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calculated and measured average Gruneisen param-
eters for some interactions are attributed to the
inability of the simplified model to account appropri-
ately for elastic and anharmonic anisotropy.
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Single crystals of xenon were grown and Brillouin spectra for various crystal orientations
were obtained at a temperature of 156'K. The spectra exhibited one longitudinal component
and either one or two transverse components, depending on crystal orientation. From the ob-
served Brillouin frequency shifts, the adiabatic elastic constants for xenon were evaluated.
At 156'K, clf 2. 98+0.05, c~2=1.90+0.04, c44=1.48+0. 04 in units 10 dyn/cm and the
elastic anisotropy was found to be 2. 74+0. 30. These values were compared with calculated
values based on recent theories of lattice dynamics. Good agreement was obtained only with
calculations that include all-neighbor interactions. It was also observed that the relative in-
tensities of the Brillouin components were strongly dependent on crystal orientation. An analy-
sis of this variation in intensity gave values of the ratios of the elasto-optic constants for
xenon.

I. INTRODUCTION

For many years there has been considerable
theoretical and experimental interest in the proper-
ties of the rare-gas crystals neon, argon, krypton,
and xenon. ' These elements crystallize in face-
centered cubic lattices under the influence of van
der Waals interatomic forces. The apparent sim-
plicity of the van der Waals interaction makes these
crystals attractive as examples of perfect mona-
tomic lattices and many theories of their lattice
dynamics have been developed. In part these the-
ories have been tested against available experi-
mental data on the bulk properties of the rare-gas

solids. ' Only recently have techniques for grow-
ing rare-gas crystals been developed to the state
that single crystals a few millimeters in size can
be grown. 3 With such crystals, Simmons and co-
workers' have been able to obtain accurate mea-
surements of the lattice parameter, isothermal
compressibility, thermal expansion, and other
thermodynamic properties. However, to properly
analyze the dynamical properties of a lattice, and
thus to probe the interatomic interaction, accurate
measurements of the elastic constants are required.
In spite of the improved techniques for growing
rare-gas crystals, the elastic constants have been
difficult to determine experimentally. For this
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purpose, measurements of acoustic velocities in
specific crystal directions have been made using
ultrasonic and neutron scattering techniques. But
to date, these methods have achieved only limited
sucess.

Ultrasonic techniques have been used by several
groups to investigate argon crystals. Moeller and
Squire' measured longitudinal and transverse ul-
trasonic velocities in argon samples assumed to be
single crystals oriented so that propagation was
along the (110) direction. GsKnger et al. 8 derived
elastic constants for argon by combining compress-
ibility data with their measurements of longitudinal
ultrasonic velocities in argon crystals oriented by
neutron scattering. Keeler and Batchelder have
used the ultrasonic pulse-echo technique on argon
crystals for which the orientation was determined
by backscattering of x rays. The numerical re-
sults of these three experiments are surprisingly
inconsistent and all imply a much lower elastic
anisotropy for argon crystals than can be account-
ed for theoretically.

Neutron scattering experiments have been used
to measure the velocity dispersion curves ot »yp-
ton e neon, 9 and argonso and the elastic constants
of neon and argon have been calculated from the
data. However, elastic constants derived from
the long-wavelength limit of dispersion curves
obtained by neutron scattering may differ signifi-
cantly from adiabatic or isothermal values. " The
major difficulty with both ultrasonic and neutron
scattering techniques is that they require large
single crystals (- 1 cm ) and these are difficult to
grow and maintain.

Elastic constants of transparent solids can also
be determined by Brillouin spectroscopy as shown
by Krishnan~~ and others. Recently, the capabili-
ties of high-resolution Brillouin spectroscopy have
been greatly advanced with the development in
lasers, interferometers, and detectors so that
values of adiabatic elastic constants can be obtained
with high precision. For example, values of the
elastic constants of the alkali halide crystals KCl,
RbCl, KI, ' and LiF' determined from Brillouin
spectra are in very good agreement with ultrasonic
values. For such crystals, which are stable and
easy to manipulate, ultrasonic techniques are sim-
pler and more accurate, but for the rare-gas crys-
tals Brillouin scattering has two distinct advantages.
First, it requires only very small samples (-1 mm )
which are relatively easy to grow; and second, un-
like ultrasonic measurements, light-scattering
studies do not require a transducer or other instru-
ment to be physically bonded to the crystal. Con-
sequently, relatively simple cell geometries can be
used which are advantageous to the growth of good
single crystals.

In a previous communication" we reported on the

Brillouin spectrum of xenon single crystals and the
first determination of the elastic constants of xenon.
The purpose of the present paper is to describe these
results and the experimental technique in greater
detail. A brief account of the theory of light scat-
tering from acoustic phonons in cubic crystals is
given. Particular emphasis is placed on determin-
ing the elastic constants from the spectra of single
crystals of arbitrary, but known, orientation. Two
single crystals were grown for the present experi-
ments. The quality of the crystals and their ori-
entations were determined by x-ray diffraction.
The observed Brillouin spectra of both crystals con-
tained one longitudinal and two transverse compo-
nents, as expected for a cubic crystal. Their fre-
quency shifts and relative intensities were found
to vary with orientation in excellent agreement with
the predictions of the theory, and values of the adia-
batic elastic constants at 156 and 151'K were de-
rived from an analysis of these data with an accu-
racy of 310. These results are compared with the
experimental elastic data on other rare-gas crystals
and with current theoretical values. Some conclu-
sions are drawn regarding the appropriateness of
further experiments and theoretical calculations.

II. THEORETICAL ANALYSIS

Brillouin scattering from cubic crystals has been
analyzed theoretically by Benedek and Fritsch. '
The following discussion is intended to extend their
theory to describe the spectra scattered from a
cubic crystal in an arbitrary orientation with re-
spect to the incident light beam. The generalization
was necessary because in the present experiment
it was not possible to position the xenon crystals in
the most favorable orientations. When a field
E(r, t)=Eoe""0'' ()" is incident on a crystalline
medium, the far-field scattered amplitude at a point
R is given by

(2,~»~
E&( t)

~0 ( +) Q ei(( ~ R —ra()t
c

x l, [((„xt)e'(q,t) E,], (1)

where c is the velocity of light, l„is a unit vector
in the direction of the scattered wave vector k, and
q =k0-k. The fluctuations in the dielectric con-
stant have been written in terms of their spatial
Fourier components, viz. ,

S/2
n (, t)

(~ K )dpi~=~a"( t)e"'t). (2)

The index p. denotes the possibility of a number of
branches of the dispersion relations connecting the
frequency of the dielectric fluctuation (()„(q)and the
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wave vector q . For monatomic face-centered cubic
crystals only the acoustic branches are important.
No optical branches exist because every atom is at
a center of symmetry. In the light-scattering re-
gime (q-2&& 10' cm ') the acoutic dispersion is given
by the relation

tensor. Equation (6) represents nine equations in-
volving 81 constants. Fortunately the elimination
of body torques and considerations of symmetry
in cubic crystals reduce the number of independent
values of c,», to three. To simplify the notation,
the concept of symmetrized strains,

(v„(q)=v„(q)q, t(, =1, 2, 3. (3)
2 Br) Br)

In this case the index p, , commonly called the po-
larization index, denotes the possibility of one "lon-
gitudinal" and two "transverse" acoustic modes of
the medium associated with the wave vector q. '
In the scattered spectrum, the Brillouin frequency
shift associated with each acoustic mode is given
by (v, (q) and thus depends on the velocity v„(q)of
each mode and the magnitude of q. The direction of
q is perpendicular to the bisector of the scattering
angle 6 between k and ko, so that, neglecting the
small change in wavelength between the incident and
scattered light, its magnitude is given by the Bril-
louin equation

q = 240 sin ~ 8 .

