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The concept of percolation has been set in a form which is more directly germane than

the existing theory of percolation on lattices to the question of the localization-delocalization
transition (mobility edge) in amorphous semiconductors. The problem of percolation on a
continuum has been formulated in the context of motion in a random potential V(r). An en-
ergy-dependent dimensionless density p(E) is introduced which specifies the fraction of space
satisfying V &E. Extended states appear above a critical density p~; this provides our
working criterion g(Eg = p~ for the location of the percolation threshold E, In o.ne dimen-
sion /~=1, and in two dimensions we find that p~= 2 for an important class of random po-
tentials. In three dimensions we obtain an estimate of @ =0.15 &rom an empirical rule.
The percolation criterion for the location of the mobility edge E has been applied to several
types of disordered potentials. The oft-invoked Gaussian potential distribution has been
treated and the results compared with those of several recent calculations. Random-walk
techniques can be used to attack more general random potentials; we have used this approach
to explicitly calculate E for the potential of an array of random dipoles, which is an initial
model for an amorphous molecular solid. A way of including short-range order is briefly
discussed.

I. INTRODUCTION

The mathematical analysis of percolation on a
lattice is applicable to a variety of physical phe-
nomena. ' In a lattice in which each site is either
occupied (with probability p) or unoccupied (with
probability 1-P), and in which adjacent (i. e. ,
nearest-neighbor) occupied sites are regarded as
linked, there exists a critical percolation probabil-
ity (p, ) above which unbounded linked clusters ap-
pear. Below p„no filled sites belong to infinitely
extended clusters; above p„a finite proportion of
the filled sites do belong to such infinite clusters.
A related but distinguishable problem is defined by
considering the network of bonds connecting near-
est-neighbor lattice sites. If each bond is either
open (with probability p~) or closed (with probabil-
ity 1-p,) above a critical fraction (p, ,) of open
bonds, there appear infinitely extended unblocked
paths. Nearly all extant percolation theory deals
with ordered structures (periodic lattices); a typ-
ical application is the determination of the critical
concentration of magnetic atoms in dilute ferromag-
netic crystals. Even for simple lattices the theory
is difficult; except for two two-dimensional cases
for which exact values are deducible, only approxi-
mate estimates (based on Monte Carlo and series-
expansion techniques). have been obtained for p, and

Pb, c o

The presence in percolation processes of this
critical behavior (at p, ) appearing with varying
concentration (p) makes this theory a natural one
to associate with the Mott transition (sharp
metal- insulator transition accompanying an abrupt

correlation-induced transformation from delocal-
ized to localized electronic wave functions, postu-
lated to take place with decreasing density), as
well as with the Anderson transition' (a sharp dis-
order-induced localization of electronic states).
This paper is concerned with an Anderson-transi-
tion situation: the mobility edge ' presumed to
occur in the band tails of amorphous semiconduc-
tors. In several recent papers, ' results of lat-
tice percolation theory have been adopted in the-
oretical models for the mobility edge. In the work
presented here our aim is twofold: to construct
a useful formulation of the proper percolation
problem appropriate to this class of phenomena,
which is that of percolation on a continuum; and
to connect the percolation results to the question
of the localization-delocalization transition in
amorphous semiconductors.

The question of the connection between percola-
tion theory and the localization-delocalization trans-
ition was first addressed in an article by Ziman.
Ziman's approach, discussed in Sec. IIB, involves
an empirical rule based on critical probabilities
for the bond problem. The approach developed in
the present work makes use of an empirical rule
for the site problem proposed in a recent note by
8cher and Zallen (SZ)." This line of development
has the advantage of invoking the concept of a crit-
ical percolation density by means of which it is
straightforward to make contact with the parameters
characterizing a random potential (such as the rms
spatial fluctuation).

