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pair and single-site effects. In general, if we
wish to go to the nth cluster approximation we must
simultaneously satisfy all CPA (m), m & n, condi-
tions.

Finally, we have shown that this method can be
easily extended to evaluate average two-particle
Green's functions.

Note added in Proof. The recent work of Cyrot-
Lackmann and Ducastelle [Phys. Rev. Letters 2V,

429 (1971)]is different from the diagrammatic ex-
pansion given above. In particular, a perturbation
expansion of their equation (26) shows that beginning
at order v and c3, their self-energy contains terms
which correspond to removing pair renormaliza-
tions of the internal lines in Z'". The net result

is that the (G, , ) which appears in XII' is not the
fully renormalized (G) given by the solution of the
Dyson equation (i. e. , Eq. 6' with Z containing
both single site and pair terms). There are other
differences beginning at order v and c which do
not appear to have any such simple explanation. A

detailed comparison of the two methods has been
made by Ducastelle. We wish to express our grati-
tude to Dr. Ducastelle for communicating these
results to us prior to their publication.
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The electronic structure of a disordered binary alloy is discussed by using the method of
Matsubara and Yonezawa. The self-energy is evaluated in a first-order approximation. The
theory is applied to a model alloy where the host is assumed to possess a semicircular density
of states. We also calculate the density of states for o. -brass, by using the available density-
of-states curve for copper.

I. INTRODUCTION

The behavior of electrons in disordered materials
raises very complex problems, and recently this
has been the subject of intensive investigations from
many points of view. There have been several at-
tempts to formulate a theory for alloys across the
whole range of concentrations of solute atoms.
Initially a number of simple but crude models were
proposed. ' The rigid-band approximation' is the
earliest model and is based on a perturbative ap-
proach. In this approximation it is assumed that

the constant energy surfaces and the density-of-
states curve of the solvent remain unchanged on
alloying, the only effect of the addition of solute
atoms being, if its valency is greater than that of
the solvent, to add electrons to the band, thus
swelling the Fermi surface and filling the density-
of-states curve to a higher energy. Sometimes
the virtual crystal approximation (VCA) is used to
interpret experimental results. In the VCA one
approximates a disordered alloy by an equivalent
ordered alloy wherein every site is assigned a
potential equal to the concentration-weighted aver-
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age of the potentials of the constituents. The VCA
is also a perturbative approach, and this approxi-
mation has been extended to fourth order in pertur-
bation, resulting in a tailing of the density-of-states
curve into the forbidden band. Stern has used a
tight-binding approach. However, the rigid-band
approximation, the VCA, and the tight-binding
method admit an energy-wave-vector dispersion
relation for a disordered alloy and provide us
with an oversimplified picture of such systems.
The experimental study of electronic states in
alloys is in an active stage of development. ~ Some
of the methods used are the optical, photoemission,
soft-x-ray, specific-heat, and positron-annihilation
methods. These measurements have stimulated
further efforts towards formulations of a reason-
able theory.

Beeby and Edwards' used a multiple-scattering
formulation in which the motion of electrons in a
disordered system is viewed as a succession of col-
lisions with the individual scattering centers. Such
an approach had earlier been proposed as a possi-
bility by Korringa. The multiple-scattering the-
ory has been applied to study the electronic states
in dilute alloys by Jones and by Dawber and
Turner. ' However, these theories based on per-
turbation expansions are not adequate for nondilute
alloys, in which the constituents of the alloy are to
be treated on an equal footing. Beeby" proposed
the "averaged- T-matrix approximation, "which is
applicable to nondilute alloys too. But the unsat-
isfactory feature of this theory is that it leads to a
spurious band gap in the density-of-states
curve. ' '3 Among the existing approaches the co-
herent-potential approximation (CPA)" is the best
approximation. The CPA entails an energy-depen-
dent complex potential. The self-consistency con-
dition requires that on the average there is no
further scattering of electrons from the potential.
The CPA is a single-site approximation which ne-
glects all statistical correlations between the vari-
ous lattice sites, such as the short-range ordering
(cluster effect), and overlooks the multiple-scat-
tering effects. The CPA has been applied to the
case of binary alloys" and has yielded a wealth of
information about the density of states. The CPA
and some equivalent models have also been applied
by Soven' to electrons, by Taylor and others" to
phonons, by R to' htSo magnons, and by Onedora
and Toyozawa' to Frenkel excitons. More re-
cently Freed and Cohen have improved the single-
site CPA to incorporate the cluster effects. They
consider the response of an electron to a cluster
of n atoms of definite composition and positions
and treat the rest of the material in an averaged
way.