In crystals, 5e "(q, t) must be expressed as a sec-
ond-rank tensor 5e, &(q, t). The tensor elements
determine the polarization and magnitude of the
fluctuation in the electric displacement vector
6D("(q, t) = 6e(& (q, t) (Eo)& . These quantities govern
the intensity and polarization of the scattered field
E (q, t} through the double vector product in Eq. (1).
The spectrum of scattered radiation is derived
from the autocorrelation function for E (q, t ):

C12

C11

C12

0
0
0

C12

C12

C11
0
0
0

0
0
0

c44
0
0

0
0
0
0

c44
0

(6)
Certain relationships involving the elastic constants
can be deduced immediately. For the crystal to
be stable under any infinitesimal deformation the
strain energy per unit volume given by

1U= p c~n em ea

is customarily introduced in conjunction with a
matrix notation in which pairs of tensor indices
are reduced to a single subscript running from one
to 6 according to the scheme (11)-1, (22}-2, (33)

(23, 32)-4, (31, 13)-5, (12, 21)-6. In this man-
ner c,», is reduced to a 6x 6 matrix c „.The non-
zero values of c are referred to as the "elastic
constants" of the crystal. For cubic crystals the
matrix c

„

takes the form

must be positive. This places the following restric-
tions on the magnitude of the elastic constants:

x e'"'a~, (6)
c44 0 cia l cia

l
cu+ 2ci2 ~ 0. (10)

i&
= C&»& X&& (6)

where c,», is the elastic stiffness, a fourth-rank

where dA is the solid angle accepted by the detector
at a distance R from the point of scattering. The
brackets ("~) indicate a time or ensemble average
which is itself independent of time. The autocor-
relation function of E' (q, t) is related to the auto-
correlation function of 6(!"(q, t) through Eq. (1).
This function can be evaluated for any fluctuating
variable using the methods of thermodynamic fluctu-
ation theory if the dependence of the dielectric con-
stant on that variable is known.

The Brillouin spectrum of a crystal arises from
fluctuations in the strain tensor x~, = Bu~/Br, , u
and r being the displacement and position vectors,
respectively, of an element of the crystal. The
relationship between the stress tensor cr, &

and the
strain tensor is given by Hooke's law:

For A& 1 the elastic stiffness (Young's modulus) is
a maximum in the [111]direction and a minimum in
the [100]direction. The converse is true if A & 1.

The elastic constants of a crystal are directly
related to its compressibility. For a cubic crystal
under zero pressure the bulk modulus (the recipro-
cal of the volume compressibility) is given by

BIB= —V —= s (cxq+ 2cta) .8V (12)

The importance of this relationship is that it pro-
vides a means of comparing compressibility mea-

In accordance with these conditions it is possible
that 2C44= c11 —c12, in which case the crystal would
be elastically isotropic. However, in general a
cubic crystal is elastically anisotropic and the de-
gree of anisotropy is expressed by

W = 2c4,/(c„-c„).
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surements for a cubic crystal with independent
determinations of the elastic constants. Of course,
care must be taken to distinguish between isother-
mal and adiabatic values of the quantities involved.

An analysis of elastic wave propagation in crys-
tals begins with the equation of motion'~

pu, = B(7

Br~
' (13)

If the heat exchanged between volume elements dur-
ing a period of oscillatory motion is negligible, any

part of the medium is thermally isolated and the de-
formation is adiabatic. In the r, direction one ob-
tains from Eqs. (6) and (13)

tion '

5e«(r, t)
2 plfkt eke (r

&o
(17)

5 IY' (q, I) = 5e (q, I) E,

where &o is the permittivity relative to vacuum and

e»(r, t) is the symmetrized strain tensor of Eq. (7).
The elasto-optic tensor of a cubic crystal, like the
elastic stiffness tensor, can be written in the Gx6
matrix notation such that there are only three in-
dependent coefficients piq, p&z, and p44. From the
Fourier transform of Eq. (17) one obtains for the
fluctuation of the electric displacement in the crys-
tal

B Qg B'Ry B Qg
P&i —"-ii

B 2 +44 B~ +& 2
+2 r3 = (eok/i) q Ek u'(q, t) $", (18)

BRp BQ
+ (C|k+ Ckk}

— ' + — . (14)Br Br, By By,
'

1

Similar equations exist for p igz and pii3. For a
monochromatic plane-wave solution of the form
u& = uo& e "~'~ "", this system of equations can
be written in the form

where

t'", = —" P44 [(l, l ) (Il"),+(II" l )(l,), ]

+ (pll plz p44)+")k(I,}~(le,)»

+p,k(II" I,)(ls,), . (18)

» 5is) uo&=0

with

(c11 c44} qi+ ckk q
2

= (CI2+ Ckk) Qfq(,

The secular equation

l~~-» 5u I=0

(15)

(16)

The substitutions q= ql, and Ep= Eplz have been
introduced and II4 is the unit polarization vector in
the direction of the displacement u (q, I). The
direction and magnitude of 0', (0& I r. '1&1) are de-
termined by the relative directions of q, Ep, and
II", and the magnitude of the elasto-optic coeffi-
cients. It can be seen from Eq. (1) that in light
scattering one measures not 44but the projection
of &' in the plane perpendicular to the scattered
wave vector k given by

is cubic in (d, resulting in three solutions, cu

=+~, (q ), with p = 1, 2, 3, associated with wave vec-
tor q. The polarization of each acoustic mode p, ,
designated w" (q), can be determine by solving Eqs.
(15) for u„on substitution of the respective ~ = &@„

x (q). In the particular cases where q lies along a
direction of high symmetry, for example, (100),
(111), or (110), in a cubic crystal the polarization
of one mode, 7r (q), say, is strictly longitudinal
(parallel to q), while the remaining two modes are
strictly transverse [that is, w (q) and w'(q) are
perpendicular to q]. In two of these directions,
(100) and (ill), the transverse-mode frequencies
are degenerate. ~ However, in general, for an
arbitrary direction in the crystal, all three modes
are nondegenerate in frequency and the polariza-
tions are neither strictly longitudinal nor strictly
transverse unless the crystal is elastically isotrop-
ic ~

The coupling of the elastic waves in a crystal to
the dielectric tensor is through the elasto-optic
(Pockel's) coefficients p, », according to the equa-

$'=lk (l, g') . (20)

The vector $" therefore determines explicitly the
polarization of the radiation scattered from each
acoustic mode.

The intensity distribution in the Brillouin spec-
trum is governed by the autocorrelation function
of u" (q, I}. In keeping with the assumption of plane-
wave solutions for the dynamics of the crystal,
this may be written

(u' (q, I+ r) ~ u" (q, I) )3, (
2

(21)
where the factor in large parentheses is the mean-
square amplitude of the fluctuations derived from
the equipartition of energy for harmonic oscilla-
tors. ' Finally, the scattering cross section ob-
tained from Eqs, (1), (5), and (18)-(21) is

do(q, u&') c + ~&u V e40kT
dQ 8v 0 c (4n) 2p
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F„(q)
~, (e) & t~ —~0- ~„(q)]'+I' (q)'

r„(q)' (~'-~, ~. (q)12+r„(q)2
'

The spectrum is seen to consist of three doublets
with frequency shifts of + ~, (q), &=1, 2, 3. The
components are Lorentzian with full widths at half-
maximum intensity of 2I"„(q). From Eq. (22) it
can be seen that the intensity ratio in the Brillouin
doublets for two acoustic modes p, = a and p = b is
given by

I ~„(q)I
O'

I

~, (q} lt'I &23)

It is well known that the complete spectrum also
possesses a central component due to scattering
from isobaric entropy fluctuations, but this portion
of the spectrum is not of interest in the present ex-
periment and so has been omitted froin this dis-

cussionn.

