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We describe a simple generalization of the coherent-potential approximation that is exactly
equivalent to the self-contained cumulant expansions and the self-consistent diagrammatic-
resummation techniques. A detailed analysis of these different methods for the pair case is
given.

I. INTRODUCTION

Much of the recent work in disordered-model al-
loy problems has been concerned with the calcula-
tion of the average Green's functions. Since this
calculation can be done exactly for only one special
model, ' attempts have been made to develop a sys-
tematic scheme which can be used to obtain a se-
quence of improving approximations. Notable among
these techniques are the cumulant expansions of
Yonezawa and Matsubara, the corrected or self-
contained cumulant expansions of Yonezawa, and,
paralleling this latter development, the diagram-
matic expansion of Leath4 and Leath and Goodman.
A rather different approach is suggested by the
coherent-potential approximation (CPA) of Soven~
for electronic states, the self-consistent method
of Taylorv for vibrational excitations, and the
treatment of excitons by Onondera and Toyozawa,
all of which are formally identical and can be con-
sidered as good first approximations.

The diagrammatic (or corrected-cumulant) ap-
proaches are appealing in the sense that one can
"visualize" the approximations that are made and
they can, in principle, be used to obtain a sequence
of improving results. In practice, however, the
solution of the counting problem has proved very
elusive and so far only the lowest-order or so-
called "single-site" approximation has been cor-
rectly obtained and applied. Thus although previ-
ous attempts have been made to calculate the next-
order or "pair" approximation, these calculations
have been either incomplete or have contained sig-
nificant errors. ' We will make additional com-

ments on these last two calculations later in an
attempt to relate them to the present development.

The CPA calculation has been shown to be exact-
ly equivalent to the single-site corrected-cumulant
approximation mentioned above. However, it is
not obvious how one would generalize the method
in the "best" possible way —formal generalizations
of course exist, "'"but none of the approximation
schemes that have been developed'3 have actually
led to a generalization that has the (simple) equiva-
lence to the corrected-cumulant or diagrammatic
expansions possessed by the elementary CPA.

What we show below is that there does exist a
generalization of CPA such that CPA (n) is exactly
equivalent to the n-site corrected-cumulant or
diagrammatic approximation. This generalization
is quite straighforward in any order but for sim-
plicity we restrict ourselves mainly to CPA (2) or
the pair approximation. It is also of interest to
note that the method outlined below can be easily
extended to obtain a systematic sequence of approx-
imations for the average two-particle Green's func-
tion.

A very convenient model system, which we use as
the basis for our discussion, is described in Sec.
II. Although some extensions of this model are ob-
viously possible without substantially modifying our
generalization of the CPA, we have not made any
detailed analysis to determine exactly what aspects
of the CPA (n) are specifically model dependent.
In Sec. III we outline the cumulant and corrected-
cumulant techniques of Matsubara and Yonezawa'
and then in Sec. Iv we review the diagrammatic
summation technique of Leath and use it to derive
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the corrected-cumulant approximation for pairs.
Our derivation is slightly different from the original
pair calculation in Aiyer et al. ' and may appear
somewhat more involved; however, it shows up
more clearly the details of tb.e interrelationship
between the single-site and pair approximations.
In Sec. V we describe a generalization of CPA to
CPA (n) and use it to rederive the results of the
diagrammatic expansion for pairs. For the reader
who is not interested in the details of the diagram-
matic resummations, we note here that the justifica-
tion of CPA (n) depends only on some rather general
properties of the diagrammatic expansions so that
Sec. V can be read independently of Sec. IV. Sec-
tion VI contains a brief description of an extension
of this method to calculations of the average two-
partic1. e Green' s function.

II. MODEL

The random-model system we will use as the
basis for our analysis is described by the standard
lattice Hamiltonian with diagonal (in coordinate
representation) disorder. That is,

W])a«a~+~ E«a«a« = W+ &,t
«g9

where the sums are over lattice sites, W«~ is trans-
lationally invariant, and &« is a random variable.
The particular form of the distribution of levels &«

is not important but to make the connection with
previous studies we will specialize to the case of a
binary alloy where

&« = v with probability c

=0 with probability & —c .
Kith the definitions

g = (E —W), G = (E —H) ',
the perturbation expansion for (G) is given by

(Gti ) =gtg+~ag&agai (&a)+~a~tgtaA4u (sast)+' '
~

(4)
A few rather trivial comments might be made.
First, the ensemble averaging restores translation-
al invariance so that (G) is diagonal in momentum
representation. Second, and this is the point that
has made the study of disordered systems so diffi-
cult, one must be careful in distinguishing various
combinations of site index labels. Thus, for ex-
ample,

(s&s, ) = c v, k& l

=cv, A =L

so that the second-order term in (4) must really be
written as two separate terms containing restricted
summations.