Matsubara and Toyozawa ' (MT) have adopted a
Green's-function approach to study the electronic

states in disordered semiconductors. Later,
Matsubara and Koneyoshi reformulated the MT
theory to include the effects of the clustering of
impurities and the fluctuations of charges. Many
of the above-mentioned studies" ' employ an ex-
pansion of the electron propagator for an alloy in
a basis of Bloch functions, while the MT theory
is based on an expansion in terms of the Wannier
functions. Leath and Matsubara have shown
that these two approaches are equivalent. Mat-
subara and Yonezawa have developed in a sys-
tematic manner the Green's-function method 8 with
Bloch functions of the perfect crystal as a basis of
expansion combined with a perturbative approach.
The method shows promise of yielding results which
are much closer to reality than those derived by
other methods mentioned above. As far as we
know, this method of Matsubara and Yonezawa
(MY) has not been exploited to examine the elec-
tronic states in a real three-dimensional disordered
system. In this paper we apply the MY theory
to a topologically disordered binary alloy.

Very recently a good deal of information has be-
come available on the localization of electronic
states in disordered systems. Many people
have addressed themselves to a study of this im-
portant and challenging problem.

We describe in Sec. II the method of expansion
of the Green's function relevant to a topologically
disordered lattice. In Sec. III we configurational-
ly average the Green's function. The self-energy
is expanded in terms of semi-invariants and an
approximate solution of the averaged Green's func-
tion is obtained. The problem of the localization
of electronic states is discussed briefly in Sec. IV.
We paraphrase the arguments of Cohen and co-
workers ' to obtain a criterion to demarcate the
localized and extended states in the density-of-
states curve. Section V is devoted to a discussion
of the results of our numerical calculations (i) for
the density of states of a model alloy when the sol-
vent (host) possesses a, semicircular density of
states and (ii) for the density of states of a real
disordered alloy- n-brass. Some concluding re-
marks follow in Sec. VI.

II. FORMALISM

We consider a completely disordered substitu-
tional binary alloy of A-8 type, where A. represents
the solute atoms and B the solvent atoms. c is the
fractional concentration of the solute (A-type)
atoms. If we associate a single atomiclike orbital
with each site, we can write the Hamiltonian of the
system as

n fftA n

(l)
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Here q„and &~ are the energies of the atomic levels
of the A and B atoms, respectively, a„' (a„) is the
creation (destruction) operator for an electron in
an atomic state at the latti"e site n, l refers to
the solute atom sites specified by R„and T „ is
the tight-binding (hopping) integral. We shall as-
sume that the hopping integral T „depends only
on the relative positions of the lattice points m
and n, and does not depend on the type of atoms
occupying these sites. Under this assumption T „
remains unchanged when the concentration of the
solute atoms changes. The effects of alloying, like
the changes in the lattice parameters, are ignored.
If Pp is the Hamiltonian for the pure host, we may
regard the change P, in this Hamiltonian upon alloy-
ing as a perturbation. Obviously

H, =Z( [V„(r —R, ) —VII(r —R, )]
=—Z( W(r —R,), (2)

where V~ and V~ are the static and superposable
potentials of A- and 8-type atoms, respectively.
The l summation in (2) is over the solute atom
sites only. For the pure host the Schrodinger
equation reads

with B» as expansion coefficients. This gives

(E —&») B» =+ (6kl HII 6'&') B,.k. ,

where

(»I H, I6'f '&=2, fy»(r)w(r -R, )p,„(r)dr .

On simplification we find

(bkl HI I
bk& =P(k —k') Wkk. ,

where

(k kI) Q - ((k- & I ItI

W,„.= f u (krk) lV(r) ~.k. (r) e "" ' dr .