The objective in the present experiment was to
determine the elastic constants of xenon, a face-
centered cubic crystal, from experimentally mea-
sured Brillouin frequency shifts. In a Brillouin-
scattering experiment the wave vector q =k -tt, is
defined in space by the scattering configuration.
If the crystal orientation is known with respect to
the scattering configuration, q can be determined
relative to the crystal axes. Then Eq. (16) pro-
vides a relationship between the elastic constants
cg g egg and c44 and the three mode frequencies
~, (q). It should be noted that, given a set of
elastic constants, Eq. (16) can be solved directly
for the mode frequencies, but the reverse solution
is not straightforward. That is, given three ex-
perimentally determined mode frequencies asso-
ciated with a known wave vector q in the crystal,
Eqs. (16) cannot be solved directly to obtain the
elastic constants. Neighbours and Smith'9 have
proposed a method for such a solution based on
successive approximations, but this technique is
useful only if the elastic anisotropy of the crystal
is small. Their method was found to be unsatis-
factory for the present analysis. Alternatively,
the elastic constants can be obtained by substitut-
ing trial values in the dynamical equations and find-
ing the solutionwhichbestfits the experimental mode
frequencies. This approach is easily carried out
when the calculations can be done by computer.
The system of equations (15} is a 3&3 eigenvalue
problem easily solved by the technique known as
Jacobi's method. This technique determines the
orthogonal transformation that diagonalizes the
matrix {&„J.The diagonal elements so obtained
(the eigenvalues} yield ~, (q), p= 1, 2, 3, and the

columns of the transformation matrix (the eigen-
functions} are the unit polarization vectors 11,(q).

III. EXPERIMENTAL APPARATUS AND TECHNIQUE

A schematic diagram of the complete experiment
is shown in Fig. I. Xenon crystals were grown in
a cryostat designed for light-scattering and x-ray
diffraction studies. Once a crystal was grown, a
Laue diffraction photograph was taken to check
that it was single and to determine its orientation.
Radiation from a single-frequency laser was inci-
dent along the vertical axis of the crystal and
Brillouin scattering at an angle of 90' was analyzed
with a pressure-scanned Fabry-Perot spectrom-
eter. A detailed description of the apparatus and
experimental technique is given below under three
headings: (A) cryostat and growth of single crystals,
(B) x-ray diffraction and crystal orientation, and

(C) Brillouin-scattering technique.

A. Cryostat and Growth of Single Crystals

The cryostat shown in Fig. 1 was constructed of
stainless steel and consisted of a 5-liter reservoir
for liquid nitrogen connected to a "cold finger" ex-
tending into the tail section to provide cooling of
the sample cell. The tail section of the cryostat,
shown in detail in Fig. 2, was enclosedby a Pyrex
envelope 5cm in diameter which could be removed
for easy access to the sample region. Two special
windows were incorporated in this envelope: an
optical-quality flat window in the bottom for the
incident light beam and a thin Mylar window in
the back for the incident x-ray beam. The scat-
tered light and diffracted x-rays were transmitted
through the curved glass wall of the envelope,
Where possible, aluminum foil (not shown in the
figures) was attached to the inside of the envelope
to reduce the radiant heat transfer to the sample.

The sample cell was constructed from a 2. 5-cm
length of quartz capillary tubing having a 1.0-mm
bore and a wall thickness of -1 mm. Such a small
diameter was found to be necessary since small
single crystals are more easily grown and since
xenon is such a strong absorber of x-rays that
useful Laue photographs in transmission could not
be obtained with crystals thicker than j. mm. A
good-quality optical window was constructed for the
bottom of the cell by polishing the upper end of a
quartz plug (1.0 mm in diameter), fusing it into
the bottom of the capillary, and finally polishing
the bottom of the cell. As shown in Fig. 2, the
sample cell was held and cooled (through thermal
conduction) by two phosphor-bronze clips attached
to the cold finger. For good thermal contact with
the quartz cell two thin rings of aluminum foil
(- 0. 5 cm wide} were cemented to the cell immedi-
ately under the clips. One of the clips was attached
around the bottom window and the other approxi-



DETERMINATION OF THE ELASTIC CONSTANTS OF XENON. . . 4523

~XENON FILLING LINE

IND ICATOR

ROTARY SEAL

~~l I ~~
CRYOSTAT SI NGLE- MODE

LASER

N~ COLD

FIN G ER

PHQTOMULT I P L I ER

X-RAY

TUBE

3

X- RA
COLLIMAT

4kl PR I SM

REFLECTOR

CAPILLARY CELL
FABRY —PEROT

I NTE R FEROIUKTFR

WINDOW

CHART

RECORDER

P HOTON

COUNTING
E LECTRONICS

FIG. 1. Experimental arrangement for Brillouin scattering and x-ray diffraction analysis of xenon single crystals.

mately 1 cm higher, providing a clear viewing region- 0.7 cm long. The sample cell was attached to a
long quartz tube suspended from a rotatable shaft
at the top of the cryostat, . This shaft also served
as a filling line and was attached to a glass flask
containing xenon at 1-atm pressure. A heating
coil was wrapped around the filling tube to prevent
xenon gas from condensing before entering the cell.
A calibrated dial mounted at the top of the cryostat
was used for rotating the sample cell through a
given angle about the vertical axis.

A small heater and thermocouple were mounted
on each clip so that the temperature could be con-
trolled and measured at the top and bottom of the
sample cell. Temperature control was achieved
by balancing the voltage of the lower thermocouple
against an adjustable constant voltage supply. A
difference voltage was applied to a galvanometer
which, when deflected due to a drop in cell tem-
perature, switched on a current source to both
heaters. The ratio of the current supplied to the
two heaters could be set to produce a temperature
gradient of several degrees up the cell. The tem-
perature of the sample could not be measured

directly without seriously affecting the temperature
gradient in the sample. However, a calibration
of the temperature difference between the sample
and the two clips made at the freezing point by ob-
serving the position of the xenon solid-liquid inter-
face as the crystal was growing showed that the
temperature at the center of the sample was
1.2 'K higher than the average temperature of the
two clips. With the correction, temperatures in
the vicinity of the freezing point of zenon could be
determined to well within + 1 'K.

At a pressure of 1 atm, xenon liquifies at
165. 1 'K and solidifies at 161.4 'K. Initially the
temperature of the cell was stabilized at 162'K
and xenon gas was allowed to enter until the cell
was full of liquid. Single crystals were grown
from the liquid by the following technique. A tem-
perature gradient of approximately 3 K was es-
tablished along the cell by adjusting the current
ratio through the heaters, The bottom of the cell
was then slowly cooled until a tiny "seed" crystal
was formed. After annealing the "seed" crystal for
several hours, the temperate:re was slowly de-
creased (about 1 'K per hour) while maintaining a
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fixed temperature gradient until the crystal almost
filled the cell. A thin layer of liquid was maintained
above the crystal to minimize scattering from the
upper surface to the sample. Also, each crystal
was grown carefully right from the bottom of the
cell to minimize diffuse scattering of the incident
laser beam at the window. A dark background in
the line of sight of the spectrometer was provided
by painting the back wall of the cell with flat-black
paint and this helped to reduce the stray light con-
siderably.

