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The thermal conductivity of lightly Sb-, P-, and As-doped germanium was measured between
0.3 and 4. 2 K. The strong scattering of phonons by neutral donors observed earlier above 1 K
diminishes below 1 K, as predicted by the theories of Keyes and of Griffin and Carruthers. In-
clusion of resonance fluorescence of phonons, as proposed by Griffin and Carruthers, improves
agreement with the measured thermal conductivity (except at the lowest temperatures, where
neither their theory nor that of Keyes fits the data very well) and leads to the value 16 eV for
the deformation potential and to simple-hydrogenic-model values for the effective radii of the
donor ground states. The divergence of the data from the calculated values at the lowest tem-
peratures is evidence for an additional scattering mechanism effective below 1K, possibly as-
sociated with phonon-assisted hopping between donor atoms.

I. INTRODUCTION

This paper describes measurements made on the
thermal conductivity of germanium doped with either
antimony (Sb), arsenic (As), or phosphorus (P) in
the temperature range from 0. 3 to 4. 2 K and with
impurity concentrations from 3&& 10'4 to 3x 10
atoms per cm . The experimental results are com-
pared with previously proposed theoretical calcula-
tions based on a model of phonon scattering due to
the electron bound to the added impurity atom. '~

The temperature dependence of the thermal con-
ductivity reflects the frequency and temperature
dependence of various phonon-scattering processes
occurring in the solid. In the single relaxation-time
approximation the collision operator (8N/St)»,
which appears in the Boltzmann transport equation
and represents the combined effect of all phonon-
scattering processes occurring in the solid, is as-
sumed to be (8N/Bt) „=—(N No)/7, where -No is the
equilibrium phonon distribution, N is the phonon
distribution at time t, and 7 is the total relaxation
time of the phonon distribution. w is usually calcu-
lated by setting r ' = g; r, ', where the r, ' are the
relaxation times for s'eparate phonon-scattering
processes due to boundaries, point defects, isotopes,
other phonons, etc. By adjusting the strength of the
different scattering processes, a reasonably good
fit can be made to the thermal conductivity of pure
insulators and semiconductors from 1 to 300 K.

If a particular type of defect is added to the pure
crystal, then any changes occurring in the measured
thermal conductivity can be compared with theoreti-
cal calculations using a total relaxation time 7 '
= 7'

D + 7'~ where v L)' is the phonon-scattering prob-
ability due to the added defect and r~' = g. 7. ,

' repre-
sents the phonon-scattering processes occurring in
the "pure" crystal (see Appendix A). This compar-
ison then suggests whether or not the model of the
defect to obtain ~~ is reasonable and, hopefully,

enables some parameters of the defect to be de-
termined.

Electrically active impurity atoms in semicon-
ductors provide an attractive defect to be studied
by thermal-conductivity measurements because of
the purity and structural perfection of the host
lattice and the ease with which definite amounts of
a known impurity can be added over a wide range
of concentrations. Several review articles' ' have
appeared recently describing thermal- conductivity
measurements on both doped and undoped Ge, Si,
III-V compounds, and II-VI compounds.

Previous measurements of the low-temperature
thermal conductivity of both n-type germanium
[containing from 10'5 to 10' group-V(Sb, As, or P)
impurity atoms per cm ] and p-type germanium ' 0

[containing from 10' to 10' group-III (In, Ga) im-
purity atoms per cm ] have shown that shallow do-
nors or acceptors in germanium are very strong
scatterers of phonons. (See Appendix B for a brief
summary of the properties of these states which are
relevant to our measurements. ) For example, a
concentration of as little as 4&10' Sb donors per
cm' reduces the thermal conductivity at 2 K by a
factor of 8.

Goff and Pearlman ' compared measurements
made on highly doped highly compensated p-type
samples with those made on singly doped samples
with the same concentration of neutral donors. They
found that the extra thermal resistance introduced
by the impurity was correlated with the number of
neutral donors and not with the total impurity con-
centration. Thus the phonon scattering occurs be-
cause of an interaction with the electron bound to the
donor ion, not with the donor ion itself. An impur-
ity species effect was also found; Sb is a rr, ore ef-
fective scatterer of phonons than either As or P for
concentrations less than 6@10' cm . For higher
concentrations, where the donor levels have merged
with the conduction band, the extra thermal resis-
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tance is species independent.
We can thus recognize two distinct phonon-scat-

tering processes; one for low concentrations where
the electron is bound to the donor impurity, and the
other for high concentrations where the electron is
free to move in the conduction band. In this article
we will only consider the case of low-concentration
noncompensated samples for which the donor elec-
trons are assumed to be isolated. Such material
most nearly conforms to the assumptions used in
the models of Keyes' and of Griffin and Carruthers
(expressions for the inverse relaxation time r,~

calculated from these models are given in Appendix
C). Both treatments predicted a large decrease in

7,~ at sufficiently low temperature, but the earlier
measurements down to about 1 K gave no sign of the
corresponding increase in K. By extending the
measurements below 1 K we were able to observe
the expected increase in K, but at the same time
we found evidence for another phonon-scattering
mechanism which apparently had not been observed
before.