The analysis of percolation on a continuum is
dealt with in Sec. II of the paper, and applications
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to amorphous materials are given in Sec. III. A

brief outline will be helpful here. Continuum per-
colation is introduced in Sec. IIA in the context
of the percolation of a classical particle in a ran-
dom potential V( r). An energy-dependent dimen-
sionless density p(E) is defined which specifies
the fraction of space accessible (V & E) to particles
cf energy F. Empirical rules for a critical density

corresponding to a percolation threshold, are
discussed in Sec. IIB and compared to the different
empirical rule observed and employed by Ziman.
Estimates for P, in two and three dimensions are
discussed in Secs. IIC and IID. It is (II), which pro-
vides our percolation criterion for the localization-
delocalization transition in a random potential.
In Sec. IIIA we note that the essential character
of V(r), needed to determine P(E), is contained in
the distribution function P(V). This prescription
is applied, in Sec. IIIB, to the location of the crit-
ical energy E(P,) for that class of situations in
which P(V) can be approximated by a Gaussian, and
our results are then connected with two relevant
recent treatments invoking Gaussian statistics. A
method for handling more general distributions is
outlined in Sec. OIC, and is used in Sec. IIID to
calculate E(p, ) for an assembly of randomly dis-
tributed dipoles. In Sec. IIIE we indicate a way
in which short-range order may be included. Our
principal results and conclusions are summarized
in Sec. IV.

FIG. 1. Percolation in a two-dimensional potential.
The contour lines represent equipotentials of V(r). The
shaded regions in (a), (b), and (c) indicate allowed (V&E)
regions for three successively increasing values of E.

II. CRITICAL PERCOLATION DENSITY

A. Classical Percolation in Random Potential

To construct in concrete terms the problem of
percolation in a continuum, we consider the motion
of a classical particle in a random potential V(r)
While our ultimate interest is, of course, in real
(i. e. , quantum-mechanical) systems, this classical
model will elucidate the essential topological as-
pects of the problem. (Another situation embodying
percolation in a continuum is that of conducting
particles randomly dispersed in an insulating med-
ium. '~) The subtle problem of the spatial variation
of the effective potential appropriate for the quan-
tum-mechanical or semiclassical description of a
given amorphous solid will not come in for detailed
scrutiny in this paper; in Sec. III we will find that
a statistical characterization of V(r) suffices for
our purposes. It is worth noting, however, that
the effective potential will be more slowly varying
than the one-electron potential because of the pseu-
dopotential-theory cancellation (within the regions
of the atomic cores) of the potential energy by the
kinetic energy associated with orthogonalization-
induced wave-function oscillations. Procedures
for constructing properly "smoothed" potentials
have been described by Eggarter and Cohen (EC)

in connection with the mobility edge, and by Hal-
perin and Lax (HL) in connection with the band-
tail density of states. The fact that the random po-
tentials of interest are, therefore, rather well-
behaved functions will be implicit in the rnathe-
matical discussions to follow in this section.

Given V(r), we introduce a function p(E) which
defines the fraction of space accessible to particles
of energy E. This is simply that fraction of space
for which the total energy exceeds the potential en-
ergy V:

P(E) =J, d r/ f d r .
The connection with percolation theory is revealed
by the fact that for energies such that p(E) exceeds
a critical value P„ there are infinitely extended
volumes of allowed (V& E) space (i. e. , "delocalized
states" occur). While (1) is expressed in terms of
the explicit spatial dependence of V, in Sec. III we
will show that p is simply obtainable as a statisti-
cal characterization of the potential.

The critical percolation behavior in a two-di-
mensional continuum is depicted in Fig. 1, in
which the contour lines represent equipotentials
of V(r). The shaded areas in Figs. 1(a)-1(c)
indicate regions satisfying V(r) &E for three
successively increasing values of E. Referring to
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allowed (V& E) regions as water areas and forbid-
den (V& E) regions as land areas (the analogy is to
a terrain with V represented by the altitude of the
surface and E represented by a mater level which

is the same for all bodies of water), at low E the
allowed areas comprise isolated lakes in an in-
finitely extended continent [as in Fig. 1(a)], while

at high E there is the opposite situation in which

isolated islands are embedded in an infinitely ex-
tended ocean of allowed territory [Fig. 1(c)].
Somewhere in between [Fig. 1(b)], at the critical
coverage p„ there is a situation corresponding to
the critical-percolation probability as the extended
ocean makes its debut on the scene. (In two dimen-
sions as we will see in Sec. IIC, the appearance
of the ocean coincides with the disappearance of
the continent. ) We can characterize the critical
coverage Q, in two ways:

average lake size- ~ as p- p, ,

fraction of space belonging to

(2)

an extended ocean- 0 as p - p', . (3)