B. X-Ray Diffraction and Crystal Orientation

The x-ray source was an oil-cooled tube with a
tungsten target. It was operated at VO kV and
10 mA, and emitted a continuous spectrum of
x rays with a low-wavelength cutoff at 0. 18 A.
The x-ray beam was collimated and directed at the
sample through the Mylar window in the cryostat
tail section. To ensure that the x-ray diffraction
analysis included the portion of the crystal to be
examined by light scattering, the x-ray collimator
was carefully aligned with the axis of the Fabry-
Perot spectrometer using a laser beam. The
cross section of the x-ray beam was -2 mm in
diameter at the sample so that the volume exposed
was larger than the volume of crystal contributing
to the scattered-light spectrum. The xenon ab-
sorption is so high that only the shortest wave-
lengths emitted by the tube are sufficiently penetrat-
ing to produce a good diffraction pattern. The
Pyrex and quartz walls of the cryostat and cell are
transparent to these short-wavelength x rays but
produce a considerable amount of diffuse low-angle
scattering that tends to overexpose the central
region of the diffraction photograph. This scatter-
ing was largely eliminated by positioning a small

lead disk 5mm in diameter and0. 6mmthick in
the path of the x-ray beam and in contact with the
Pyrex surface. Some of the undiffracted x-ray
radiation was still transmitted to indicate the center
of the diffraction pattern. The disk was mounted
on a vertical needle which also cast a shadow on the
diffraction pattern and served as a vertical ref-
erence. The photographic film (Ilford type-G x-ray)
was mounted 5. 0 cm from the sample. A typical
diffraction photograph of a single xenon crystal ex-
posed for 1 h is shown in Fig. 3, The silhouettes
of the lead disk in the center and its vertical needle
mounting are quite evident. A strong vertical ab-
sorption line is seen in the undiffracted beam caused
by the low transmission through the thickest portion
of the cylindrical shaped crystal. This absorption
is also evident in each of the diffracted spots and
serves as a good indication that the sample is a
single crystal since the same diffraction pattern is
produced by both sides of the sample. The growth
of multiple crystals in the sample cell was easily
detectable by the appearance of a large number of
small spots in the diffraction photographs.

Usually, the crystal orientation may be easily
determined if the diffraction picture exhibits an
elliptical pattern of spots that can be identified as
a crystal zone (a group of planes containing a com-
mon axis). In the present experiment, zone pat-
terns were only seldom observed because of the
limited number of diffracted spots and the standard
projection techniques of x-ray crystallography could
not be used reliably. Instead, a computer program
was devised which calculated and plotted on the IBM
7094 Calcomp plotter the diffraction pattern (at
5. 0 cm from the sample) for any crystal orientation.
By generating diffraction patterns in this way to
cover the full range of crystal orientations, it was
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relative intensities of diffraction spots, estimated
from the photographs, with calculated values. The
orientation was specified by three Euler angles~'

(8, Q, y) with the angle corresponding to rotation
about the vertical axis in the laboratory reference
frame (Fig. 4). In Fig. 3 the Calcomp-plotted
diffraction pattern for (e, P, y) = (26', 239', 123')
that identified the accompanying Laue photograph
has been reproduced. Because the reproduction is
not as distinct as the original photograph, the dif-
fraction spots that were actually observed are in-
dicated by solid dots. Each spot is labeled with
the Miller indices of the corresponding crystal
lattice plane.

Once a crystal orientation was identified, the
orthogonal transformation implied by the Euler
angles (6, 4, X) could be used to relate any direction
in the laboratory frame (X, Y, Z) to the crystal axis
frame (X, Y, Z ) as depicted in Fig. 4. In par-
ticular, it was possible to determine the direction
of the phonon wave vector q and the polarization
of the incident radiation field Eo in the crystal.

C. Brillouin-Scattering Technique

FIG. 3. Laue diffraction photograph of a xenon single
crystal taken at a distance of 5.00 cm. Below it (on the
same scale) is the computed diffraction pattern that identi-
fied the orientation as (26, 239', 123'). The solid dots
correspond to those actually observed on the photograph.

possible to identify the actual orientation by match-
ing the experimental Laue photograph. A check of
each identification was also made by comparing the

The He-Ne laser used in this experiment operated
on a single longitudinal cavity mode stabilized to
the Lamb dip in the Doppler-broadened gain profile
of the neon emission. The output power was ap-
proximately 0.4 mW in the fundamental (TEMOO)
transverse mode. The beam was focused in the
sample cell with a 25-cm focal-length lens (L, in

Fig. 1). The ability to focus this TEMQO beam to
a diameter of approximately 0. 2 mm made the use
of extremely small samples feasible.

2'

FIG. 4. Euler angles relat-
ing the crystal reference frame
O'', Y', Z') and the laboratory
reference frame (X, Y, Z).
The directions of ko, k, and q
defined by scattering configura-
tion are shown.

X- RAYS

ko
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The Fabry-Perot spectrometer is shown in Fig.
l. It consists of a. collection lens (Lz), the Fabry-
Perot interferometer, a second lens (L,), which
focuses the interference pattern on a screen with
a, pinhole aperture (A2), and a photomultiplier tube.
A short-focal-length lens not shown in the figure
refocuses light from the pinhole onto the photo-
cathode of the tube. Aperture A, in front of the
spectrometer serves to limit the solid angle of the
scattered light that is collected. The Fabry-Perot
interferometer consisted of two 1.5-in. -diam plates
flat to A/200 and dielectrically coated to a reflectiv-
jty of 98% at 6328 A. They were separated by an

Invar etalon Q. 9993cm long so that the spectral free
range of the instrument was 15000 Mc/sec. The in-
terferometer was mounted in a metal chamber with

windows in either end. Pressure scanning was accom-
plished by evacuating this chamber and allowing air to
reenter through a needle valve and flow- rate controller

An instrumental finesse of 100 was achieved with
this interferometer. Good sensitivity was obtained
along with this high resolving power by carefully
choosing the components of the system. The op-
timum arrangementexists when the radius R of the
aperture A~ in the focal plane of L, equals the spa-
tial extent hv„, the full width at half-intensity of
the central interferometer fringe. For a small
angle 8 from the optic axis, the spatial dispersion
derived from the Fabry-Perot equation is given by

dl/dv =f~/I v,
where f is the focal length of L3 and l= Hf. Upon
integrating, with vo& v - vo+ 4v„,0 - l -R, one
obtains

hv /v =ft /2f~ .
For the 1-cm etalon used in the present experi-
ment, Eve-100 Mc/sec, and for a 56. 0-cm focal-
length lens (L~), the optimum diameter of the ap-
erture Az by this criterion is 0. 7 mm. In the pres-
ent experiment a slightly smaller aperture was
used for better resolution. Finally, the lens L2
was chosen to have a focal length of 3Q. Q cm so
that the image of the beam in the sample, estimated
to be 0. 2 mm in diameter, was magnified to ap-
proximately the size of the aperture. This means
that only scattering which occurred in a volume of
the sample with dimensions -0. 25 mm was detected
by the spectrometer. Thus, if the x-ray diffraction
indicated a single crystal with dimensions -1mm,
there could be no doubt that the scattered spectrum
originated from that crystal.