( G( E))l,': = « I ~» E
'

H~l' I
0 &, (10)

The physical quantity we are interested in is the
density-of-states function for the alloy. As we
shall see, the density-of-states function can be ob-
tained from the Green's function. The electron
Green's function for the alloy is defined as

H, It(»(r) = e„P»(r),
where the Bloch functions

4»(r) +bk(r) e

(3) where l0& represents the vacuum state. The
Green's function for the host crystal is

(G (E)) ~ = 6 ~ 6(k —k )E —q

are normalized to the volume of the crystal by

f It'k(k(r) (t', ,
(k (r) dr = 6, k, 6(k —k') (4)

and e» is the energy of the state k in the bth band.
For the disordered alloy we have to solve the Schro-
dinger equation

(E- H}g(r) =0 .
We shall see later that the exact solution of this
equation seems to be beyond our capabilities at
this time. In the absence of the periodicity in the
lattice in an alloy the Bloch states are no longer
eigenstates. We expand g(r} in terms of the orthog-
onal basis functions Q»(r),

(t'(r) =KB»@»(r),

=-G()(E, k) .

This is diagonal in the representation used. We
shall always use the notation of Eq. (11) for repre-
senting a diagonal Green's function so that
Go(E, k) will imply

6(,y 6(k —k')/(E —e») .

Equation (10) may be rewritten as

(G(E) '),",,' = [(E —~„)6„,(k —k') —(H, ),",'. ], (12)

where

(H, )'„„".= &»IH,
I

b'f '& .
The Green's function can, therefore, be written
as a perturbation expansion in terms of (HI),",. :

(G(E))kqk= G()(E k)+GI((E k) (HI)kk Go (E k ) + GI((E k)Z (HI)kkI G(II (E kI}(HI)kkk G(j (E k )+
bi%i

=G lkk( Z G (Z, k(II, I (G,),",'(G (k k )),i =1 j =1 b&It&

(13)

where

b) i=b, k; i=k for j =1,
b, =b', k& =k' for j=i .

I

Equation (13) is exact, but is too complicated to be
of use in any analysis. One resorts to some suit-
able approximation to obtain a more manageable
expression for the Green's function. If we glance
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at Eq. (3) for (H, ),',", we find that Eq. (13) inherits
a summation over all solute atom sites l for each
H, .This was (and still is) a great stumbling block
in the progress of the theory because the only ser-
ies that can be exactly summed has unrestricted
summations. The restrictions that the summations
are over the solute atom sites were removed by
Yonezawa by resorting to configurational aver-
aging of (13), which we discuss in Sec. III.

III. APPROXIMATE SOLUTION OF DYSON EQUATIONS

The electronic properties of a disordered ma-
terial, which are associated with the entire crys-
tal, e. g. , the density of states, contain within them
a sampling of all the configurations in the system.
In calculating such properties it is advisable to
carry out averages over an ensemble of systems
having all possible configurations. We have con-
sidered a completely disordered system; i. e. ,
there is no correlation among the different solute
atoms. For a random distribution every possible
configuration occurs with equal weight in a
configurational average. The perturbation term
in the Hamiltonian is a random function and every
site should contribute to it with equal probability.
If we have an arbitrary random function

f(. . . , R«. . .), where i denotes s variables of the
function, the configurational averaging is effected
by using a simple relation, ~

( Z' f(R, , R, , . . . , R,,))

= c' Z f(R„&,R„, . . . , R„) . (14)
jng, n2, ..., nsf

Here the summation of the left-hand side is over
all the solute atom sites, while the summation on
the right is over all the lattice sites. (. . ) de-
notes the average over all possible configurations
of solute atoms. A prime on the summation indi-
cates that the summations are not completely un-
restricted here, because all the terms where one
or more summation indices repeat are excluded.
This is known as the exclusion effect. Langer3
was the first to point out that the exclusion effect
must be considered in order for a formulation to
be valid for a wide range of solute concentration.
Yonezawa ' has suggested a general scheme which
enables us to incorporate the exclusion effect while
performing the configurational averages. We use
Eq. (8) in Eq. (13) and perform the configurational
averaging according to the prescription (14); we

get

((G(E)))), )= Go(E) k)+Go(E k) (p((k k )) Wqq Go (E) k )+ Go(E k)

x Q (p, (k —k~)p, a(k q
—k') ) W»' G(P (E, kq) Wt'~. Go (E, k') +

by% g

(15)