III. CUMULANT AND CORRECTED CUMULANT EXPANSION

The essence of the cumulant expansion is very
simple. The ensemble averaging procedure intro-
duces restricted summations in the perturbation
expansion of (G) and these restrictions must be
removed if we wish to write a Dyson equation

(G) =g+gZ (G), (6)

which will be an algebraic equation in momentum
space and in which the self-energy Z is considered
a functional of the exact (G) rather than the unper-
turbed g. The removal of the restrictions can be
achieved by rearranging the perturbation series and
assigning to each diagram a weight function that is
simply related to various cumulant averages of the
random potential &«. This rearrangement yields a
self-energy which is shown schematically in Fig.
1; explicit expressions for the cumulant functions
P, -=P, (c) can be found in Yonezawa and Matsubara. s

Although the representation for Z as given in

Fig. 1 is exact, in practice one is still faced with
the problem of choosing from this infinite series
that class of diagrams which one believes to be the
most important or in some sense "self-contained. "
For example, one might choose that class of terms
that refers only to scattering off a single site.
Since in the rearrangement of the series in terms
of cumulant averages we have removed all site in-
dex restrictions, this class of single-site terms is
not just the sequence

Ptv+Psv (G„)+Pav (G;, ) + ~ ~ ~

+P„.,v"'(G, , )"+ ~ ~ ~,
but rather (again refer to Fig. l)

p2

+R ' A''+ A'+'.
v v v
A"" A "'a A. '4'a

V V V

FIG. 1. Schematic representation of the exact Z((G)).
The weight associated with each term is a simple product
function of the cumulants P~(c). Each vertical line rep-
resents a potential v (i. e. , no t-matrix resumrnations
have been performed); the internal lines are the full
propagators (G«&). It follows from the definition of the
cumulant averages that there are n0 site index restrictions
in this series. Thus, for example, the term labeled Pz
represents both a pair term P2 v (G«&), i & j, and a
single-site term P~v (~ ««) ~
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Z('('=Ptv+Pav (G(()+Psv (G(() +(P4+Pg)v (G(, )

i (P, + 5P,Pa)v' (G„)

+(Ps+ 9P4Pa+7Ps+4Pa)v (G(, ) + ~ ~ ~

+~" +
QSQa jI Qua +.

Q3Qa
+

y
+

,AA",

FIG. 2. Schematic representation of Z((G)) in terms
of single-site series, pair series, triplet series, etc.
The site index labels on any one diagram are all differ-
ent. To distinguish scattering sites we have used the
following symbols: single site-closed circle,
pairs —closed and open circles, triplets —closed and
open circles and asterisk. The weights associated with
each term cannot always be represented as a single prod-
uct function of the corrected cumulants Qs(c).

=-Q,v+Qav (G„)+Q,v (G„) + ~ ~ ~

+ Q„,,v"'(G„)"+ ~ ~ ~, (7)

where again, explicit expressions for the corrected
cumulants Q, = Q, (c) can be found in Yonezawa. s

This and other higher-order self-contained ap-
proximations are derived by simply rearranging
the series for Z such that site labels on any one
diagram are all different. The self-energy Z has
then been separated explicitly into terms that re-
fer to single sites, pairs, triplets, etc. The first
few weight factors that one obtains after this new
arrangement are shown in Fig. 2. Note that the
expression for Z with the site index restrictions is
not obtained from the cumulant expansion with the
simple replacement P„-Q„. In particular, whereas
the weight associated with each diagram in Fig. 1
is always a simple product function of the I"s
(e.g. , P4Pa), the weight associated with the dia-
grams in Fig. 2 can be more complicated (e.g. ,
Q4Q, + Qa). This is a rather crucial point since it
means that the pair series, for example, cannot
be generated from the single-site series by any
very simple combinatorial analysis. In their gen-
eralization to pairs, Yonezawa and Homma' con-
sidered just these leading product terms obtained
by the replacement P- Q [Eq. (7) in Ref. 9] and
thus although their approximation is correct through
order v' and c it is certainly not a complete rep-
resentation of the pair scattering.