The light intensity passing through aperture A~
was measured by an ITT FW-130 photomultiplier
tube and "photon-counting" electronics consisting
of a preamplifier, amplifier, pulse-height analyzer,
and linear ratemeter. By cooling the tube to
—20 C in a Peltier-effect chamber, the dark count-

ing rate was reduced to -1 per second. Brillouin
spectra were recorded on a, strip-chart recorder
which ran at a constant speed. A 10-sec integrat-
ing-time constant was used and the scanning rate
was 1 h per spectral free range.

IV. EXPERIMENTAL RESULTS

Two single crystals of xenon were grown for this
investigation: Crystal 1 was studied at 156 K and

crystal 2 at 156 and 151 'K. X-ray diffraction
photographs showed the crystals to be single and at
least 2mm in length and 1 mm in diameter. The
two crystals grew in slightly different orientations
with respect to the cell axis and for neither crystal
was a principal symmetry axis aligned with the cell
axis.

A. Brillouin Spectra

The Brillouin spectrum of crystal 1 was recorded
for eight different orientations, with the angle 8

changed in increments of 10' by rotating the sample
cell about its vertical axis. The incident laser light
was polarized perpendicular to the scattering plane
and the spectrometer measured the total scattered
intensity at 90' (I 'v'). (Attempts to observe de-
polarized scattering, that is, scattered intensity in

8= 26', y= I23

x 20 ATTENUATION

P-isa'

/=ice

$= 239'

-2 0 2 4
FREQUENCY SHIFT (Gc/sec)

FIG. 5. Brillouin spectra of xenon crystal 1 in three
different orientations specified by the Euler angles (8, p,
x~.
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TABLE I. Experimental frequency shifts (in Gc/sec) of longitudinal and transverse Brillouin components as a function of

crystal orientation.

Crystal 1
T =156 K, P= latm,
0 = 26', X

= 123'

Crystal 2
T =156'K, P= 1 atm,
(9 = 70', X = 108'

T =151'K, P=l atm,
0=70', X =].08.

Angle (t) (deg)

169
179
189
199
209
219
229
239

283
298
318
338
343
348

348

3.463 +0.002~

3.517 +0.001
3.545 + 0.005
3.555 + 0.004
3.530 + 0.002
3.492 +0.003
3.454 +0.008
3.415 +0.002

3.451 +0.003
3 ~ 493 +0.003
3.484 +0.003
3.427 + 0.003
3.396 +0.003
3.387 +0.003

3.426 +0.023

l. 959 +0.006
2.027 +0.011

1.996 + 0.025

2. 055 +0.015

T2

l.583 +0.001
1.493 + 0.002
1.383 +0.012
1.426 +0.003
1.488 + 0. 001
1.552 +0.003
1.568 +0.002
1.515 +0.004

l.555 + 0.009
1.449 + 0.013
1.443 +0.004
1.621 +0.003
1 ~ 647 +0.003
1 ~ 668 + 0.010

1.708 +0.018

~Average deviation of the measured values.

the scattering plane, or I„",were unsuccessful with
the available sensitivity. ) Brillouin spectra ob-
served for three crystal orientations are shown in

Fig. 5. The central component is the most intense
feature and results from the unavoidable stray
scattering from the small sample cell. However,
because of the high resolution of the Fabry-Perot
spectrometer this did not seriously affect the
Brillouin components. It is evident from these
spectra that the frequency shifts of the Brillouin
components vary signif icantly with orientation.
More striking is the dramatic change in the relative
intensities of the components. In the first spectrum
(P = 169') only one transverse doublet is observed;
in the second (P = 199') even that transverse mode
is almost undetectable in the background noise of
the spectrum. In the bottom spectrum (/=239 )
all three doublets are observed, although the second
transverse component is very weak. Of the eight
orientations in which crystal 1 was studied only two
spectra revealed all three Brillouin doublets.

Each spectrum was recorded in at least three
spectral orders over which the scan rate was
linear to better than 1%. The measured Brillouin
shifts for each of the eight orientations are sum-
marized in Table I and plotted as a function of the
angle PinFig. 6. (T, and T2refertothehigh- and
low-frequency transverse modes, respectively. )
Each value is the average of at least six measure-
ments for which the average deviation has been in-
cluded. Table II lists the intensity ratios of the
observed transverse and longitudinal components.
These ratios were estimated from the heights of the
best line shapes that could be drawn through the noise
level of each spectrum and are considered to be
approximate values only, because of the low inten-

TABLE II. Experimental intensity ratios as a function
of crystal orientation for crystal 1 (T= 156'K, P= latm)
(0=26', X =123').

(deg)

169
179
189
199
209
219
229
239

r(T, )/r(L)

0.047+ 0.010
0.033 +0.010

I(T2)/I (L)

0. 199+ 0.018~
0. 140+ 0.016
0.048 + 0.015
0.054 + 0.010
0.148+0.015
0.173 + 0.010
0. 158 + 0.010
0. 140 + 0.010

~Average deviation of the measured values.

sities of the transverse components.
The observed Brillouin shifts for six orientations

of crystal 2 are summarized in Table I and Fig. 6.
The variation in the mode frequencies with crystal
orientation is similar to that found for crystal 1 but
not identical. The small difference in the shapes of
the curves is due to only slight differences in the
crystal orientations as both crystals were found to
have a (311) axis almost parallel to the cell axis.
The angle between the cell axis and the closest
(311) direction in crystal 1 was 4'; in crystal 2 it
was 2'. All three Brillouin components were ob-
served for only one orientation of crystal 2,
= 348, and this orientation was chosen for a study
of the temperature dependence of the spectrum.
The temperature was lowered at a rate of less than
1 'K per hour, to 151 K, and the Brillouinspectrum
was recorded. Only slight changes in the frequency
shifts were observed (Table I). X-ray diffraction
revealed that at 151 'K the main crystal was still
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XENON CRYSTAL¹ I

T= I56'K (8= 26,)(=l23 )
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XENON CRYSTAL¹2
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FIG. 6. Acoustic-mode frequencies
of xenon crystals 1 and 2 as a function
of the orientation angle p. The experi-
mental Brillouin shifts are indicated by
the solid dots. The curves represent the
best theoretical fit to the L and T& data.
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intact but there was evidence of a few tiny crystal-
lites, probably near the walls of the cell. An at-
tempt was made to cool the crystal an additional
5 'K but visual inspection with the laser beam pass-
ing throughthe sample showed evidence of extensive
breakage. At 146 'K cooling was discontinued and
the temperature was held constant for 24 h. The
sample appeared to anneal at this temperature but
x-ray analysis revealed that it consisted of many
small crystals of varied orientation.

B. Evaluation of Elastic Constants and Experimental Uncertainty

The elastic constants were determined by find-
ing the solution of the dynamical equations (15)
which best fitted the experimental frequency shifts
given in Table I. Since most of the spectra ex-
hibited only two Brillouin components, the longitu-
dinal (L) and one transverse (T2), while three of
the spectra exhibited all three components, two
methods of analysis were adopted in order to make
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the best use of the data. The first analysis was
carried out only for those orientations where all
three Brillouin frequency shifts were measured,
namely, P = 229', 239' for crystal 1 and (t) = 348'
for crystal 2. In this analysis an independent de-
termination of all three elastic constants cff cfog,

and c44 was made for each orientation from the
three frequency shifts. The values of the elastic
constants obtained by this method of analysis are
given in Table III.