In (2) the left-hand side approaches 0 as p-0,
while in (3) the left-hand side approaches 1 as
P- 1. We mill use E, to denote the energy corre-
sponding to the percolation threshold p, :

B. Empirical Rules Based on Lattice Percolation

Two inductive generalizations of results calcu-
lated for percolation on regular lattices have been

P(E) and therefore E, are well defined for any
nonpathological V(r). For example, for an attrac-
tive potential (V & 0) produced by a single center or
by a finite set of centers (V- 0 as r ~), p(E) = 0
for E& 0, y(E) = 1 for E &0, and therefore E,=O

(i. e. , the critical percolation energy corresponds,
quite naturally, to the bottom of the quantum-me-
chanical continuum). For a periodic potential, E,
is fixed by the lowest-energy set of mountain passes
(saddle points) separating neighboring unit cells.
The working hypothesis of this paper is that, for
a broad class of physically realistic random po-
tentials (i. e. , which exhibit continuity and differ-
entiability except at isolated point singularities,
as well as homogeneity on a macroscopic scale),
the value of p, is approximately constant —that is
to say, insensitive to the detailed nature of V(r).
Empirical evidence for this, along with estimates
of the critical densities in one, two, and three di-
mensions, is presented in Secs. II B-IID. With this
basis, (4) becomes a useful criterion for the de-
termination of the percolation threshold E„which
in turn provides an important, and perhaps deci-
sive, clue to the location of the mobility edge in
real materials.

proposed. (These papers are pertinent, albeit
implicitly, to the problem of percolation in a con-
tinuum. ) An empirical relation for the bond prob-
lem on a three-dimensional lattice, first observed
by Vyssotsky et al. , was recently rediscovered
and applied to disorder-induced localization by
Ziman': p, „n-= 1.5, where n is the lattice coordi-
nation number. Ziman indicates how to formally
construct a quantity N(E) specifying the "average
number of unblocked paths" (saddle points with

V &E) leading from any atom; his criterion for E,
is then N(E, ) = 1.5, a result analogous to, but more
cumbersome to apply than, that given in (4). More
serious is the objection that his formulation in
terms of nearest-neighbor coordination relies on
the literal interpretation of V( r) as the rapidly
varying one-electron potential.

An empirical rule directly relevant to P„based
on the lattice site problem, was the subject of a
recent note by SZ." (Unlike Ziman's treatment, in

which interatomic saddle points play the role of
percolation bonds, SZ's formulation does not rely
on coordination number and is more generally ap-
plicable. ) SZ introduce a geometric interpretation
of site-occupation probability p in terms of a space-
occupation probability density p, corresponding to
the packing of spheres (in three dimensions) or
circles (in two dimensions). They find that in three
dimensions the various critical site probabilities
for different lattices (p, = 0. 19-0.43)a all corre-
spond to the same (within a few percent) critical
probability density (space-occupation fraction) of

p, = 0. 15. In two dimensions their result is 0. 44,
and in one dimension it is, of course, 1.00. These
numbers offer first estimates for P, .

In one dimension the only possibility for percola-
tion is for the allowed territory to occupy the en-
tire space, V&E everywhere. Thus E,= V „and
P,(lo) = 1 = p, (lo). At E, the localization-delocali-
zation transition is discontinuously sharp, since
for E & E, none of the space belongs to an extended
ocean, while for E&E, all of it does. This cir-
cumstance is unique to the one-dimensional case,
a point underscored by Ziman in disputing the ap-
plicability of one-dimensional models to real
(three-dimensional) systems. Two other crucial
distinctions between percolation in one- and three-
dimensional continua are pointed out in Sec. IIC.
Our knowledge of f, in one dimension is exact, but
of little interest. The critical densities in two and
three dimensions are attacked below.

