinless bosons:

(n+1) Q (q' q&(q']I q')f(L, L')
it(J

=( —1) ' n(2 L+1)'~ (2I. +1)'~

L =L; $ g are n-phonon wave functions I n, Ie, L) or
In, P, X ); and T(( is any (n —1)-phonon wave function
In —l, y, L) connected to both g and T((. In this
formula II( and (t(' are arbitrary, as well as L.

Let us choose T(( and 7(( among the I n, n, L) func-
tions. Then, due to selection rules included in
E(l. (A4) or in Fig. 1, one sees that T(( has to be one
of the ln —1,n —1, L). The possible values of (I(

are either

(I(, = In +1,n +1, L)

«K((((((('(() —,~I (t(~('(, or
a= In+ l, n —1, L)

( ) is a usual 6j coefficient; l is the orbital angular
momentum of each phonon, i.e. , 2; |I) is any
(n+1)-ph ononwave function I n+ 1, a, L ), where

But the ((I(l (I(z) can be related to a (tI(i tT() through the
relation of symmetry of the R~ Clebsch-Gordan
coefficient, '~ and use of Eqs. (A3) and (A4b):

2(n+ 2)
(n, n, L I n + 1 n —1 L ) = — (n, L + 12

I
n —1, L )n+1 2n+1

&/2 s/a2 n+2
( )

2L+1 g(n —1)
( —1 L 12

n 1+(2n+1) 2L +1 g(n)

s/a

2L +1 n+1 2n+3 (A6)

where g(n) =+~(n+ 2)(n+ 1)(2n+ 3) is the dimension of the IR[n, 0] of If,.
One can use (A6) to rewrite Redmond's formula:

(n+1) Q (T((ll(I(, )((I(,ll(T() ( I(,LL) =g(T((, (T(')+n( —)~' (2L+1)'~ (2L +1) ~

~,=i.+i, ~i, L, &

L l L 25(L L)
I f I (2n+3)(2I +1) (A7)

The g(,. is reduced to a single term wherever L
1

appears only once in the reduction of [n+1, 0] to
R, If so, the ((T(II(I() can be readily calculated as
soon as the ((I(IT(() are known; in fact, (A7) together
with normality relations provides too many condi-
tions, and this overdetermined system will let us
calculate explicit values of the cfp in some simple
cases.

Explicit Values of Some Coefficients of Fractional Parentage

We will now show that the cfp relative to L =0 or
L =2 can be explicitly calculated. This is mostly
due to the fact that many small L terms are miss-
ing.

Figure 2 shows the nine kinds of cfp linking a
L =2 or L =0 to the other states. Using formula
(A7) gives the nth-order cfp functions o. , nP, uy,
f(, X, and p as functions of the (n —1)th-order cfp.

is simply given by the normality condition

e +5 =1.
is a simple function of the (DI S) cfp, which

is obviously 1, and is

IR of R5 n-2 n-1 n+1 IR of U5

n-1

I
VV'

I
ny1

FIG. 1. Functions involved in Redmond's formula.
The bar indicates a connection between two +; i. e. , the
cfp is nonzero.
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TABLE I. Values of the coefficients of fractional
parentage linking an S or a D term. L terms

N=3k 1 2N+5N+3
(VS]}N+1D)= — o.

12N+5 N «~

(NG] N+1D) = — —— ='y3 2N+1 N
10 2Ã+3 N+1

na 3k

3k+1

3k+2

S F G

I' 2f'

G

¹3k+1

N =3k+2

(N D )N + 1 D) = 2 2N+5

5 2N+5N+5 '"

3 N-1 '~'
(NG)N+1D) =

7 N+1i

(ND)N+1$) =1

N+4 «2
(NDjN+1E) =

14 1

1 2N+7 N+2»2

3k+3

FIG. 2. Schematic definition of the various cfp cal-
culated (see Table I).

o. +P +y =1. Using the recursion formulas, this
can be written as a condition on 5. Thence

z 2 2N+5
'7 N+1

2 1 (2N + 5)(N + 3)
5 (N + 1)(2N + 3)

The normality of I 3k+1, D) imposes the condition

For the sake of completeness the nine cfp are
given in Table I. The relative phases of the ~n, n, L)
can be chosen so that they all appear as positive
square roots.
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