II. APPARATUS AND SAMPLES

A. Apparatus

The measurements were made in a recirculating
He' cryostat" capable of covering the range from
0. 27 and 4. 2 K. The thermal conductivity was
measured using the absolute method with the tem-
perature difference along the samples determined
by two germanium resistance thermometers. These
thermometers were 0. 5x 1 x3-mm bars cut from
germanium which had been highly doped with anti-
mony and then highly compensated with gallium.
The resulting material is n type with a room-tem-
perature resistivity of approximately 0. 06 0 cm.
The germanium thermometers were calibrated each
run against the vapor pressures of He' and He4 from
0. 7 to 4. 2 K using Montgomery's" polynomial ex-
pansions relating the absolute temperature to the
vapor pressure of He' or He .

Below 0. 7 K the calibration temperatures were
determined by a magnetic thermometer consisting
of a set of mutual inductance coils and a spherical
sample of powdered compressed chromic methyl-
ammonium alum (CMA). The mutual inductance M
of the magnetic thermometer varies with tempera-
ture as M=A+ B/T~, where the magnetic tempera-
ture T*for this salt is related to the absolute tem-
perature T"= T+0. 00279/T+ 10. 5 ~10 ' down to at
least 0. 5 K according to Roberts et a/. ' The con-
stants A and B were determined by calibrating the
magnetic thermometer above 0. 7 K against the
vapor pressures of He and He .

A least-mean-square fit of the calibration data
of each thermometer was then made to an expansion
of 1/T in powers of logioR, i. e. ,

1/T =AD+A& log~0R+Aa (log|OR) +A3(log|QR) l (1)

n = —rS /eR, (2)

where n is the concentration of electrons in the con-
duction band at room temperature, e is the charge
of the electrons, S depends upon the shape of the
band involved (for germanium S=0.784), "and r
= p„/p, is the ratio of the Hall mobility to the elec-
trical conductivity mobility (r= 1.18 assuming pure-
lattice scattering). '6

Germanium at room temperature is in the ex-
haustion range, that is, all donors are ionized so
that n = n„=ND —N& =ND, where ND is the donor
concentration, N„is the acceptor concentration,
and n„is the number of electrons bound to donor
atoms at low temperatures. For uncompensated
n-type germanium, and acceptor concentration
N„offrom 3 to 6% of the donor concentration is
usually found. '7 Values of n listed in Table I are

TABLE I. Sample parameters.

Sample

Ge-543
Sb-344
Sb-365
Sb-306

P-375
P-266

As-276

nex(cm )

5.4 x10»
3.4 x10i4
3.6 x10"
3.0 x10"
3.7 x10"
2. 6 x10
2. 7 x10

A (cm2)

0.154
0.151
0.171
0.162
0.162
0.165
0.144

I., (cm)

0.443
0.438
0.468
0.455
0.455
0.459
0.428

as suggested by Moody and Rhodes. ' The temper-
ature range from 0. 27 to 4. 2 K, containing approx-
imately 26 calibration points, was divided into
three overlapping intervals and the A, 's were de-
termined for each interval. Agreement between the
temperatures calculated from the above expression
and the actual calibration temperatures is within 2
mK for temperatures greater than 2. 2 K and within
1 mK for temperatures less than 2. 2 K.

B. Description of Samples

When first cut from the ingot with a diamond saw,
the samples were rectangular prisms with approx-
imate dimensions of 5x 5x 25 mm. The long axis
of the sample is in the [100 j direction which is
perpendicular to the growth axis of the crystal in
order to minimize any impurity concentration
gradients. Before mounting the samples, all sur-
faces were ground with No. 280 carborundum pow-
der. This reduces the sample dimension to ap-
proximately 4&4&&24 mm and produces a diffuse
boundary scattering surface. The cross-sectional
area A of the samples is listed in Table I.

The impurity concentrations of the samples were
determined from the room-temperature Hall coef-
ficient R using the expression
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probably accurate to within 10%.
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III. THERMAL-CONDUCTIVITY MEASUREMENTS
AND COMPARISON WITH THEORY

The measured thermal conductivity of the various
samples is plotted as smooth curves in Figs. 1 and
2. The estimated absolute accuracy of K is + 6%,
while comparison of K values at different tempera-
tures for a particular sample can be made to with-
in + 3% for T & 2. 2 K and within s 5% for
T& 2. 2K.

