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A formula for the spin-relaxation time (SRT) of conduction electrons in solid metals, ob-
tained previously from a heuristic extension to solids of a theory proposed for liquid metals,
is rigorously derived here. In this theory, which is equivalentto Yafet’s within the one-phonon
approximation, the SRT is expressed in terms of the dynamical-structure factor of the metal
which includes the actual spectrum of lattice excitations and automatically takes into account
the umklapp processes exactly. The SRT of solid sodium and potassium are calculated as a
function of temperature using a simple model for the structure factor. The results are com-
pared with available experimental data and the agreement is found to be good down to about
40 °K. Comments on the origin of the discrepancy below this temperature are made. The en-

hancement effect of the electron-electron interaction on the SRT is discussed.

1. INTRODUCTION

A theory of the spin-relaxation time (SRT) T, of
conduction electrons in liquid metals proposed by
Helman! has been used to interpret conduction-elec-
tron—-spin-resonance (CESR) linewidth measure-
ments in molten sodium by Devine and Dupree.? In
the same paper the authors suggested a modification
of the theory to be applied to solids, and with this
they succeeded in explaining the temperature depen-
dence of T, in solid sodium too. The formula pro-
posed for solid metals was obtained by analogy with
resistivity calculations performed by Greene and
Kohn® (hereafter referred to as GK). In this paper
we derive that result rigorously (Sec. II).*

Later, the theory was applied to molten potassi-
um.? Its proposed extension could not be tested in
solid potassium, however, owing to the lack of in-
formation about the dynamical-structure factor
necessary to carry out the calculations.

Recently, the theory has been generalized to
liquid-metal alloys® and applied to the interpretation
of CESR linewidth measurements in liquid Na-K
alloys in the whole concentration range.’

The last and most comprehensive treatise on the
theory of spin-lattice relaxation of conduction elec-
trons in solid metals is that of Yafet.® He derived
a general expression for the spin-flip transition-
matrix element and, from its dependence on the mo-
mentum transfer q, he was able to show that the
temperature dependence of T;' must be analogous
to that of the resistivity. However, in order to

carry through a calculation of T,, the general ex-
pression has to be simplified by approximations in
the phonon spectrum and in the treatment of the
umklapp processes which finally lead to the intro-
duction of three adjustable parameters. In this
form Yafet’s theory has been successfully used to
interpret experimental results in sodium.?"1° Using
the present approach, the difficulties leading to the
introduction of adjustable parameters are overcome
by expressing T, in terms of the dynamical-struc-
ture factor of the metal which includes the actual
spectrum of lattice excitations and automatically
takes into account the umklapp processes exactly.
Although the difficulties seem to have been trans-
ferred to the determination of the structure factor
itself, this is not the case, because the structure
factor can be obtained from independent empirical
data if necessary (Sec. III).

In Sec. IV, a very simple model for the structure
factor of solid metals is proposed which allows us
to apply the theory to solid sodium and potassium.
The results are compared with available experi-
mental data. The effects of the electron-electron
interaction and the approximations involved in the
theory are discussed in Sec. V. In the Appendix,
it is shown that this theory coincides with Yafet's
within the one-phonon approximation.

II. RELAXATION TIME

Following Asik, Ball, and Slichter!! the spin-
relaxation rate is given by
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where
g1, (@)= (P ErEnY 1) (2)

are distribution functions for electrons with spin

up (¢) and down (+), E,,=Ep+3AE and = (k3T)7},
o' (Ep)=myke/ (21 is the density of states of a given
spin direction at the equilibrium Fermi energy Ep
calculated using the band effective mass m,. The
transition rate Wg, ;.. for spin- fhp scattering from
the electronic state |k, #) to | k’, ¥), with energies
E, and E,., respectively, is given in the first Born
approximation by12

Wir o= 21 20n2im Dol | (K, ¥ |Hyo | K, 4)|m) | 2
X 6(w - E,+E,), (3)

where H,, is the spin-orbit Hamiltonian and w =E,
—E,.. |m) and E,, are the eigenstates and eigen-
values of the lattice, respectively. We use the word
lattice to denote the ionic system in either the solid
or liquid state. The adiabatic approximation is used
to separate the electronic and ionic variables.
Since we are interested in the electronic spin-flip
transition rate only, a sum over allfinal lattice states
Im) and initial states |n) weighted by the probability
b, of finding the lattice in the state |n) is per-
formed.