In the second method of analysis, the solutions
of the dynamical equations corresponding to the
modes L and T~ were fitted by least squares to the
associated frequency shifts for all eight orientations
of crystal 1 and all six orientations of crystal 2.
The resulting solutions are plotted as functions of
the angle P in Fig. 6 and compared with the ex-
perimentally measured frequency shifts. The agree-
ment is very good. Also, although the T, mode was
not fitted in these calculations, good agreement with
the observed frequency shifts is seen for those
orientations where scattering from this mode was
observed. The values of the elastic constants de-
termined in this way are given in Table III and

labeled (all Q).
In order to properly assess the accuracy with

which the elastic constants are determined by
Brillouin scattering, two types of uncertainty must
be considered: one which affects the absolute
magnitude of all three elastic constants in the same
way, and another which primarily affects their
relative values. Uncertainty in the physical con-
stants of the sample such as its density, refractive
index, temperature, and uncertainty in the scatter-
ing angle fall into the first category. These quanti-
ties occur as common factors in the equation used
in deriving the elastic constants from the Brillouin
frequency shifts. In the present experiment, the
uncertainty in all four factors combined was esti-
mated to be less than +1 fc. ' The second type of
uncertainty is more important.

The relative values of the elastic constants de-

TABLE IV. Deviations in the elastic constants resulting
from variations in the Euler angles (8, p, y) for crystal 1.

a8
(deg)

&x Dcf2
(deg) (deg) (%)(%)

&a) For only two Brillouin shifts

Dc44
(%)

—2
+2

0
0
0
0

0
0

—2
+2

0
0

0
0
0
0

—2
+2

—1.3
+13.3
+0.2
+6.1

+12.3
+1.6

—1.4
+14.4
+1.0
—0. 2

+13.4
+2.4

+0.5
—18.7
—0.7
—0.5

—17.4
—2.4

(b) For all three Brillouin shifts

—2
+2

0
0
0
0

0
0

—2

+2
0
0

0
0
0
0

—2
+2

—1.7
—1.7

2 ~ 3
+2.3

3 ~ 3
+3.0

+2. 5
+4.0
—1.3
+1.3
—4. 5
+4. 5

+1.3
+ 2. 0
+ 2.7
—2. 0
+3.3

207

TABLE V. Deviations in the elastic constants resulting
from variations in the Brillouin shifts for crystal 1.

(a) For two Brillouin shifts: data analyzed using
pairs of orientations instead of all orientations

C rystal orientations &cf f Dcf 2 ~44
(deg) (%) (%) (%%uo)

termined by the two methods used in this experi-
ment were very sensitive to inaccuracies in the
orientation angles (8, P, y) and to inaccuracies in
the measured Brillouin shifts. It is impossible to
describe this sort of uncertainty analytically be-
cause it depends on a number of factors. For in-
stance, the sensitivity to errors in the orientation
angles (8, P, y) depends not only on the magnitude
of the errors, say, ~8, 4P, bp, but also on the
values of the angles 8, P, and ythemselves. For this
reason, the best estimate that could be made of the
effect of such errors on the elastic constants was

Elastic cons tants
(10' dyn/cm )

cf2c1 1 c44 Determination

156

156

151

2. 95
2. 97
2. 94

3.00
3.07

3.03

1.88
1.90
1.89

1.92
1.92

l.90

1.49
1.46
l. 50

1.47
1.38

l.56

Crystal 1 (p = 229')
Crystal 1 (g =239')
Crystal 1 (all g)

Crystal 2 (@=348')
Crystal 2 (all y)

Crystal 2 (@=348')

TABLE III. Adiabatic elastic constants of xenon deter-
mined from the Brillouin spectra. Density p =-3.413 and
3.430 g/cm (Ref. 22) at 156 and 151'K, respectively,
and refractive index g=1.449 and 1.451 (Ref. 23).

y=169, 239
y=179, 239
y=189, 239
y=l99, 239
@=209, 239
y=219, 239
y=229, 239

+8.9
—5. 5
—5. 5
—5. 5
—1 ~ 0

0. 0
—5. 5

+9.1
—5. 3
—2. 1

7 ~ 5
—2. 1
—1.6
—7. 5

—0. 02
+0.02

0
0
0
0

0
0

—0.02
+0.02

0
0

0
0
0
0

—0. 02
+0.02

—1.7
+1.4
+1.7
—1.7
—1.0
+1.0

—2. 1
+3.2
+1.6
—1.6
+1.1
—0. 5

(b) For three Brillouin shifts
4v(L) &v(Tf) Dv(T2) Dc f f ~f2

(Gc/s ec) (Gc/sec) (Gc/sec) (%%uo) (%%uo)

—13.1
+9.7
+6. 9
+9.7
+2. 1
+0.7
+9.7

Ac44
(%%uo)

+0.7
0.0

—2. 0
+3.4
+0.7

0. 0
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FIG. 7. Intensity ratios of the Brillouin components in the spectrum of crystal 1 as functions of p. (a) The points are
experimental ratios from the Iz spectra; the curves represent the best theoretical fit. (b) Calculated intensity ratios
for 90 scattering polarized perpendicular and parallel to the scattering plane, as a function of the orientation p.

to introduce deliberate errors in the data and ob-
serve the change in recalculated values of the
elastic constants. The results obtained using the
data for crystal 1 are shown in Tables IV and V.
The first table shows the effect of altering each of
the Euler angles 8, P, and y by 2, a value esti-
mated to be the upper limit of the experimental un-
certainty in the x-ray diffraction method. When the
el; "c constants were determined from only two

Brillouin shifts, measured in several crystal ori-
entations, large deviations (-+ 15%) were produced
in some cases. However, for the determinations
involving all three Brillouin shifts, the same changes
in the Euler angles produces much smaller changes
(-+3%) in the elastic constants. Consequently, the
latter method is much less sensitive to small in-
accuracies in 8, P, and y.

Table V indicates the variations in the values of
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the elastic constants due to uncertainties in the
experimental Brillouin frequency shifts. The un-
certainties were assessed in two ways. First, the
data for all orientations were analyzed in pairs of
crystal orientations using only two Brillouin shifts.
In this way the actual uncertainties in the frequency
shifts for different orientations were emphasized.
Formerly, such uncertainties were minimized by

using a least-squares fit over all. eight orientations.
For this analysis of the data, deviations as large
as + 10% in the values of the elastic constants were
obtained. Second, changes were made in the data
for one orientation (crystal 1, P = 229'), where all
three Brillouin components were observed. The
experimental frequency shifts were individually
changed by + 0.02 Gc/sec. The effect on the elastic
constants was less than + 3 5% in all cases as
shown in Table V.

It is apparent that determining the elastic con-
stants of a cubic crystal by Brillouin scattering can
be greatly facilitated when all three Brillouincom-
ponents can be observed. Not only is it much easier
to make measurements for a single orientation
rather than having to rotate the crystal, but the
experimental accuracy is greatly improved.