%e are interested in the phonon scattering pro-
duced by the added impurity atoms, not the phonon
scattering occurring in the pure material due to
boundaries and isotopes. However, in plots of
ln (K)vs ln(T), suchas inFig. 1 and 2, the T~ vari-
ation due to boundary scattering obscures the scat-
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FIG. 1. Thermal conductivity of pure and Sb-doped
germanium. Dopings are given in Table I.
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FIG. 2. Thermal conductivity of pure, As-, P-, and Sb-
doped germanium. Dopings are given in Table I.

tering produced by the added impurities, particu-
larly at the lower concentrations. By plotting the
ratio of the thermal conductivity of the doped sample
(Kv) to the thermal conductivity of the equivalent
"pure" sample (Kv), the effect of the added impuri-
ties is illustrated more clearly. K& is calculated
from Eqs. (Al) and (A2) with 7~' set equal to zero.
The values for normal germanium found by Call-
away, ' i.e. , A~=2. 57&10"sec and B =2.??
x10 33 secdeg 3 were used for all calculations of
K~. For each sample, the value for the Casimir
length L,'9 (listed in Table I) was used along with
v, = 5. 37 & 10' cm/sec and vz = v, = 3.28 && 10' cm/sec,
as calculated by Hasegawa~o from the measured
elastic constants of germanium.

For the pure n-type sample Ge-543 with 5.4 &10'
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FIG. 3. Thermal-conductivity ratios Kp. /Kp for mea-
sured values of pure Ge (circles) and values calculated
with various scattering parameters (see text).

impurities per cm', the ratio Ka/K~ is replaced in

Fig. 2 by the ratio K&./K~, is indicating that the
the"mal conductivity of the pure sample (K~, ) is also
calculated with w, &

in Eq. (A2) set equal to zero.
Thus, K~, /K~= 1 (curve A) represents the pure ma-
terial assuming diffuse boundary scattering (L,=

1.13A' and Callaway's values for AI and B'. Be-
low 0. 65 K, the measured thermal conductivity
varies as T' and agrees within 1% of that calcu-
lated using Casimir's value for L,. This also in-
dicates that the relation between T~ and T given by
Roberts ef al. 3 for the paramagnetic salt (CMA) is
correct down to at least 0. 35K. The only other
measurement on pure germanium down to these low
temperatures are those of Carruthers et al. ' who
measured two n-type samples with 10' impurities
per cm3 and sand-blasted surfaces between 0. 2 and
4. 2K in an adiabatic demagnetization apparatus.
The experimental value found for one of their sam-
ples (Ge 2) was about 15% larger than that calcu-
lated from Casimir's formula. Unfortunately, it
is unclear as to exactly what value they used for
the velocity of sound, so that a quantitative com-
parison with their results cannot be made. Their
other pure germanium sample (Ge 5) had a thermal
conductivity that was smaller than Ge 2 by a factor
of 2 in the T boundary-scattering region, even
though its calculated Casimir length was only 20%
smaller.

Curve B in Fig. 3 is obtained using AI = 5.00
&10 sec and B =4. 0 01X0 ~ sec/deg in the cal-
culation of E~, . Toxen ' found that these values
gave the best fit to his thermal-conductivity mea-
surements on a pure germanium sample from 2 to
50K. The data for Ge-543 in Fig. 3 lie closer to
the curve calculated from Toxen's value for Az than
to the curve corresponding to Callaway's value.
Toxen pointed out, however, that his value of AI was
larger by a factor of 2 than that calculated on the
basis of Klemens's theoretical expression (see Ap-
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FIG. 4. Thermal-conductivity ratios between Sb-doped
and pure samples: Points are measured values, smooth
curves are calculated from Keyes's expression for scat-
tering rate [Eq. (Cl)] with values of parameters as listed
in Table II.

pendix A). Since Toxen obtained good agreement
for a series of Ge-Si alloys, he attributed this large
discrepancy in his "pure" sample either to a syste-
matic error in the high-temperature data (15-50K)
for the sample, or to the presence of an unknown
scattering process. We have therefore chosen to
use Callaway's value for AI and B in all the calcu-
lated curves since these values give reasonable fits
to the thermal conductivity of both normal and iso-
topically enriched germanium over the temperature
range 3-100K. As can be seen in Fig. 3, the dif-
ference between Callaway's and Toxen's values of
Az affects the calculated thermal-conductivity ratio
by 20% at 4K; however, below 2K, where phonon
scattering by bound donor electrons is important,
the difference is insignificant. The contribution of
three-phonon processes to the thermal conductivity
is less than 1% below 4K, so that uncertainty in the
value of B' can be neglected.

The relative importance of scattering due to iso-
topes can be seen from curve C in Fig. 3. For
curve C only boundary scattering was included in
the calculation of K~, . In comparison with curve
A it can be seen that isotope scattering reduces the
thermal conductivity by a factor of 2 at 4 K, but its
importance becomes negligible below 1 K.