C. Critical Density in Two Dimensions

There is an important class of random potentials
(examples are the Gaussian and Holtsmark distri-
butions to be discussed in Secs. III B and IID) which
exhibit symmetry between high and low energies
in the following sense:
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(f)(Ef / p + aE ) + &f) (Et / 2
—aE ) = 1 (5)

p, (2; V, )=0.50. (8)

We can compare this result with the empirically
induced quantity p, (2n) = 0. 44 discussed in Sec.
IIB. This quantity was constructed from a situa-
tion with substantial asymmetry between filled
regions (circles surrounding filled sites) and empty

For such symmetric potentials the median energy
E»„defined by P(E, /z) =-,', coincides with the
average potential ( V( r) ). We will now show that,
for this class of V(r)'s in two dimensions,

Unlike the one-dimensional case, in two dimen-
sions an ocean may exist without filling the entire
space (Fig. 1). However, it does remain true that
only one such infinitely extended ocean or continent
may exist at a time, since two extended networks
cannot avoid intersection in 2D. ' (The extended
oceans are weblike networks, not threadlike rivers,
because the random potential must exhibit large-
scale homogeneity. ) The symmetry expressed in

(5) means that the critical fraction of water cover-
age for the occurrence of an infinitely extended
ocean must equal the critical fraction of land cov-
erage for the occurrence of an infinitely extended
continent. Since an ocean and a continent cannot
coexist (a statement valid in one and two dimen-
sions, invalid in three or more dimensions),
cannot be less than 0. 5 as otherwise this (impos-
sible) coexistence would occur for p, & p & 1 —y, .

Figure 1 further suggests that a randomly pro-
duced 2n map [i.e. , a map generated by an equi-
potential of a random V(r)] cannot contain only
bounded lakes and islands. Such a situation would
require an infinite set of isoenergetic saddle points.
Examples are a checkerboard with black and white
squares representing island and lakes, and a Kag-
ome lattice with hexagonal areas as islands, tri-
angular areas as lakes. These two cases illustrate
the essential requirement, a nonvanishing number
of saddle points per island (two for the checker-
board, three for the Kagomd). While such a situa-
tion automatically occurs for a periodic crystal
potential, for which entire sets of saddle points
(i. e. , a finite number per unit cell) occur at Pre-
cisely the same energy, it is inadmissible for a
random potential since the disorder disperses the
saddle-point energies into a continuous distribu-
tion. ' Armed with the information that a random
map without an extended ocean or continent is dis-
allowed (this statement holds in two or more di-
mensions, does not hold in one dimension), we de-
duce that P, cannot exceed 0. 5 by an argument
analogous to that of the preceding paragraph.

The above arguments reveal that for a symmetric
random potential in two dimensions, the critical
percolation density is —,':

regions (circles surrounding empty sites, plus the
interstitial spaces). The relatively small differ-
ence between these two numbers reflects the weak
dependence of p, on gross characteristics of the
random potential.

D. Critical Density in Three Dimensions

A simple derivation for P,(3» V,~), analogous
to the above analysis, cannot be given. The second
half of the 2D argument, based on the necessary
occurrence of at least one ocean or continent, con-
tinues to apply to the 3D case; but this merely
yields an overly generous upper limit for the crit-
ical density.

In the absence of any better estimate for the crit-
ical density in a three-dimensional continuum, we

will tentatively adopt the value of the empirically
obtained quantity p, (3n),

'

(8)

[The two-dimensional results suggest that (8) may
slightly underestimate p, (3D; V, ).~8 A balancing
consideration may be that, for actual quantum-
mechanical systems, the possibility of tunneling
through narrow nonallowed (V& E) regions means
that the classical result overestimates p, . ] In

Sec. III we will make use of Eq. (4), with the crit-
ical density given by (8), as our working criterion
for the location of the localization-delocalization
energy E, .

Before proceeding with applications of (4) and (8)
we present, in Fig. 2, a diagrammatic summary
of some of the key differences between continuum
percolation processes in one, two, and three di-
mensions. In order to include one-dimensional
E, 's in the comparison, the P(E) shown corre-
sponds to a random potential possessing upper and
lower bounds. The quantity R(E), schematica. lly
plotted in Fig. 2, is the fraction of space belonging
to infinitely extended oceans (i. e. , accessible to
delocalized electrons of energy E). The softening
of the localization-delocalization transition with
increasing dimensionality is evident.