By a typical manipulation of the series (15) the
configurationally averaged G can be written in the
form

((G(E)) ), ) = Go(E k)+Go(E) k)

I

(15). This is a single-site approximation. We can
write an expression for Z, (E),

+Z (p, (k —k, ) p, (ki —k'))
bl 1

This can be written in a more compact form:

(G) = Go+ GOZ, (G) .

The Green's-function method is essentially based
upon constructing a proper self-energy Z, defined
by the Dyson equation (IV). The calculation of Z,
is admittedly a difficult problem. In a first-order
approximation the self-energy is represented by
Z, (E). This approximation is used with an inten-
tion of obtaining an expression which would be
amenable to a calculation for the density of states
of a real solid. Improvements over this approxi-
mation would demand huge computational efforts
if we wish to apply the theory to a real system.
The first-order approximation is obtained by re-
taining only terms associated with a single site in

xg»iGO (E, k, ) g, g;

+ (higher-order terms) .

The first-order self-energy has some spurious poles
poles and the sum of the series is not convergent.
Z, (E) is not defined in an analytic sense. The dif-
ficulty results from the fact that in deriving Z, (E)
proper attention has not been paid to the correction
factors for exclusion effects which will vary from
approximation to approximation. If only a small
number of terms are included, a different correc-
tion factor is to be used. ~ If one follows such a
"self-contained" treatment, the self-energy is
found to be convergent. Yonezawa has emphasized
the fact that in order to give the approximate self-
energy a physical meaning, the correction factor
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to renormalize the cumulants must be chosen such
that the self-containedness in the given stage of
approximation is ensured.

Some of the terms left out of (15) can be taken
into account simply by replacing Go by the true
Green's function (G) everywhere in (18). ' The
proper self-energy part calculated in this manner
is denoted by Z(1). Therefore,

(Z(1))k)2 = (p((k k )) Wkk +Z (p( (k kq)p( (k2 k ))
hyke

x W»I (G'~(E) k, ) ) W,'g.

+ (higher-order terms) . (19)

The configurational averages ( p, , ) are known

as semi-invariants denoted by S,. Therefore, Eq.
(19) can be alternatively written as

(Z(1))k)k. = Sq(k —k') W)kw". +Z S2(k —kq, kg —k')

x Wk„2(G 2(E, kq) ) Wk&k.

+ (higher-order terms) . (20)

The expressions for semi-invariants are obvious
from a comparison of (19) and (20). We have used
the cumulant expansion method of Kubo ' to deter-
mine the semi-invariants. The evaluation of the
first few semi-invariants in a self-contained first-
order approximation for the proper self-energy is
discussed in the Appendix.

Using the values of the semi-invariants given in
the Appendix, we obtain Z(1) and retain terms up to
fourth order only

E(1)= (1 —c)W —) (G"(E,k, )) (c —3c 2 )266/ K Z (G '(E, k, ))(G' (E, k)))
hyke hyke b2k2

~ ( —7 ~ 12 6c )W —
2 r 2 r (G"(E k ))(G (E k ))(G'(E k ))) . (21)

bgk1 b2kp b3k3

Here N is the total number of sites. We have re-
placed 8», by 8'0, whic i will be true if we are
dealing with a 5-function potential. The coeffi-
cients of the cumulants, after the corrections for
the cumulants to be self-contained have been ap-
plied, have been calculated by Yonezawa. She
finds that the corrected coefficients converge
rapidly. The first three coefficients do not change,
the fourth changes a little, and the remaining ones
are quite small. The solute atom is not too grossly
different from the solvent; therefore V or W~

should be small. It is for these reasons that in
(21) we have truncated the series for Z(1) at the
fourth term. The magnitude of neglected terms
is suspected to be small. It is not possible to
obtain an analytic expression for the self-con-
tained Z(1). We define

B(E)= (V 'Z (G'(E, k) );
then Eq. (21) could be written in the form

Z(1) = c(1 —c)Wo 8(E)[1+(1 —2c) WOG, (E)

+(1 —6c+6c )W0(2 (E)] . (23)

We obtain in this scheme an approximate self-ener-
gy Z(1) that depends on E.