The matrix element (K, 4 |H,, |K’, ¥) has been cal-
culated in Ref. 1. We briefly indicate the model
used and the result obtained:

Erzlzc— §.gradVxp; (4)
S and P are the electron-spin and momentum opera-
tors, respectively.
The lattice potential V is approximated by a sum
of spherically symmetric nonoverlapping potentials
v due to ions at positions ﬁ,,

V=20 (r - R)). (5)

Then, the spin-orbit interaction becomes

Hy=2,t(r-R)S - T,, (6)
where
1 1 dv
O ok v ar @

and L, =(r- R,)xp is the angular-momentum opera-
tor referred to the site R, The conduction-elec-
tron wave functions are approximated by single
orthogonalized plane waves (OPW),

|r<,s>=c;1/2(| B s)-2 Gy | K8 u,w) :
%4
(8)

Ik, s) denotes a plane wave with momentum k and
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spin component s. |j,7v) is the core state with
quantum numbers n, I, m, s (represented by ) be-
longing to the ion at the site R, C, is a normaliza-
tion factor.

The matrix element (K, ¥ |H,,| T{, 4) has the form

®, *|H.0|E, 4)= FE',E:.E,e”E'f"'-ﬁJ. ©)

The explicit expression for I, ;.. is given in Eq.
(29) of Ref. 1. Replacing (9) in (3) and noting that
T ,;; does not depend on the ionic coordinates, we
have

Wit,i'c = 217| rEt,E'Ala E Dn

n,m
x| (|2 e”i'i"'nf|m)|z6(w—E,,,+E,,)
j

or

Wi i = 21| Ty 20| 28(, w), (10)

with §=k-¥%'. S(§, w) is the dynamical-structure
factor defined by Van Hove.'® Substituting for W;, i\,
and Wi, ;, in Eq. (1), we obtain

1
7= 55 e D0 UTeel®

X S(a, w)g'(i) [1 ‘8’;(1?)] - lri'l,fllz

X (-3, -w) g.&) [1-g.®]} (11)
Noting that
|Toins|®= [ Teon | ®

andll
5(-§, - w)=e? 5(§, w)

and replacing the sums over k by integrals using
the substitution

'E IW Jp(E dE‘m&

Eq. (11) can be written as

1 4
T, AEp (Ef)

x{g'(E)[l "g.(E')]_g‘(E,) [1 —g,(E)]eB(EI'E)}

<P '(E) p'(E')AEdE' dQdS’
(4m)?. ’
where E and E’ stand for E, and E,., respectively.

Developing the functions g,,, up to first order in
AE, we find

&1,.(E)=g(E) £ 3BAE g((E) [1 - go(E)],

‘r;',i{lz S(a, w)

(12)

where go(E) = (e®F-Fr’+1)"!. Using the identity
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&o(E) [1 - go(E")]=go(E") [1 - go(E)] "5,
Eq. (12) can be rearranged as

1 4 -
oo [ Tes |2 83 ) £o®) (1 ~20E)]
P (E)/(E")dE dE" dRdQ
(@n)?

Handling the energy integrals like GK,® Eq. (13)
reduces to

(13)

1 _mpke L 12qR

T f 4Qa | Ty g, |2 S(E), (14)
with®®

- ® w -

s@=[ w4 s 0. (15)

Equation (14) simplifies considerably if S(g) de-
pends only on the modulus g. This is the case for
liquid metals. Then, three angular integrals can
be performed analytically leaving the remaining
one, that in g, to be calculated numerically. The
result, hereafter called “reduced Eq. (14),” is
given by Eq. (19) of Ref. 6 withc¢,=1, ¢,=0 for
v# U (corresponding to a single-component sub-
stance instead of an alloy).