Figure 4 compares the data of sample Sb-365,
containing 3.6 &10" Sb atoms per cm, with Keyes's
model for the bound electron-phonon scattering pro-
cess. Two separate measurements were made on
this sample, indicated by the squares and triangles,
in order to check on possible strains introduced
by the method of attaching the thermometers or
heater to the sample, or of mounting the sample to
the cryostat. The data indicated by triangles were
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taken with one end of the sample clamped to the
He pot and a heater clamped to the other end of
the sample. The thermometers were glued to pure
germanium slabs which were in turn soldered to
the sample. The data indicated by squares were
taken with each end Gf the sample soldered to thin
tungsten slabs which were in turn soldered to the
He pot and to the heater, while the thermometers
were glued directly to the sample. As the data
indicate, very good agreement was obtained be-
tween the two separate measurements.

The curves indicated in Fig. 4 were obtained by
including Keyes's expression for r~' [(Eq. (Cl)] in
the calculation of K~. Table II lists the values of
the important parameters used in the calculation of
K~ for the various curves in Figs. 4- 9. For all
calculations of K~, the values used for v„L„A„
and B are the same as previously given for K~.
Also, for the Sb-doped samples the value of 44,
=0.32meV will be used, as given by the infrared
absorption measurements of Reuszer and Fisher. ~
There has been some dispute~ as to the correct
value of 44, for Sb impurities in germanium. Re-
cently however, Reuszer and Fisher studied the
excitation spectra of Sb impurities under stress~'
and deduced the same value for 4&, (Sb) as they

obtained previously from the zero-stress measure-
ments.

Values for E„,the shear deformation potential
constant, and r0, the effective radius of the ground-
state donor wave function, can only be assigned
within certain limits. E„is a constant for which
several measurements have been made, and the
values found for germanium ~ lie between the
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limits of 16 and 19 eV. The lower limit of the
parameter ro has been taken as rz (the hydrogenic
value listed in Table III, Appendix B), while the

FIG. 5. Thermal-conductivity ratios between Sb-doped
and pure samples: Points are measured values, smooth
curves are calculated from Keyes's expression for scat-
tering rate [Eq. (Cl)] with values of parameters as listed
in Table II.

TABLE II. Values of parameters used for theoretical
curves. 1.0

Figure Curve

A

B
c

X,„(crn )

3.6 xl0 '
3.6 x10'
3.6 x10 '

0.32
0.32
0. 32

16
16
19

65
65

4+(me V) E„(eV) ro(A) B(T)

5—

3.4 x10
3.6x10
3.0 x10

3.6 ~10l'
3.6 ~10 '

3.6 x10
3.6 x10

0. 32
0.32
0.32

0.32
0.32
0.32
0.32

19
19
19

16
16
19
19

65
65
65

44 1.0
65 1.0
44 1.0
44 Bo1tzm ann
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FIG. 6. Thermal-conductivity ratios between Sb-doped
and pure samples: Points are measured values, smooth
curves are calculated from the Griffin and Carruthers
scattering rate [Eq. (C2)] with values of parameters as
listed in Table II.
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FIG. 7. Thermal-conductivity ratios between Sb-doped
and pure samples: Points are measured values, smooth
curves are calculated from the Griffin and Carruthers ex-
pression for scattering rate [Eq. (C2)], with values of
parameters as listed in Table II.

theoretical effective-mass value r, = 65 A has been
used for the upper limit. Increasing the value of
E„from 16 to 19 eV increases the scattering equally
on both sides of the region of maximum scattering.
Increasing the value of ro, on the other hand, shifts
the region of maximum scattering to lower tempera-
tures and reduces the amount of scattering. The
curves in Fig 4 illustrate the scattering predicted
by Keyes's model when different combinations of
the limiting values of E„and ro are used. Curve
A results when E„=16 eV and ro = 44 A is used in
Keyes's expression. Changing ro to 65 A gives
curve B. The best fit to the data, , curve C, is ob-
tained with E„=19 eV and ro = 65 A.

In Fig. 5, Keyes's model is compared with three
samples containing different concentrations of Sb

atoms. Curves A, B, and C are calculated using the
values E„=19eV and ro = 65 A that gave the best fit to
sample Sb-365. The calculated curves predict too
much thermal resistance as compared to the data
for the low-concentration sample Sb-334, but not
enough thermal resistance for the higher-concentra-
tion sample Sb-306. Anv change in E„orro to im-
prove the agreement of theory and experiment for
one sample would make the agreement worse for

.Ol
I I I I I.4 .6 .8 I.O 2.0

TEMPERATURE ( K)
4.0 6.0

FIG. 8. Thermal-conductivity ratios between Sb-doped
and pure samples: Points are measured values, smooth
curves are calculated from Griffin and Carruthers ex-
pression for scattering rate [Eq. (C2)] —curves A, B;
Keyes's expression [Eq. (Cl)] is used for curves A', B'.
Parameter values for all curves are listed in Table II.

the other samples.
Above 2K, the measured thermal conductivity of

sample Sb-344 with 3.4 &10" Sb atoms per cm' is
higher than sample Ge-543 with only 5.4 &10' im-
purities per cm . It is difficult to account for this,
unless at low concentrations the Sb atoms reduce
the effect of an unknown scattering process occur-

l.O

.8

.6

Q.
bC

O
2

.I'.2

~ P-266
i As-276

I I.4 .6 .8 l.O 2]0
TEMPERATURE { K)

4.0

FIG. 9. Thermal-conductivity ratios between P- and
As-doped and pure samples: Points are measured values,
smooth curves are calculated with the Griffin and Car-
ruthers expression for scattering rate [Eq. (C2)] with
parameter values as listed in Table II.
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TABLE III. Parameter values for shallow donors in
germanium.