III. CALCULATION OF DENSITY gE)

A. Potential Distribution Function

Given the localization-delocalization criterion
expressed in (4) and the value of p, stated in (8),
we now wish to consider the calculation of p(E)
from a specific V(r), since this is needed to deter-
mine E, . To calcula. te p(E) from the basic defini-
tion (1) would necessitate an analytic representation
of the random potential V(r), and then an integration
over a function of V(r) such as the Dirichlet unit
step function. This would be a formidable task.
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quency of regions with V& E,

(f) (E) = f P( V) d V . (9)

Thus, once P(V) becomes known for a specific ran-
dom potential, the critical percolation energy is
obtained from

f „' ((V)dV=Q, . (10)

Ip

I

p

Ec

Ec

We now go on to a consideration of the determina-
tion of P(V), dealing first with an important partic-
ular example and then with a more general approach
applicable to an arbitrary V(r).

B. Critical Energy for Gaussian Potential Distribution

A random potential V(r) is generatedbysumming,
at r, the independent contributions from randomly
placed centers. In other words, V(r) is a sum of
random variables. We know (from the central-
limit theorem) that for a sufficiently high density
of centers' Gaussian statistics apply, so that g(V)
obeys a Gaussian distribution:

q(V) = (2v V, ,)
' e ' (»)

where V is the mean potential and V, is the vari-
ance. Inserting (11) into (10}yields

erf [( V —E,)/2 V, , j = 1 —2$, , (12)
Ec

FIG. 2. Dimensionality dependence of continuum
percolation processes. p(E) is the fraction of allowed
(V&E) space and R(E) is the fraction of space contained
in infinitely extended allowed regions. [The dashed
curves represent functions opposite to R(E), specifying
the fraction of space contained in infinitely extended
forbidden regions. J

Furthermore, requiring an analytic expression for
V(r) would be overspecifying the problem for the
following reason: It is only important to know the
fraction of space satisfying V( r) & E; the coordi
nates of these valleys are unnecessary for our pur-
pose. Thus a simple statistical characterization
of V(r) is all that is needed. It is this statistical
interpretation (spelled out below), rather than the
direct geometric definition of (1), which lends Q
its primary usefulness in dealing with percolation
processes.

Associated with every random V(r} is the distri-
bution p(V) of values of V generated at an arbitrary
position r. The normalized potential distribution
function can be interpreted in two ways: P(V) dV
specifies the probability of occurrence, at an arbi-
trary r, of a potential value in the range V—V
+ dV; g(V) dV specifies the relative frequency count
of V values in this range obtained by sampling the
potential in all of the infinitesimal volume elements
of the space. With the latter interpretation, to
determine g(E) we simply count the relative fre-

V, ,= (2ve /cog) +, n, Z, , (14)

where n, is the i-type impurity concentration. HL
define a dimensionless parameter $' =—(V, JE@),
where Eo = h Q /2m", and they present their tail-
states results, for various values of $', with p(E)
plotted against energy from the band edge in di-
mensionless units, v = (V —E)/Eq. In terms of
their dimensionless variables, (13) becomes

v, = 1.03(f') . (15)

Only for large $' does (15) yield a critical energy
high in the tail.

Recently Stern has used the Halperin-Lax den-

where erf(z) is the error function. Since erf(z) is
an odd function of its argument, for 2p, & 1, E, must
be less than V. Using P, (3o) = 0. 15 in (12) locates
E, for a Gaussian distribution:

E, = V —1.03 V, , (13)

We now consider applications of (13) to two recent
models invoking Gaussian statistics.

HL have calculated the density of states p(E)
for an impurity band tail in the high-density limit.
They consider in some detail the situation in which
the random potential is produced by a superposition
of screened Coulomb potentials of the form
(Z;e'/&or)e u", where Z, e is the charge of the i-type
impurity, &0 is the dielectric constant of the host
semiconductor, and Q is the reciprocal screening
length. They find that
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sity of states to calculate the optical absorption
edge of amorphous silicon. He obtained a best fit
with experiment using V, ,=0.89 eV and Q '=6 A.
With these values and m~ = 0. 3m, substituted into
the parameters appearing in (15), we obtain [using
(15}and Hi 's curves] a states density at the con-
duction-band mobility edge of p(v, ) = 5x 10 cm 3

eV ' compared to Stern's result of 9&&10 cm 'eV '.
Stern used the Anderson' localization criterion in
his determination of the mobility edge.