III. STRUCTURE FACTOR

Equation (14) can be used to calculate the spin-
lattice relaxation rate in a metal in both the solid
and liquid states.!® In liquid metals the range of
values of w which give a relevant contribution to the
integral (15) is such that Blw < 1. Hence, to a
good approximation S(g) can be replaced by the
static-structure factor

S@)= [ dwS(q, w). (16)

S(g) can be obtained empirically from slow-neu-
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FIG. 1. Average structure factor. Solid line, Greene
and Kohn; crosses, simple model: (a) at 40 °K, (b) at
273 °K.
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tron-'" or x-ray-'® scattering experiments or,
theoretically, using a model for the liquid metal.'®
In simple liquid metals, it is a good approximation
to put m,=m.

For solid metals, owing to the lack of direct
empirical information about S(q, w) we follow GK in
writing the structure factor in the one-phonon ap-
proximation,

- __ﬁ_ (gga)z
S(q)—MN? (eﬂwa’ _ 1)(1 _e-BwEP) ] (17)
and averaging over all directions of q:
- aQ -
(S(@ha = [ Gt 0. 18)

Here M is the ionic mass, N the ionic density, and
wg, the dispersion of a phonon with polarization unit
vector £,. The sum runs over the phonon branches
denoted by the index p (=1, 2, 3).

The approximation of S(g) by the isotropic-struc-
ture factor (S(q))., allows the use of the reduced ex-
pression for T;'. Detailed resistivity calculations
in sodium,® where this approximation is checked,
suggest that the error introduced is negligible.

{S(q)).y can be computed on the basis of empirical
phonon dispersion curves, and although the pro-
cedure does not involve any difficulty, it is rather
cumbersome.

IV. APPLICATION

As a first approach to assess the adequacy of this
theory we use a very simple model for the structure
factor of a solid. It is assumed that the three ac-
coustical-phonon branches have the same spherical-
ly symmetric dispersion w,. Hence,

(S(4))ay = (@°8/2MN)[cosh(Bw,) - 1] ™. (19)

We use the phonon dispersion given by the Born~
von K4rmén model, %

w, = (2vgp/7)|sin (nrq/24,)| . (20)

Here v is some average sound velocity which can be
chosen as v = (NMX)/2 where X is the isothermal
compressibility, so that ¢S(q)),, has the correct
limit (S(0)),, = k5 TX.?' In the calculations we use
simply v =v, (longitudinal sound velocity) which may
lead to underestimate S(q)),, for large g since

v, > (NMX)™V2, g, is the radius of the Debye
sphere. For the alkali metals, with body-centered
cubic structure, gp is obtained from

$7mqb=1(n/a)’, (21)

where a is the lattice constant. Using these simpli-
fications, the structure factors for sodium and
potassium in the temperature range 300-10 °K have
been calculated. {Note added in proof. The longi-
tudinal sound velocity was calculated from v,
=(cy/p)*% The temperature-dependent elastic
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FIG. 2. Relaxation rate in sodium.

constant c¢,(T) was taken from M. E. Diederich and
J. Trivisino [J. Phys. Chem. Solids 27, 637 (1966)]
and W. R. Marquardt and J. Trivisino [J. Phys.
Chem. Solids 26, 273 (1965)] for sodium and potas-
sium, respectively. The values of c,,(T) for
T<T7°K were obtained by linear extrapolation. The
density p(T) was taken from W. B. Pearson [Hand-
book of Lattice Spacings and Structuves of Metals
and Alloys (Pergammon, New York, 1958)]}. In
order to estimate the errors introduced by these
approximations we have compared our results for
sodium at 40 and 273 °K with those of GK (Fig. 1).
Considering the large interval between these two
temperatures the agreement is not bad. Errors of
the order of 50% in T, can be expected, however.
This is estimated comparing T;! at 40 and 273 °K
calculated using the GK structure factors, which
give 1.1x10" and 1.4x10® sec™!, respectively,? with
our results, 1.1x10" and 1.0x10° sec™!, respec-
tively.