Effective-

As

mass
theory

q
&
(me V)

4+(meV)
T (K)=4~/a
y, (A)
Hydrogenic (&H' ) 44
Corr. effective mass

10.19
0. 32
3.71

12.76 14.04
2. 83 4. 23

32. 8 49. 1

35 32

9.2
0.0

44 39 37

ring in the "pure" germanium lattice.
Comparison of the Griffin-Carruthers expression

for r~ [Eq. (C2)) with measurements on sample
Sb-365 is made in Fig. 6. Curve A, with E„=16
eV, r0=44A, and B(T)=1, gives excellent agree
ment between the experimental data and the theo-
retical curve. Changing ro to 65 A gives curve 8,
while curve C is obtained using E„=19 eV, ro = 44 A,
and B(T)= 1.0. If it is assumed that the occupation
probabilities of the singlet (Be) and triplet state
(Br) are given by the usual Boltzmann factor, then

Br/Be = e ~ . Using this relation in the ex-
pression for B(T) changes curve C to C; similarly,
this relation would somewhat improve the fit of curve
A to the data,

In Fig. 7, the Griffin-Carruthers model is
compared with three Sb-doped samples. Curves
A, 8, and C are calculated using the values E„=16
eV, yo=44A andB(T) =1.0 that gave the best fit to
sample Sb-365. The calculated curves again pre-
dict too much thermal resistance for the low-con-
centration sample and not enough thermal resis-
tance for the higher-concentration sample.

The importance of the resonance factor R(~)
[see Eq. (C2)] for the case of Sb donors can be seen
in Fig. 8, where the curves obtained from both
Keyes's and Griff in and Carruthers's expressions for
T,~ are compared. All curves in Fig. 8 were calculated
using E„=16 eV and r0 =44 A. Curves A and 8 were
calculated using Griffin and Carruthers's expres-
sion for ~,~, whileKeyes's expression was used for
curves A and 8 . The presence of the resonance
factor R(Q increases the scattering slightly at lower
temperatures and decreases it considerably at higher
temperatures, thus shifting the region of maximum
scattering to lower temperatures. In the case of
sample Sb-365, curve A clearly gives a better fit
to the data than curve A . For sample Sb-306, nei-
ther curve 8 nor 8' gives a good fit to the data; but
curve 8 gives a better fit than 8 in the sense that
the temperature at which maximum scattering
occurs is closer to that exhibited by the data. Also,
curve 8 consistently predicts too little scattering

at all temperatures while 8 predicts too much
scattering at high temperatures and too little at
].ow temperatures.

It might be hoped that the effect of the resonance
factor R((u) would indicate whether the resonance
fluorescence mechanism proposed by Griffin and
Carruthers gives better agreement between theory
and experiment than Keyes's model, which does not
take this effect into account. Unfortunately, as a
comparison of Figs. 5 and 7 indicates, it is not
clear, within the limits set for the parameters
E„and r(„which approach gives a better fit to the
data. However, as discussed in Appendix 8, the
electron spin-resonance measurements, ' dia-
magnetic susceptibility measurements, '~ and ion-
ization energy measurements (from which the cor-
rected effective-mass value r, is calculated), 3~ in-
dicate that ro, at least for these phenomena,
should be taken as approximately equal to the
hydrogenic value r„.This would mean that the
additional scattering produced by the resonance
fluorescence mechanism improves the agreement
with the thermal-conductivity measurements.

Another feature of either Fig. 5 or 7 is that the
measured scattering, particularly at the lower
temperatures, increases faster with concentration
that the calculated curves predict. The measure-
ments on the P- and As-doped samples, shown in
Fig. 9, also show this extra scattering at the lower
temperatures. In particular, sample P-375 with
3.7 &&10' atoms per cm indicates a separate scat-
tering peak at the lowest temperature.

Curves A and C, in Fig. 9, for the P samples
were calculated from the Griffin and Carruthers
expression for 7'~ using E„=16eV and ra= rH'"
= 35A. Curve 8 for the As-doped sample was
calculated using E„=16 eV and ro= r„"'= 32 A.
Keyes's expression for ~~ gives the same result
within a few percent, since the resonance factor
R(~) is not effective due to the large 4A, for As
or P donors (see Table III).