We write Eq. (16) in the form

9(E)=-Z1 1
N 2 E —e —Tk —Z, (E, k)

(25)

If we use the k-independent self-energy Z(1) given
by (23), we have B(E) under the approximation im-

' plicit in the derivation of Z(1) above:

1 1
(V

w E —C- Tw —Z(1) (26)

The coupled equations (23) and (26) for (2(E) and
Z(1) can now be solved self-consistently.

The function q(E) is of dominant importance in
this problem. The energy density of the electronic
state is obta. ined from the knowledge of g(E) via the
relation

n(E) = —(v) 'imp(E) . (27)

We may mention that nearly the same formulation
with appropriate reinterpretation of parameters
and variables can well describe the vibration of a
disordered lattice, exciton propagation in molecu-
lar crystals. or spin waves in a ferromagnet.

G()(E, k) = (E —e —T, ) ',
where T, is the Fourier transform of the tight-bind-
ing integral and q is the relevant eigenvalue for the
solvent atom. Thus for a single nondegenerate
band, we obtain

G()(E, k) —Z, (E, k)
(G(E, k)

Here

(24)
IV. LOCALIZATION IN DISORDERED ALLOYS

The localization of the electronic states has been
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found to be a general feature of a disordered sys-
tem. If an electron moves in a rigid lattice, where
the fluctuations in the potential satisfy certain con-
ditions, the state of the electron becomes localized.
Here we are dealing with random quantities; there-
fore localizability is a matter of probability. An-
derson has, therefore, studied this process from
a probability point of view. Anderson's basic con-
dition for the localizability of a state of energy E
is related to the convergence of a renormalized
perturbation series for the self-energy. He has
deduced a criterion for the onset of localization in
a topologically disordered lattice. Later Mott
interpreted Anderson's localization criterion in
the language of the transport theory and showed
that in the density of states there exist mobility
edges. A mobility edge is specified by a critical
energy at which there is a sharp transition from
the localized states in the band tails to the extended
states in the interior of the band. The complete
disappearance of extended states from the system
as the randomness exceeds a certain "ritical value
is known as the Anderson transition. Various elec-
tronic properties of the disordered materials such
as switching phenomena and the metal-nonmetal
transition are direct consequences of the localiza-
tion of electrons.

Let us consider the motion of a particle in a
three-dimensional periodic lattice such that at
each site n the particle of energy e(n) can occupy
a Wannier state In). The disorder is introduced
into the system by regarding the single-site ener-
gies e(n) as random variables. Suppose we con-
sider the state associated with the origin n=0.
Anderson's criterion for the existence of localized
states at this site is that the diffusion of the particle
from this site is not complete. We may use the
symbol p, o &

to denote the probability of finding a
particle in the state 10) at t= ~ if initially (at / = 0)
it was in 10). Anderson's criterion is f&&oo& &&0.

Cohen and co-workers ' have studied the problem
of localization by analyzing the self-energy,

Z&o&(E) = E &&o& G&o& (E) ~

G&o, (E) is the (0, 0) matrix element of the Green's
function (E —P) '. The subscript (0) denotes that
we are concerned with site 0. It can be easily
shown that when there is no long-range statistical
correlation among the variables (o&„&} for the eigen-
state of energy E overlapping with 10) to be local-
ized, i.e. , t&&oo& 40, Z&o, (E) should be analytic
across the real axis. By wriring a renormalized
perturbation series (HPS) for Z&o, (E) Cohen and
co-workers show that there exists a non-negative
function L(E) such that when L(E) & 1 the HPS con-
verges for all sets of values o&„& and when L(E) & 1
the series for Z&o&(E) diverges for all values of