With this model for the structure factor, the
spin-relaxation rate in sodium and potassium has
been calculated as a function of temperature using
the reduced Eq. (14). The radial-core wave func-
tions and the self-consistent potential of the ions in
the metal were approximated by those of the free
atom,? with an estimated error of less than 19%.
Figure 2 shows the results for sodium; the experi-
mental data are of Daw,® Kolbe,'° and Orchard-
Webb. 2 Figure 3 shows the results for potassium
together with the experimental data reported by
Walsh, Rupp, and Schmidt.® Good agreement is
found for both metals down to about 40 °K. The
possible origin of the discrepancies occurring below
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40 °K are discussed in Sec. V.

In calculations we have assumed that m, equals
the free-electron mass; this appears to be justifi-
able for both sodium and potassium.!''%

V. DISCUSSION

The SRTgivenby Eq. (14) has tobe corrected for
the effects of electron-electron interactions, 2

T5=T, /K% . (22)

The exchange-enhancement factor k<1 is related
to the electron-electron interaction parameter B,
and the quasiparticle mass m* by

K_z_m*/m
® " 1+B, "’

(23)

where the quasiparticle mass includes band-struc-
ture effects, phonon effects, and electron-electron
interaction effects.

B, equals - 0.215+0.03 and - 0. 285+ 0.02 for
sodium and potassium, respectively,?” while m*/m
has the values 1.24+0.02 and 1.21+0.02.%® Hence,
K3? amounts to 1.58+0.08 and 1. 69+ 0. 07 for sodi-
um and potassium, respectively. The measured
SRT T,, must be identified with T3,

Phonon corrections to By and m* cancel each
other in Eq. (23). Hence, if band-structure cor-
rections to the free-electron model are negligible,
as in the cases of Na and K, the values of Kf,a given
by (23) are valid for both the solid and liquid
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FIG. 3. Relaxation rate in potassium. [Experimental
values of Walsh, Rupp, and Schmidt (Ref. 24)].
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states.?® The values of ky? estimated from the re-
lation T,,,/T, for liquid sodium and potassium are
1.58+0.30 and 1.93+0. 50, respectively.’

The crudeness of the model used here to calcu-
late the structure factors does not allow the deter-
mination of meaningful values of k2 for solid Na
and X from the relation 7,,/T,. In fact, the almost
perfect agreement between T, and the measured re-
laxation rates down to 40 °K shown in Figs. 2 and
3 must be considered rather coincidental since er-
rors of the order of 50% in T, can be expected.
With the values of T, at 40 and 273 °K obtained using
the GK structure factors for Na (9.0x10® and
7.3x10°° sec, respectively?, T,,/T equals 1.78
and 1.5, respectively, which within the errors is
consistent with the theoretical value (1.58+ 0. 08)
and the experimental value obtained for liquid Na
(1.58+0.3).7

The use of single OPW to approximate the con-
duction-electron wave functions may lead to over-
estimate the SRT. Rough estimates indicate that the
error should be negligible for Na but it may start
to be important for potassium.®

The theory has been found to predict well the
temperature dependence of the spin-relaxation rate
at least down to 40 °K for both sodium and potassi-
um. The discrepancy found in the case of sodium
below that temperature could be attributed to the
phase transition from body-centered cubic to hexa-
gonal close-packed structure that occurs around
36 °K and which has not been taken into account in
the theory.