IV. DISCUSSION

At a concentration of 3 &10"atoms per cm,
the three donor species all show more scattering
at the lowest temperatures than predicted by either
theoretical expression for 7 ~. In addition, sample
P-375 with 3.7 &10"P atoms per cm' exhibits
what appears to be a separate resonance peak at the
lowest temperatures. The question then arises as
to whether this disagreement is due to various ap-
proximations introduced in the theoretical calcu-
lation or whether it is evidence for another scat-
tering mechanism present at the lower temperatures.
It is difficult to estimate how accurate one expects
the theoretical calculation to be. However, at the
lowest temperatures both Keyes's and Griffin-
Carruthers's calculations agree, because in this
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region the ~' dependence, typical of point-defect
scattering, is dominant so that the strength of the
scattering is determined essentially by the coeffi-
cient [n„F-„/(4&, }],andanydifferences arising from
different methods of averaging velocities and angu-
lar integrations are not important.

A consistent interpretation of the data for all the
samples can be made by assuming that the disagree-
ment between theory and experiment occurs not be-
cause of any approximations in the theory, but be-
cause of another mechanism that interacts strongly
with phonons whose wavelengths are longer than
those that interact with a single-bound donor elec-
tron. The disagreement between Griffin and Car-
ruthers's expression for 7'~ and experiment, as
shown in Fig. 7, could then be explained in the fol-
lowing way: For the low-concentration sample
Sb-334, mith 3.4& 10 Sb atoms per cm, the ad-
ditional scattering mechanism is weak and the
Griffin-Carruthers expression for z~ overesti-
mates the amount of scattering due to the electron
bound to a single donor' , for sample Sb-365, the
good agreement between theory and experiment is
accidental, that is, the theory still overestimates
the scattering due to the electron bound to a sin-
gle donor, but now the additional scattering mecha-
nism is strong enough to provide an apparent agree-
ment between theory and experiment. At a con-
centration of 3 XIO" Sb atoms per cm' (sample
Sb-306) the additional scattering mechanism is so
strong that the total amount of scattering is larger
than can be accounted for by the theoretical calcu-
lation.

As can be seen in Fig. 9, for sample P-375, the
theory again overestimates the amount of scattering
due to the electron bound to a single donor and the
actual magnitude of the scattering due to this pro-
cess is weak enough to allow a separate resonance
peak caused by the proposed additional scattering
mechanism to be resolved. For the higher-con-
centration P- and As-doped samples the theory still
overestimates the scattering at the higher tempera-
ture but underestimates it at lower temperatures
where the additional scattering mechanism is impor-
tant.

The proposed scattering mechanism then has the
following properties: (a} It is strong in the low-
temperature region where both the Keyes and the
Griffin-Carruthers expressions for 7'~ rapidly be-
come ineffective; (b) its strength increases faster
with concentration than predicted by either model
of scattering due to an electron bound to a single
donor; (c) it also appears to be species dependent;
for example, contrast the large amount of excess
scattering at the lower temperatures for Sb-306
with the smaller excess scattering of either sam-
ples P-266 or As-276, which have approximately
the same impurity concentration.

The above properties suggest that the additional
scattering arises from a defect involving more than
one donor. Such a defect is important for impurity
conduction' ' in the low-concentration range
where charge transport occurs due to the phonon-
assisted hopping of an electron between an ionized
impurity pair (neutral donor+ ionized donor) in the
field of an ionized acceptor. 3~ In his original
article, Keyes' estimated that the phonon mean free
path due to scattering by the hopping mechanism
was never less than 1 cm in samples with concen-
trations of about 2@10'8 donors per cm'. Unfortu-
nately, he did not give any details of how this esti-
mate mas calculated, except to mention that he used
the electron-transition probabilities given by Miller
and Abrahams for this process. Recently, how-
ever, Takeyama4 has pointed out that Miller and
Abrahams's expression for the electron-transition
probability should be larger by a factor of 4. Since
the phonon mean free path varies inversely as the
hopping rate of the electron, this would imply that
the correct value for the phonon mean free path is
of the order of 0. 25 cm, which is one-half the mean
free path due to boundary scattering, and therefore
indicates that phonon scattering by this mechanism
may be important. A detailed calculation of the
phonon scattering produced by this process mould
be of interest.

In conclusion, the results of this investigation
can be summarized as follows. Inclusion of the ef-
fect of resonance fluorescence scattering of pho-
nons, as suggested by Griffin and Carruthers, in
Keyes's model for scattering of phonons by the
bound donor electron, improves the agreement be-
tween the theoretical and experimental values of the
thermal conductivity for Sb-doped samples if the
effective radius of the ground-state domr wave
function is taken equal to that calculated, assuming
a simple hydrogenic model of the donor impurity.
The presence of additional scattering at the lower
temperatures for the Sb-, As-, and P-doped sam-
ples may be evidence of an additional scattering
mechanism, possibly that arising from the phonon-
assisted hopping of the electron between donor im-
purities.