A second application of (13) is in the reinterpre-
tation of a criterion appearing in a simple model
recently investigated by EC.' They consider a gas
of hard-core scatterers. In a potential-smoothing
procedure based on the uncertainty principle, they
divide the system into cells of side E/p and treat
the number N, of scatterers per cell as a random
variable (the cells are not infinitesimals as
(N)» 1). EC introduce a quantity C(E) which is
defined as the fraction of cells with cell potential
V, &E. As the wave function for the electron in
each cell is a plane wave, C(E) can be interpreted
as the fraction of the total volume available to an
electron of energy E, that is, their C(E) corre-
sponds to our p(E). EC adopt, as their mobility-
edge criterion, the critical percolation probability
for percolation on a simp/e cubic lattice, C(E,) = p,
(sc) = 0. 31. Their result, assuming Gaussian
statistics for N, (and hence for V, , since V, ~ N, ),
1S

E, = V —0. 52 V/(N) (16)

Since in this model V„,= V/(N)'~, this result is
equivalent to (13) with the numerical factor 1.03
replaced by 0. 52. The numerical difference is
produced by EC's particular choice of p,(sc}as the
percolation criterion playing the role which, as we
have seen, properly belongs to p, (3o). The use of
0. 15 for P(E,) locates the mobility edge further
down in the density-of-states tail (EC's Fig. 1) than
does (16).

C. Potential Distribution for Arbitrary Random Potentials

To obtain P(V) for an arbitrary V(r) generated
by a random distribution of potential centers, we
proceed as follows. The problem is to find the

probability density for V= /, V, , where the V, are
random variables. This is equivalent to a one-
dimensional random walk. The general k-dimen-
sional random-walk problem has been solved using
Markoff's method and is treated in the well-known
review article of Chandrasekhar. In the limit of
a large system,

q( V) (I/2 V ) 1 dx +Ixv IIC (x)

where

C(x) = J dz P(z)(1 —e '"""') .
(17)

V,
= P, cos,8 e/Or, ,

2 (18)

where P, is the dipole moment atr; andcos8;= P; ~ f';.
If a typical molecular dimension is denoted by a,
then P, - ea and we can choose Vo= e/eau in (17).
We assume a random isotropic distribution of the
molecular dipoles,

p(z) dz = p( p') dp' r dr sin8 d8 dp, (19)

where p(p') is the distribution of the magnitude of
the dimensionless dipole moment p'= P/ea W—e.
shall assume p(p') =5(p' -p), i. e. , P, /ea= p for
all i.

We now can calculate the spectral density factor
e '"' in (17):

Here v is a dimensionless potential V/Vo, with Vo

an appropriate scaling energy for the problem, z
specifies the position and internal coordinates of
a center, p(z) is the probability distribution of the
potential centers, v(z) is the potential produced by
a center characterized by z, and n is the density of
centers. Distributions defined by (17) have been
considered extensively in the theory of inhomoge-
neously broadened resonance lines in solids. The
essential aspect of (17) is that it relates the prob-
ability density of V, a sum of random variables,
to the probability density p(z) characterizing the
individual random variable V, .

D. Critical Energy for Random Dipole Distribution

A collection of randomly oriented dipoles can be
considered as an initial model for an amorphous
molecular solid. The potential due to each center
1S

2%' 'E IXI

n C( )x=n dg d8sin8 dr r (1 —e'" "'
)

0 0 R

3
' . 3 xp cos8 . . xp cos8= 2mna d6 sin0 dp p 1 —cos &

—i sin
P P

(20)

The radius R in (20) separates an inner region sur-
rounding our sampling position from an outer region
in which the random continuum approximation of

(19) may be used. In the inner region we can speci-
fy details of short-range order; a way of doing this
is indicated in Sec. IIIE. For the moment we pro-
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ceed by setting R = 0. In (20) it is readily seen that
ImIC(x)] vanishes, since the term sinIxp(coss)/p ]
is odd in coss. Thus, from (17), V=0; this is a
consequence of the isotropic approximation. After
a change in integration variables,

Integrating G(p) and L(p), we obtain

I
p I

=cotwp, = l. 96 .