The cause of the discrepancy in potassium could
be the presence of small amounts of impurities in
the experimental samples which would contribute to
the spin-relaxation rate with a temperature-inde-
pendent term. A high concentration of impurities
makes the relaxation rate tend to a constant value
at relatively high temperatures (this seems to be
the case with Orchard-Webb’s results for sodium®).

At very low temperatures other relaxation mech-
anisms than spin-orbit scattering may become im-

|

My= (1/)En| oV’ + 6H’sol¢f’>=(¢i'l

GH;0|¢E'>

+2 <¢f’u|6v'l‘pi"t><(pi"lIngg,(pit> +E <‘pi’l’%“PE"I)(‘PE”:IGV’I§0B>

g EE_EEII

In this work the “unperturbed” Hamiltonian
Hy+ 6V’ is considered. Its eigenfunctions, which
contain the ionic position operators R, through 6V’

can also be written in terms of the ¢g,. Up to first
order in 8V’ they are
o @g 16V 1 @g)
= pt D B (A4)

R. A. B. DEVINE AND J.
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portant, particularly the spin-current interaction.°

However, a simple calculation shows that for both
sodium and potassium the magnitude of its contribu-
tion to the relaxation is negligible in the tempera-
ture range considered here.

ACKNOWLEDGMENTS

The authors would like to thank Dr. W. Balten-
sperger, Dr. B. W. Holland, Dr. T. M. Rice, and
Dr. Y. Yafet for many helpful discussions. We are
grateful to Dr. G. L. Dunifer for sending us the
values of B prior to publication. One of the authors
(J.S.H.) thanks the Organization of American States
for financial support within the Multinational Phy-
sics Project of the Scientific and Technological
Regional Development Program.

APPENDIX: COMPARISON WITH YAFET'S THEORY
The system is described by the Hamiltonian
H=H,+V'+Hy +0V’'+06H,,, (A1)

where H, is the free-electron Hamiltonian, V’ the
perfect-lattice potential, H, the spin-perfect-lat-
tice interaction, 6V’ the perturbation of the lattice
potential due to phonons, and 6H}, the perturbation
of the spin-lattice interaction due to phonons.

That part of the spin-orbit interaction which does
not induce spin-flip transitions is supposed to be
included in the lattice potential.

We call ¢i, s the eigenfunctions of the Hamiltonian
Hy=H,+V'; these are Bloch functions with definite
spin component s (up or down). Ej are the corre-
sponding eigenvalues.

Yafet considers the “unperturbed” Hamiltonian
Hy+H,,. Up to first order in H., its eigenfunctions,
in terms of the ¢; s, are given by

PR DR LML)

A2
g EE-E;»: ( )

(pE"l ’

and analogously for spin down. The spin-flip ma-
trix element calculated by Yafet is

+O(H'28H,,). (A3)

E; - E;..

and analogously for spin down. It is assumed that
the electron wave function follows the ionic motion
adiabatically. It should be noted that in this paper
the functions ®;, are approximated by single OPW,
that is by plane waves orthogonalized to the core
states of each ion at its position ﬁ,. The spin-flip
matrix element used in this work is
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e |l 05, (@, 18V |0z,
Mpg=(®z.. |Hio+ 6H',°‘<I>;.>=((p;,,lH’,o|<p;,)+(<pg,,|5H's°'¢i'> +£E {¢g ﬁg; E>.<¢E loz,)
Lxd - kK
’ - - ! -
Ly e OV 10k) @ o 90) ooy emr) o[V B2y ). (AS)

g E; - E;..

In the calculation of the SRT only those transitions
for which E;=E;, = Er need to be considered. In
this case ((o;ﬁ, |Hgo | 9, ) vanishes because Hy, only
links states belonging to different bands, and the
expressions (A3) and (A5) become identical up to

|
first order in the spin-orbit interaction and within
the one-phonon approximation
MY(EFEE'):MDH(EE:EE')

+O[H\26H,,, 6V'6H.,, (6V')®H,,]. (A6)
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