In the present experiment, the Euler angles were
determined to better than + 2 and the Brillouin

shifts in most cases could be measured to within
+0.02 Gc/sec. In view of the above analysis, the
excellent agreement between the values of the
elastic constants listed in Table III for the two
crystals at 156 'K indicates that, in fact, the ex-
perimental accuracy was much better than this. To
summarize the experimental. data, the average values
of the adiabatic elastic constants determined for
xenon are

T =156 'K:

cia = 2. 98 + 0. 05, c,z =1.90 + 0. 04, c44 = 1.48+ 0. 04,

T= 151 'K

egg = 3 ~ 03 + 0. 05, c« = 1 .90 + 0. 04, c44 = 1 ~ 56 + 0. 04,

in units of 10'o dyn/cm2. In computing theseaverage
values more weight has been given to the values in
Table III determined from three Brillouin shifts.
The uncertainty in each case was estimated from
the variation found in Table III weighted in accor-
dance with the above analysis.

C. Ratios of Elasto-Optic Constants

Finally, the intensity ratios of the spectral com-
ponents for crystal 1 were used to estimate relative
values of the elasto-optic (Pockel's) coefficients for
xenon. These values should be representative of the
elasto-optic coefficients for all the rare-gas crystals
and therefore may be useful in predicting the scatter-
ing intensities in future experiments. The intensity

ratios listed in Table II are plotted as a function of
orientation in Fig. 7(a). These intensity ratios are
a function of crystal orientation, of frequency and
polarization of the acoustic modes in the crystal,
and of relative magnitudes of the elasto-optic coef-
ficients [see Eqs. (19), (20), and (23)]. By varying
the ratios p,2/p„and p«/p», the intensity ratios of
the Brillouin components in the I'~" spectrum were
calculated using Eq. (19) and fitted by least squares
to the values for the Tz mode plotted in Fig. 7(a).
The best agreement with the experimental intensity
ratios was found for

p12/pg, —1.45, p44/pl( = —0. 20 .

The fitting was carried out only for the intensity
ratio involving the stronger transverse mode (Tz).
It is therefore reassuring to note that the theory
predicts the strongest intensity for the T, component
at precisely the orientations for which it was ob-
served.

With these values for the ratios of the elasto-
optic coefficients it is possible to predict the rela-
tive intensities of scattered light polarized perpen-
dicular or parallel to the scattering plane for any
two acoustic modes. In Fig. 7(b) an example of the
variation in intensity of scattering from the T, and

T2 modes as a function of crystal orientation is
shown, in each case separated into the constituent
polarizations I ~ and I~~. The intensity ratios are
calculated relative to the common denominator
I"» (L), the total scattered intensity from the longi-
tudinal acoustic mode. The crystal orientation
taken is that of the experimental data for crystal
1. It is now apparent why no depolarized Brillouin
spectrum was observed for crystal 1. Although
not shown in Fig. 7(b), the I» scattering from the
L mode is very weak in all orientations. For the
transverse acoustic modes, scattering from the
T~ mode is the strongest, but only significantly
depolarized in the vicinity of P= 195, where it is
the weakest (see the spectrum for P= 199' in Fig.
5). Where it was observable, the T, -mode intensity
is -5(P/& depolarized. Consequently, with the

added loss in sensitivity (-30%%u) introduced experi-
mentally by inserting a polaroid analyzer it is not
surprising that no depolarized spectrum was ob-
served.

V. DISCUSSION

The present experiment has led to the first deter-
mination of the elastic constants of xenon crystals.
The values are of the order of those for argon and
neon (Table VI) and, typically, one to two orders
of magnitude smaller than the elastic constants of
cubic crystals such as Cu, Ni, KC1., KI, and LiF.
Thus van der Waals solids like the rare-gas crystals
are elastically very soft in comparison with metallic
and ionic crystals. " It is also of interest that for
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TABLE VI. Experimental elastic constants and elastic anisotropy for rare-gas crystals.

Experiment

Light scattering
Ultrasonic (Ref. 5)

Ultrasonic (Ref. 6)

Ultrasonic (Ref. 7)

Neutron diffraction (Ref. 10)

Neutron diffrac tion (Ref. 9)

Rare gas

xenon
argon

argon

argon

argon

neon

Temp.
(K)

156
77

77
4

4. 7

2. 98
3.07

3.35
5. 29

2. 78
4. 38

4. 11

1.69

C12

(10 dyn jcm )

1.90
1.44

1.01
1.35

l.43
1.82

1.90

0.97

C4&

1.48
0. 69

0. 93
1.59

0 ~ 92
1.63

2. 10

1.00

2.74+0. 30
0.85

0.80+0. 28
0. 81 +0. 21

1.36+ 0. 22
l. 22 + 0. 17

1.90

2.78+0. 38

xenon the elastic anisotropy defined in Eq. (11) has
the high value &= 2. 74+0. 30.

The existing measurements of the elastic con-
stants of other rare-gas crystals have been made
using ultrasonic and neutron scattering techniques.
Three independent ultrasonic experiments have
been reported for argon" and a summary of elastic
constants and anisotropy is included in Table VI.
Also listed are neutron scattering measurements of
the elastic constants of neon and argon. ' All three
ultrasonic experiments indicate a much smaller
elastic anisotropy for argon near its melting point
than that for xenon at 156 'K. In fact, for two of
the experiments A&1, suggesting an anisotropy op-
posite in sense to that predicted theoretically for
argon. ' In view of the present results for xenon,
it seems more likely that the low anisotropy mea-
sured for argon is indicative of some polycrystalline
structure in the relatively large samples used for
these exper iments.

Measurements of the bulk compressibility of
xenon crystals are available and these can be used
to substantiate the values for two of the elastic
constants, c» and c,z. Packard and Swenson found
for the isothermal bulk modulus the value B~
= (1.48+ 0. 2) &10'Odyn/cm~. From the present de-
termination of c» and c,2, the adiabatic bulk modulus
defined by Eq. (12) isB, = (2. 26+0. &4) &10"dyn/cm~.
However, in order to compare the; values, the
adiabatic-isothermal correction ' must be made,
namely,

ad iso ad iso 2 r T ad isoc» —c» = c|p —c» = y pC„T, c44 —c44 = 0.
(24)

Here, y = PB,/pC~ is the thermodynamic Griineisen
parameter. For xenon at T=156'K, the density
p= 3.413 g/cm' at 1-atm pressure, the volume ex-
pansivitym p= 12.8 &10 '/'K, and the specific
heats ' '

C~ and C„are8. 2 and 4. g cal/mol K,
respectively. Together with the adiabatic bulk
modulus, these values give y=3. 23 for the GrGneisen
parameter. The adiabatic-isothermal correction
to c» and c,z is therefore 0. 86&10' dyn/cm at

156 'K, and the isothermal elastic constants derived
from the adiabatic values at 156 K are cry =2 12,
c,'2'= 1.04, and c~~"= 1. 48 in units of 10' dyn/cm .
Thus, the isothermal bulk modulus is B~ = 1.40 &10'
dyn/cm, in good agreementwith the value measured
by Packard and Swenson.