Therefore, the region for which L(E) & 1 con-

sists only of localized states, and when L(E) & 1
the region will have extended states. Thus the
equation L(F.,) = 1, will demarcate the mobility
edges. Cohen and co-workers have deduced from
plausibility arguments an expression for the local-
ization function in the general case where the self-
energy is k dependent:

max, (E(k)}
I E —Z(E, k) I

(26)

When the self-energy is k independent, the local-
ization function in (28) is given by

max (E(k)}
IE- Z(E) I

(29)

As we have mentioned, L(E) = 1 corresponds to the
mobility edges, and the regions of localized and
extended states are obtained for L(E) & 1 and L(E)
& 1, respectively. It is worth pointing out here
that we cannot make any reliable predictions con-
cerning the localization of states merely on the
basis of the modified single-site theory that we
have discussed in Sec. III.

We consider a model alloy for which the pure
host crystal has a semicircular density of states,

n' '(E) = (2j&&B ) (B —E )
~
E

~

& B

=0 y otherwise . (30)

n&o&(E) is centered at E=O. B is the half-width of
the band. This density-of-states function has the
desired singularities at the edges. The model
density of the host is used to solve the coupled equa-
tions (23) and (26) self-consistently following the
procedure described by Onedora and Toyozawa. '
The density of states defined by Eq. (27) is calcu-
lated for various values of B and atomic concentra-
tions of the solute atoms. The results are pre-
sented in Figs. 1—3. The localization function L(E)
of Eq. (29) is calculated using the same set of pa-
rameters B and c. Following Economou et al. ,
we take E(k) to be symmetric about the zero of en-
ergy and also choose max, (E(k)}= B. We have used
three values of B, and for each value of B we use
threevaluesof c (0. 1, 0. 2, and 0. 3). In Figs. 1-3
the mobility edges are shown by the vertical arrows
in each density-of-states curve. The region in
which the states are localized because of L(E) & 1
are shaded. The unshaded regions correspond to

V. APPLICATIONS TO MODEL ALLOY AND a-BRASS

The method outlined above is applied to calculate
the density of states of a somewhat artificial model
of an alloy as well as the density of states of o-brass
We shall first present our results for the model
alloy.

A. Model Alloy
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B. a-Brass

o8

/

EM)

ENERGY

+2 0 +4
EM

+2 II +4

(C
=cO&

FIG. 1. Density of states for the model alloy calculated
for (ez —ezra/B = 0. 25 and c =0. I, 0. 2, and 0.3, respec-
tively. Ez, and E~2 are the mobility edges shown by the
vertical arrows.

extended states. In Fig. I (corresponding to the
largest value of B used by us) the density-of-states
curve shifts towards the higher energy with an in-
crease in the concentration of solute atoms. In
Fig. 2 (corresponding to the medium value of B) the
density-of-states curve is split into two subbands
for e=0. 1 and a small gap shows up for this concen-
tration. The two subbands merge into each other
at a higher concentration. A narrow extended band
has developed for c=0.3. In Fig. 3 (corresponding
to the lowest value of B used by us) two subbands
separated by a gap are obtained over a wide range
of concentration. The gap increases with an in-
crease in the concentration. We notice that these
findings about the density of states for the model
alloy agree qualitatively with the results of Velicky
et al." in the rigid-band and split-band limits.

We chose n-brass for our calculation because
the neutron scattering experiments have shown
that this system does not possess any detectable
short-range order. Our theory is also applicable
to the systems where there is no short-range order.
In the formulation we have tacitly assumed that the
lattice spacing is unchanged by alloying, allowing
for a sensible definition of a rigid, periodic empty
lattice. In e-brass with 11.4% of zinc the lattice
parameter has been found to change only by 1.4%
from its value for pure copper. 3 This is quite a
small change. Therefore the ~-brass system is
well within the framework of assumptions implicit
in the formalism. The band structures of coppers '~
and zinc~' are well understood. The d band in zinc
is, to a considerable extent, atomic in character.
Moreover, some band-structure calculations are
available for ~-brass.