APPENDIX A: THERMAL-CONDUCTIVITY INTEGRAL

The usual expression for the thermal conductiv-
ity of a crystalline solid, assuming the single re-
laxation-time approximation and a Debye density of
states (co 2/2v v~), is given by

(AI)

where x= h&u/kT, 8~ is the Debye temperature,
and the sum is over the three polarization modes.
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A full discussion of the thermal conductivity of
crystalline solids is given in the books by Peierls~
and Ziman; and in the review articles by Klem-
ens, ' Carruthers, and Herman. The particu-
lar case of the thermal conductivity of semicon-
ductors is discussed in a book by Drabble and
Goldsmid.

In the temperature range of interest, the dom-
inant scattering mechanisms are boundary scatter-
ing and neutral donor scattering. Isotope scatter-
ing and normal three-phonon processes scattering
will also be included. The total relaxation time 7.,
is found by combining reciprocal relaxation times
of the different scattering mechanisms, as sug-
gested by Klemens and by Callaway, '

s Bts+ I + S+ cps~ (A2)

where 7~', , 7I', v„,and T p represent scattering
due to boundaries, isotopes, three-phonon pro-
cesses, and neutral donors, respectively.

Casimir's expression for boundary scattering
will be modified in order to account for the differ-
ence in velocity of the longitudinal and transverse
waves, that is, ve, = v, /Lc. The Casimir length
L~= 1.13A' ' defines an effective mean free path
associated with a sample of cross-sectional area
A, assuming diffuse boundary scattering.

The isotopic relaxation time r, '= [VOI'/(4mv )]to
=Aiw, as given by Klemens, will be used, where
Vp is the atomic volume, g is an average sound
velocity, and I' is a constant determined by the
relative abundance of the isotopes and their
masses. Substituting the values appropriate for
germanium, Vp=22. 6&&10 cm, I =5. 89~10~,
and v = 3. 56 x 10' cm/sec, as calculated from the
Debye temperature of germanium (Sv= 375 K),
gives a theoretical value for A~ = 2. 35&10 sec .
It should be noted that it would be more consistent
to take the polarization dependence of the sound
velocity into account when using v, in the thermal-
conductivity integral, as was done for boundary
scattering. However, since in the temperature
range of interest the isotopic contribution is small,
the usual approximation of taking A, to be the same
for all three branches will be followed.

Callaway, ' in his phenomenological development
of an appropriate method of combining various
scattering processes in the thermal-conductivity
integral, suggested that scattering due to momen-
tum conserving normal processes could be allowed
for by including their relaxation time as part of
the total relaxation time 7.,'. Using Herring's
suggested form for the relaxation time for low-fre-
quency phonon-phonon scattering (v„~~&o'T' ~},
Callaway was able to fit the thermal conductivity of
normal and isotope-enriched germanium reasonably
well over the range 2-100 K. Taking r, ~ = v/Lc
+Aim + B &u Ts, where j =2 (characteristic of lon-

gitudinal modes in a cubic crystal) is used in
Herring's expression for v„', he obtained the best
fit with A~=2. 57&10 4 sec and 8 =2. 77&&10

sec deg 3.

APPENDIX B: SHALLOW DONORS IN GERMANIUM

The group-V elements Sb, P, or As enter the
germanium lattice substitutionally; four of the five
valence electrons form covalent bonds with the
neighboring germanium atoms, while the remaining
electron is loosely bound by the reduced Coulomb
potential due to the impurity ion of V= e/xr, where
K is the static dielectric constant of the host lattice.
The simple hydrogenic model ' of the impurity
leads to a set of reduced hydrogenic levels
e„=R (m /m)(1/x n }, and an orbital radius
r„'"'=ao (m/m*) xn, where n, the principal quantum
number, is an integer, m /m is the effective-mass
ratio, R=13.6 eV is the Rydberg, and ap=0. 53 A
is the Bohr radius of the ground state of hydrogen.
Substituting the values appropriate for germanium
(x =16 and m /m=0. 22) results in a donor ioniza-
tion energy &, = 0. 012 eV and a ground-state orbital
radius x&" =39 A.

While the hydrogenic model predicts energy-level
values that are in approximate agreement with ex-
perimental values, a more detailed theoretical
treatment has been developed called the "effective-
mass approximation" ' ' that takes into account the
band structure of the host lattice by replacing the
spherical hydrogenlike wave functions of the sim-
ple model by four ellipsoidal wave functions, cor-
responding to the four conduction-band minima in
Ge. Kohn's calculation gave the values a = 65 A
and b = 23 A for the semimajor and semiminor axes
of each ellipsoid, and an ionization energy of

= 0. 0092 eV. Summing over the contributions
from the four valleys results in an approximately
spherical wave function with an effective radius
rem = 65 A.