(26)

(27)

nC(x) = 2wna~ f du zo ~ f du z(1 —cosxPuru)

(21)

= 2wna'(IxIP)' f du ce '~'(w —sinu)

= P ua'(2wp
I

x
I
P" .

We therefore have

OO -Ax3/
g(V) = (eo a/we) f dxcosxv e

[The Gaussian result also follows directly from
(13) with V=0 and V, = M. ] From (26) and (27)
it is clear that a good estimate for [ P", i is 1.8.
Using this value in (23) to obtain the critical en-
ergy :—I. 8Az = —1 8 (It ) (na ) 2wp

E, = e,(e/E, )a= —4. 7n' ' P/e, .
where

A= Qua'(2wpP" .
Substituting (22) into (9) yields

g(E)= f„|)(V)dV

(22)
The result expressed in (28) is the critical energy
for a random dipole potential; it is proportional to
the magnitude of the molecular dipole moment P
and to the two-thirds power of the molecular con-
centration n.

8 eo -A%3/2=w 'f „dv f dxcosxv e-""

= f dpH(p), (23)

where

H(P)=w ' f dtcosPte ""

e = E/Vo, Vo= e/boa .

H(p) is the Holtsmark distribution. z'

While (23) cannot be integrated analytically, we

can make use of the fact that the Holtsmark distri-
bution is intermediate in behavior between a Gaus-
sian and a Lorentzian to obtain a close approxima-
tion for &, :

G(p)&H(p)&L(p) for p&0. 4 and p&2. 8,
(24)

G(p) & H(p) & L(p) for 0. 4 & p & 2. 8,
where

G(P) (4w)-ll zew I 4

H(p) „,.—, —;(2w)'"Ip
I

'", (26)

falling off just slightly faster than the Lorentzian,
so that

L(P)= w '(1+ P') '

Corresponding to each of the functions G, H, and
L there is a critical value P, such that the area
under the curve from —~ to P, is equal to (t)„' we
designate these values as P, , P,", and 8, , respec-
tively. In the tail of the Holtsmark distribution,

E. Short-Range Order

As a final consideration we indicate the way that
short-range order can be incorporated in g(V).
Since P(V) can be interpreted as the probability
density for a given V to appear at a single arbi-
trarily chosen position equally as well as being
interpreted as the frequency count for V over all
of the volume elements of the space, the short-
range correlations can be included by properly
specifying the p(z) in (17). Stoneham has con-
sidered this problem in the context of the origin
of satellite lines in the linewidth case. In our nota-
tion, one can write g(V) as in (17) but with

nC(x)= Q,f, I I —e '"&]+nf dzP(z)(1 —e '*"'"),
(29)

where region I is an inner region in which discrete
structure is recognized and region II can be treated,
as before, as a continuum. The decomposition in

(29) adds further structure to the spectral density
term in (17) and can be used to take into account
the presence of short-range order in an amorphous
system. Further details would be best entertained
in the context of a specific model for a particular
amorphous material, which we do not attempt here.

1V. SUMMARY

It is becoming increasingly apparent that perco-
lation theory has something important to say about
the localization-delocalization transition in amor-
phous semiconductors. It has been our purpose
here to contribute to the implementation of the
percolation concept in applications to random po-
tentials of physical interest. Existing percolation
theory deals almost entirely with percolation on
lattices; the motion of an electron in a random po-
tential corresponds to the process of percolation



4478 R. ZALLEN AND H. SCHER

on a continuum. In our formulationof the continuum
percolation problem, the central concept intro-
duced is the energy-dependent dimensionless den-
sity g defined by (I) and rendered calculable by
(9). The critical density g, is the quantity which
provides our working criterion p(E,) = p, for the
location of the percolation threshold energy E, . In
one dimension (t), is immediately revealed to be
unity, and in two dimensions we have shown that

f, is ~ for the class of symmetric random poten-
tials satisfying (5). In three dimensions we are
forced to rely on the empirically induced estimate
of P, = 0. 15 proposed previously by the authors.
The differences between continuum percolation
processes in one, two, and three dimensions have
been indicated in Fig. 2.