We adopted the method described by Kirkpatrick
et al. to calculate the density of states. These
authors have calculated the density of states of
Ni-Cu alloys using an interpolation scheme. " In
this scheme the density of states nI '(E) of the
solvent, which is known for various values of en-
ergy, is used as the base of the calculation. These
data are then interpolated throughout the energy
range by a straight-line interpolation. The present
calculation uses the density of states of pure copper
derived from a Korringa-Kohn-Rostoker-method
band-structure calculation by Faulkner et al. The
atomic eigenvalues are taken from the tabulation of
Herman and Skillman, which are based on the self-
consistent Hartree-Fock-Slater method. Using these
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FIG. 3. Density of states for the model alloy calcu-
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spectively. Ez and E~ are the mobility edges shown by
the vertical arrows.
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curve for the alloy.

values, we solve for the Green's function, and n(E)
is determined as in the preceding example. The in-
terpolated density of states for o.-Cuo ZnL, O is
shown in Fig. 4. There are two peaks at 0. 616 and

0. 814 Ry for pure copper corresponding to the sym-
metry points L2. and X4. , respectively. As one
should expect, these peaks are smoothed in the
alloy. However, we notice that there is the tenden-

cy of the peaks in the density-of-states curve to
shift towards higher energy on alloying. Amar et
al. have calculated the band structure of
Q Cup VpZnp 3p within the VCA and from this they
extracted the density of states in a semiquantitative
manner. They shift towards lower energies.

The optical data of Biondi and Rayne could be
analyzed in terms of the interband absorption pro-
cesses and could be used to provide information con-
cerning the electronic states in alloys. The op-
tical-absorption edge which occurs at 0. 154 Ry in
copper is seen to move to higher energies with in-
creasing zinc concentrations, while the secondary
absorption peak which is initially at 0. 309 Ry moves
to lower energies. The absorption edge of 0. 154
Ry in copper is associated with an Lr E& (Fermi-
energy) transition. The secondary peak is attributed
to an X,-X4, transition. With this assignment the
data of Biondi and Rayne suggest that the states at
X4. will shift downwards in energy as the concen-
tration of zinc is increased. Our calculation there-
fore fails to explain the optical data. The band-
structure results based on VCA show surprisingly
good agreement with the optical data. The low-
temperature specific-heat measurements reveal
that the density of states at the Fermi level falls
on alloying and this agrees with our findings. How-
ever, no direct measurements of the total density-
of-states function are available to date and it would
be very desirable for evaluating any theory if some
definitive measurements of the density of states

could be made on n-brass by using the optical,
photoemission, or soft-x-ray techniques. The mod-
ified single-site formulation that we have used here
has some resemblance to the CPA. The CPA un-
deremphasizes the randomness in the way it re-
places the potential on each site by an effective po-
tential. In the CPA we assume that we know the
solution of Eq. (17) with a diagonal unit matrix for
Z. This solution we call G, . There are now solute
atoms at all sites with potential v, -Z at the old
solute atom (potential v, ) site and Z at the old host
site. It is ensured that on the average the total
scattering from this system is zero, as it must
be if Z is the correct self-energy. Clustering
effects have been completely ignored in the CPA
and in our calculation. A general approach for
incorporating the cluster effects in the MY-type
theory has been indicated by Yonezawa. The
cluster effects are to be included in order to ex-
plain the fine structure of the density of states.

VI. CONCLUSION

We have been able to apply the formulation to a
real three-dimensional system. There are insuf-
ficient experimental results to prove or disprove
the theory presented here. The most definitive
test would be provided by a measurement of the
density of states. The approach is a perturbative
one and we have used the first-order approximation
for the self-energy, retaining only a few terms in
the Eq. (19). This approach should be applicable
only where the difference of potentials of the con-
stituents of the alloy is small. Our treatment does
not give a correct description of clusters. By
neglecting the k dependence of self-energy, we ob-
tained a smoothed-out spectrum without fine struc-
tures due to clusters. We have assumed that the
transfer energies do not depend on the type of
atoms. Physical realism demands that the hopping
integrals vary from pair to pair, but this makes
the whole calculation very much more complicated.
Berk' and Shiba" have analyzed this problem in-
dependently for a random binary alloy. We have
not taken into account the d bands and the s-d
hybridization.