There is good agreement between the excited
levels calculated from the effective-mass theory
and those observed in infrared absorption by
Reuszer and Fisher, but not for the ground state.
The effective-mass approximation predicts the
same ionization energy for all group-V donors and
a fourfold degenerate ground state; however, the
actual ground state is shifted down and split into a
singlet ground state and a triply degenerate state
slightly above it. This splitting is species de-
pendent and is referred to as the "chemical shift"
or "valley-orbit splitting" and is denoted by 4h, .
Values of 44„reported by Reuszer and Fisher, are
given in Table III. Quantitatively, the breakdown
in the effective-mass theory for the ground-state
energy occurs because the s-like ground-state wave
function has a finite amplitude in the region close to
the donor ion where the assumption of a potential
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of the form v'=e/sr no longer is valid.
Kohn" corrected the eff ective- mass formulation

by calculating the ellipsoidal wave functions corre-
sponding to the observed ionization energies g,.

which are also given in Table III for the different
impurities. These corrected wave functions give
much better agreement between the theoretical
value for I 4 (0) la and that observed by Wilson in

electron spin-resonance measurements of the
hyperfine interaction of the donor electron and the
donor neuclei. The corrected wave function for
large values of r has an effective Bohr radius
r, =(r~} (e~/e, ), where (r~}= (a 5)'~3= 46 A

represents an average over the ellipsoidal param-
eters of the effective-mass calculation. Values of
x, are also listed in Table III.

If the observed values for the donor ionization
energy are used along with the expression given by
the hydrogenic model for the effective Bohr radius
(r „''= a aR /K e), the values listed in Table III are
obtained. Magnetic susceptibility measurements
by Damon and Gerritsen' on As- and Sb-doped
germanium with concentrations from 10' to 10"
cm indicated that the hydrogenic values r „"'gave
better agreement for the orbital diamagnetism of
weakly interacting donors than did the effective-
mass value of 65 A. Wilson" has estimated an
average radius for the donor wave function from
measurements of the linewidths of spin-resonance
lines due to hyperfine interactions of the donor
electron with the Ge ' isotope. He obtained values
of 32 A for phosphorus and 30 A for arsenic.

APPENDIX C: THEORETICAL MODELS FOR ELECTRON-
PHONON SCATTERING

with
4

( )
1 nexED, 4

3'ap' (4&,)'

(Cl)

In order to explain the thermal-conductivity mea-
surements of Goff and Pearlman, Keyes proposed
a model in which the phonon scattering arises from
the large effect of strain on the energy of the bound
donor electrons leading to virtual transitions be-
tween the singlet and triplet states. The electronic
energy states have a quadratic dependence on the
strain produced by the phonon, resulting in scatter-
ing of the point-defect type (v. '~

&u ). A further
dependence on the phonon frequency (v) arises when
the phonon wavelength becomes shorter than the
diameter of the electronic orbit (2ra), causing the
average strain experienced by the electron to ap-
proach zero, so that the phonon scattering rapidly
decreases as the phonon frequency rises past
~ - v, /r~. This results in a scattering rate which
Keyes expresses in the form

V(v,) = -', (-', 1/v', + 1/v', ),
and the cut-off factor G(&u, s) given by

G(~, s)=[1+ (ro~/2v, ) ]

r ~(~, s)oc = M'(~)R(~) W(~, v„s)B(T), (C2)

with

1 n„E„'H,
3' vp' (4&,)'

1 3
W(~, v„s)= a 5+

qV~ 1V1 2V2

B(T)= (B,(T) + Br(T) [2+ (h~/4A, ) ] ] .

In Eq. (C2), H, is an anisotropy factor with the
values H1 225 H2 225 and H3 225 P, i.s related
to the cut-off factor G(~, s) in Keyes's expression
by the relation P, = I/O(&, s); and B,(T) and Br(T)
are the occupation probabilities for the singlet and
triplet states. If all electrons are assumed to be
in the ground state, then B,(T) = 1.0 and Br(T) =0.0.

Comparing the two expressions for the relaxation
time, the major difference, aside from those
arising from different methods of averaging veloc-
ities and angular integrations, is the presence of
the "true resonance factor" R(&u) in the Griffin-
Carrathers expression for y,~. Note in the limit of
k~«4&, that R(~) approaches 1.

In Eq. (Cl), s is the polarization index for the
acoustical branches (s = 1, 2, 3), v, is the velocity
of sound, p is the density, n„is the concentration
of neutral donors, E„is the shear deformation po-
tential constant, '2 and D, is an anisotropy factor
with the values D, = -'„D2=D,=-,'.

Keyes's expression for the inverse relaxation
time is small at low frequencies because of the 4

dependence, reaches a maximum at ~-v, /ro, then

rapidly decreases due to the cut-off factor G(u&, s).
It is species dependent through its dependence on

and ~0

In a more detailed calculation, Griffin and
Carruthers2 argued that, whereas Keyes treated
the donor electron as moving in the static strain
field created by the phonons, the electron actually
adjusts to the phonon perturbation with a character-
istic frequency 4h, /h which lies in the range of
frequencies important for heat conduction. They
therefore treated the problem in analogy with the
resonance fluorescence scattering of photons.
Using this approach, Griffin and Carruthers ob-
tained the following expression for the inverse re-
laxation time:
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