The percolation criterion for the location of the
mobility edge E, has been applied to several types
of disordered potentials by relating @(E) directly

to a statistical characterization of these potentials.
The frequently invoked Gaussian potential distribu-
tion has been treated and the results connected with
the recent calculations of HL, EC, and Stern.
Random-walk techniques can be used to attack more
general random potentials. We have used this ap-
proach to calculate E, for the potential distribution
of an array of random dipoles, which is an initial
model for an amorphous molecular solid. Finally,
a way in which to include short-range order in the
calculation has been discussed.
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The modulation by acoustoelectric domains of monochromatic light transmitted through plate-
lets of CdS has been studied with emphasis on the spectral variation and polarization depen-
dence of the effect near the band edge. Samples of several crystallographic orientations were
used. It was found that for light propagating along the c axis of the crystal, the domain-in-
duced modulation was strongest with the light polarized along the drift-field direction, in agree-
ment with previously reported work on GaSb. The spectral variation of the transmission modu-
lation observed with polarized light propagating perpendicular to the c axis was consistent
with the double band edge of CdS. The modulation resembles a shift of the absorption spec-
trum to longer wavelengths, Recently published theoretical and experimental studies of the
Franz-Keldysh effect, together with the observed spectral, polarizational, and orientational
dependences of the optical modulation lead us to conclude that the modulation is produced by
the Franz-Keldysh effect. Further, it is shown that the fluctuating high-frequency electric
fields in the domain, rather than the "steady" field across the domain, produce the effect.
Previously measured properties of the domain, such as current noise, induced birefringence,
and induced light emission, corroborate this interpretation. Other proposed mechanisms are
shown to be invalid.

I. INTRODUCTION

Several techniques have been used for probing
acoustoelectric domains in piezoelectric semicon-
ductors. These include direct electrical probing,
microwave probing, and optical probing. One op-
tical probing technique involves observing the trans-
ient change in optical transmission of the semicon-
ductor sample as the domain traverses the optical
probe. This technique was used by Kumar, Sliva,
and Bray' in GaSb, and by Spears and Bray in
GaAs. It was demonstrated that the change in the
optical-absorption coefficient correlated well with
the domain strength as mea, sured by other tech-
niques, and that the modulation was strongest for
wavelengths approaching the band edge of the semi-
conductor. More recently, Kumar and Hutchinson'
and Yamamoto et al. applied the technique to CdS
and observed the characteristics of domain propa-
gation in that material. The work being reported
here is primarily concerned with the spectral varia-
tion of the transmission modulation produced by
acoustoelectric domains in CdS at wavelengths near
the band edge, and with the relationship between
the orientational dependence of this spectral varia-
tion, including polarization anisotropy, and the
band structure of CdS. These topics have been
covered only briefly in the available literature.

The results of the present work viewed in the light
of recently published experimental and theoretical
studies of the Franz-Keldysh effect, lead us to
conclude that this effect is responsible for the ob-
served modulation. However, it is the strong fluc-
tuating electric fields in the domain, associated
with the intense high-frequency phonon flux, rather
than the "steady" field across the domain, which
produce the effect. The presence of such strong
fluctuating fields is adduced also from earlier
studies of the acoustoelectric domains in CdS,
namely, the high levels of current noise at current
saturation, induced birefringence, and induced
light emission.

II. DESCRIPTION OF EXPERIMENT

The system used for measuring transmission
modulation in the presence of acoustoelectric do-
mains is shown in Fig. 1. A Perkin-Elmer model
83 monochromator containing a quartz prism was
used in conjunction with a pulsed xenon lamp. The
peak pulsed-light intensity near the band edge of
CdS was over 1000 times greater than that obtain-
able from CW arc lamps, and this high intensity
was essential to the experiment. Furthermore,
the xenon spectrum was relatively flat, a desirable
characteristic for spectral measurements. The
detector was an RCA 6217 photomultiplier which,