There is a pressing need for careful experiments
and more incisive theoretical treatments. Our re-
sults are specific to the model and assumptions
which have been made therein. Nevertheless, they
should be indicative of the type of behavior which
can be expected from a more sophisticated approx-
imation to this complicated problem.
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APPENDIX

The semi-invariants or moments are the aver-
ages of the products of p's

Q2=

Qg=

Qg
=

~ ~ ~ ~ \ ~

/ Ei I

~ ~ ~ ~ ~

/ I

~ ~ 0~r ~ Og

I

$ = ~ ~ ~ e 1 l1. . . e &&&8-1 g&' llS
21 ls

= (P, (k —k1) ~ P, (k, 1
—k, )) (Ai)

k, 1-k, =k, 1
—k =q, ,

then the sth semi-invariant is

(A2)

Following Yonezawa, S,'s are written in terms of
cumulant C,'s:

's1(q, ) = c1(q1)

These are calculated by using an expansion in
terms of cumulants. The advantage of using cumu-
lants is that the cumulant of the product of statis-
tically independent variables vanishes identically.
If we write

k —k' =q, k —k, = q, , k, —k2 = q2, . ~ .,

FIG. 5. Diagrammatic representation used in evalu-
ating the semi-invariants up to fourth order.

and so on. The values of C,'s are obtained from

C, (q„qa, . . . , q, ) = NQ, (c)5 (q, + ~ + (4) . (A3)

2=C —C

Q, (c) = c —SQ, (c)Q,(c) —Q', (c)

We use a diagrammatic representation 7 for the
cumulants. In Fig. 5 the cumulant diagrams to
fourth order in c are shown. A heavy dot denotes
an unrestricted vertex and a cross is a cumulant
vertex. The dotted line is used for the summation
restriction. The dashed lines are interaction lines
and a factor N is assigned to each proper part. If
we work in the self-contained first-order approxi-
mation for Z, we get

Q, (c) = c,
Qa(C) = C —Q1(C)Q1(C')

2(q1 'q2) c1('q1) 1(q2) + 2(q1 qa)

3(q1 qa, q, ) = C, (q, ) C, (q, )C,(q, )

+ Ca(q„qa)C1(qa)+'C1(q1)C2(qa, q, )

+ c2(ql q3) cl(q2) c3(ql qa q3)

= C —3C +2C

Q4(c) = c —4Q3(c) —SQ2(c) —6Q2(c)Q, (c) —Q1(c)

=c —7c +12c —6c

and so on. These values for Q, will enable us to
determine S,.
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We discuss the difficulties associated with the jellium model and the validity of the deforma-
tion-potential method of calculating magnetoacoustic attenuation in metals when the electrons
are Bragg reflected. We then calculate the attenuation of a transverse acoustic wave propa-
gating along the magnetic field in a metal whose Fermi surfaceconsists of a free-electronsphere
truncated by the six Bragg planes of a simple-cubic Brillouin zone. The attenuation-vs-mag-
netic-field curves show considerable structure which depends strongly on the ratio K/2k+ where
K is the separation between Bragg planes.

I. INTRODUCTION

The jellium theory of rnagnetoacoustic attenua-
tion' was extended to nonspherical Fermi sur-
faces by Eckstein. 3 She was attempting to re-
produce peaks found by Boyd and Gavenda in the
magnetic field dependence of the attenuation of
transverse acoustic waves propagating parallel
to the magnetic field along the [100]direction in
copper. They attributed these peaks to singular-
ities in the vH = BE/SP„density of states on the
Fermi surface. Eckstein chose a dumbbell-shaped

model Fermi surface with such singularities and

found a peak in the conductivity which leads to a
diP in the attenuation. Thinking this might be a
consequence of the jellium theory, which strictly
speaking could be valid only for spherical Fermi
surfaces, we recalculated' the attenuation using
a free-electron deformation-potential (FED) ap-
proximation to the exact deformation potential. '~

We found, however, that the FED approximation
gave exactly Eckstein's jellium result for her
Fermi surface and for more complicated dumbbell-
shaped Fermi surfaces gave results more compli-