A comparison of the experimental elastic constants
of xenon with values calculated on the basis of recent
theories of lattice dynamics is of primary interest.
For temperatures above approximately one-third
the triple-point temperature, the elastic properties
of the rare-gas crystals are expected to show con-
siderable anharmonicity due to the large (&6%) rms
amplitudes of the lattice vibrations. As a result,
the Born-von Karman theory of lattice dynamics is
not adequate to describe the properties of these
crystals at high temperature and various theories
have been devised to extend calculations of the elas-
,tic constantsbeyond the zero-temperature values
of Barron and Klein. ~' By using a perturbation ex-
pansion of the Helmholtz free energy, Feldman,
Klein and Horton, have derived quasiharmonic
elastic constants for argon, krypton, and xenon.
The results of their calculations for xenon, based
on a Lennard-Jones (6-12) potential and restricted
to nearest-neighbor interactions (NN), are shown by
the solid curves in Fig. 8. These curves terminate
at 106 Kbecause the quasiharmonic approximation
(QH) for xenon breaks down at higher temperatures
due to the large amplitude of the vibrations. Another
approach, known as self-consistent phonon theory
(SC), provides a much more adequate treatment of
the lattice dynamics of rare-gas crystals over their
complete temperature range. Calculations based on
this technique generally show much better agree-
ment with the experimental temperature dependence
of quantities such as the volume expansivity, heat
capacity, and isothermal bulk modulus. ' Klein '
has calculated the elastic constants for xenon using
the lowest-order SC scheme, again for a Lennard-
Jones (6-12)potential acting between nearest-neigh-
bors only. His results are shown by the dashed
curves in Fig. 8. Since the calculations extend
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the adiabatic elastic constants. The ex-
perimental results are plotted as large
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correspond to the nearest-neighbor quasi-
harmonic (Ref. 24) and self-consistent
phonon (Ref. 31) calculations, respectively.
The dash-dotted curve is obtained from
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those of Barron and Klein listed in Table
VII.
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to 16Q K, they can be directly compared with the
present experimental results. [Klein's calculation
actually evaluated the isothermal elastic constants
and these have been converted to adiabatic values
for presentation in Table VII and Fig. 8 by means
of the adiabatic-isothermal correction given by
Eqs. (24). ] The value of c» obtained from the SC
theory is much higher than observed experimentally
in spite of the good agreement obtained for c» and
~44 ~

The SC theory used by Klein did not include odd
derivatives of the interatomic potential. Although
this first-order SC theory is not completely ade-
quate for calculating the volume expansivity and
heat capacity, such calculations of the isothermal
bulk modulus show good agreement with measured
values. The "improved self-consistent" scheme
(ISC), which inculdes odd derivatives of the potential
and works much better for the former quantities,

produces only a slightly lower value of the bulk
modulus for argon near the melting point. ' For
xenon, Klein"' calculates a similar decrease in
B~ of less than 4 jp at 16p 'K. Ii is unlikely, there-
fore, that the discrepancy in c» can be accounted
for by the more elaborate ISC calculations.

Recently, Monte Carlo computer experiments
have been used to simulate the dynamical behavior
of rare-gas crystals. Calculations for argon ' have
been carried out using 1QS particles interacting with
a Lennard- Jones (6-12) potential. Holt et a/. have
subsequently shown that the adiabatic elastic con-
stants derived from quasiharmonic lattice-dynamics
calculations including 1Q7-particle interactions agree
very well with the Monte Carlo results for argon.
Furthermore, they state that including additional
particles in the computation has little effect on
the results so that this calculation is equivalent
to one including all-neighbor interactions (AN).
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TABLE VII. Adiabatic elastic constants and elastic aniso-
tropy of xenon derived from various theories. Values quoted
for the elastic constants correspond to the curves plotted in

Fig. 8. (NN) represents nea res t-neighbor interactions.
(AN) represents all-neighbor interactions.

Theory

Central force (NN)

Central force (AN)

Three-body force (AN)

QH central force (NN)

Temp.
('K)

78
106

C11 C12 C44

(10 dyn/cm') A Ref.

5.50 2. 71 2.75 1.97 28

5 11 2 89 2 93 2 64 28

4.93 2. 88 2. 39 2. 33 35

4. 56 2. 39 2. 05
4. 10 2. 20 1.73

l. 89 24
1.82

SC central force (NN)

QH central force (AN)

80
120
160

30
86

133
161

4.54 2. 31 2. 13
3.97 2. 08 1.76
3.64 2. 00 1.48

4. 95 2. 87 2. 78
4.09 2.47 2. 15
3.42 2. 15 1.65
3.04 1.96 1.35

1.91 31
1.86
1.80

2. 67 36
2. 65
2. 60
2. 50

The same lattice-dynamics calculations have been
used to calculate adiabatic elastic constants for
xenon and the results are shown in Fig. 8. The
agreement with our experimental values is excel-
lent for all three elastic constants. Moreover,
as pointed out in Ref. 34, the anharmonic correc-
tions implied by the Monte Carlo calculations for
argon would produce even better agreement with
the experimental data. A comparison of the ex-
perimental and calculated values plotted in Fig. 8
indicates that, in calculating the elastic constants
of rare-gas crystals such as xenon, it is neces-
sary to include interactions beyond the range of
nearest neighbors.

The elastic anisotropy A = 2c4,/(c» —c,z) is a use-
ful quantity for comparing various theories because
it is independent of whether adiabatic or isothermal
elastic constants are employed in calculating it [see
Eqs. (&4)]. Table VII gives the elastic anisotropy
of xenon calculated from results of several differ-
ent theories over a range of temperatures. It is
immediately evident from Table VII that the elastic
anisotropy for xenon is approximately 50'P() higher
for the calculations including all-neighbor interac-
tions than for those restricted to nearest-neighbor
interactions only. Furthermore, both NN and AN

derivations exhibit little change in A throughout the
full temperature range so that it is not unreasonable
to expect the elastic anisotropy calculated at 0 'K
to be comparable to the value at the melting point
of the crystal. Indeed, in all cases the AN calcula-
tions are in good agreement with the experimental
value of A = 2. 74 + 0. 30. The addition of three-body
forces discussed by Zucker and Chell ' produces a
slightly lower anisotropy at 0 K, but a value which
does not seriously disagree with the present experi-
ment.

VI. CONCLUDING REMARKS

The elastic constants of xenon single crystals
have been determined by Brillouin spectroscopy with
an accuracy of +3%. This is the first time that this
technique has been used to study rare-gas crystals
and the present experiment has produced some very
interesting results. The adiabatic elastic constants
obtained for xenon imply that rare-gas crystals are
much more elastically anisotropic than previous
ultrasonic measurements on argon have indicated.
The high elastic anisotropy is consistent with the-
oretical predictions of the lattice dynamics of rare-
gas crystals, but good agreement with the experi-
mental value is found only for calculations of the
elastic constants where all- neighbor interactions
are included.

The present experiment has shown that Brillouin
scattering is probably the best technique for study-
ing the elastic properties of rare-gas single crys-
tals. However, the measurements on xenon crys-
tals covered a very limited temperature range just
below the melting point. Further experimental
measurements are necessary and desirable partic-
ularly at lower temperatures.
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The exciton problem in wurtzite-type crystals is investigated taking into full account the
structure of the valence bands. Using perturbation theory, after a proper rotation of the ex-
citon Hamiltonian, we obtain analytical expressions for the exciton ground states originating
from the I'9, I'7, and I'7 valence subbands. These expressions are valid for any value of the
crystal field splitting. Results are given for CdSe and CdS and the agreement with experi-
ment is good.

Structure due to excitons was first observed in
II-VI wurtzite compounds by Gross and co-workers'
and by Thomas and Hopfield. Since then, many
authors3 have investigated direct excitons in these
materials. From the theoretical point of view,
however, little work has been done.

It is well known that crystals with diamond and
zinc-blende lattices have valence-band states orig-

inating from atomic p states and that the maximum
of the valence band is at k= 0. The valence bands
of wurtzite-type materials also originate from
atomic p states' but, because the symmetry is
lower than that of the diamond and zinc-blende
cases, the situation is more complicated. It is
known, however, that the maximum is still exactly
(or very nearly) at k= 0. The minimum of the con-