We will show below that the different series for
Z shown in Fig. 2 can be summed and yield closed
expressions for Z in terms of ( G ) in coordinate
representation. Thus, for example, the single-site
series yields an expression for Z,'," in terms of
(G«). The pair series yields the diagonal and off-
diagonal matrix elements Z«' '(j) and Z;i' ' as
functions of (G«) = (Gi, ) and (C„)= (G, , ) for every
pair separation R„&0. On the other hand, (6) can
be conveniently solved in momentum representation
so that one must go back and forth from coordinate
to momentum representation according to

g(1) Q g (2)(j)~Q Q g (8&(j i)~. . .

and

(6)

(6')

where the primes on the lattice sums indicate that
no two indices be the same.

IV. DIAGRAMMATIC EXPANSION

Although the above rearrangement of the pertur-
bation series in terms of cumulants and its subse-
quent rearrangement in terms of the corrected
cumulants is exact, it has not been found possible
to adapt it to obtain closed expressions for the
various cluster approximations to Z. We therefore
turn to another method which one can use to derive
the corrected cumulants more directly.

We note that to obtain a particular approximation
for Z we must subtract all possible terms involving
lower-order approximations to Z which when iter-
ated in the Dyson equation or used to renormalize
the internal propagators would correspond to an
overcounting. A particularly convenient way of
arranging these subtractions is due to Leath; such
an arrangement for the single-site approximation
Z,'," is shown in Fig. 3. Note that in this arrange-
ment only the site i is involved explicitly, so
that pair and higher-order cluster terms such as
Z,&' ' (R«&0) do not appear except implicitly inthe
propagator (G«). It is for this reason that one can
call the single-site approximation self-contained
and can obtain a closed expression for Z,'," inde-
pendently of any knowledge of higher-cluster ap-
proximations.

The rows in Fig. 3 are identities involving the
corrected cumulants and can be used to rederive
expressions for them. However, this is not nec-
essary for our purpose since we can sum the vari-
ous columns directly. The first column or left-hand
side of the equation is of course just ZI,"( (G„.)];
if instead we transpose it to the right-hand side and
combine it with the last column, we get —ZI,"(I"},
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FIG. 3. Rearrangement of
the single-site series Z&&

{(Gl}. The first coiumn on

the right is the "bare" single-
site t matrix; the remaining
columns are corrections.
Each row is an identity in the
corrected- cumulant functions.

that is, all internal lines have been renormalized
according to the transcription (G, , )- I' where'4 (G) (G;; ) &G;&) z(» z(;' ' 0

(G ) (G ) I o z (I&

I' = (G, , ) + (G„. ) z,',"(r}

+(G, , )(G, , ) z,',"{r}(G;, ) z,',"(r}(G, , )+ ~ ~ ~

z(s& «' '(j) z(&' '
(s& z (2&(.)jf Z

and

(14)

or

= (c„)(1 - z,". ,
' {r}(G, , )) ' (9a) y(&) g(2)

&G;, )= r(1+z"'(r}r) ' (9t )

All the other columns, except for the first column
on the right-hand side, also involve the self-energy
with renormalized propagators, that is, they sum
to

where by symmetry (G„)= (G&& ), (G,~ )= (G, , ),
Z, , = Z,-, , and Z, , = Z~, . We will also use the de-
finitions

I' = (G ) (1 —Z {jT' (G )) ',
or

—z!',&(r}&c,, )z,(,'&(r} &G) = r(1+z{grr) ', (15b)

—z,'('{r}(G;;)zlzz&{r}(G;;»I('(r}-". .

Finally, the one remaining column is just the con-
centration c times the single-site t matrix

which are simple extensions of the single-site ex-
pressions to the 2&(2 (i, j}subspace. Finally, we
will find it convenient to separate (G) and I' into
purely diagonal and nondiagonal parts, i. e. ,

cr[ (G„)}=-cv(1—(G„)v) ', (lo) (G)= (G, )+ (G ), r=~r+ r„.
so that Fig. 3 can be represented by the equation

O=or(&C„)}—Z,.",. '(r}(1—(C ) Z"'(r})-'.
(11)

If we substitute the expression (9b) for (G«) into
(11), we get

Z,', '{r}=cv(1 —vr+Z„'{r}r) ', (12)

which, with the dummy variable replacement T
—(G«), yields

Z(,'&=-Z(. ,". {&C„)}=cvtl—(v —Z,',")(G,, )] '. (13)

To extend these arguments to the pair approxi-
mation, it is convenient to introduce a matrix nota-
tion similar to that discussed in Aiyer et a/. ' We
define (for each possible pair i, j)

The expansion for the off-diagonal matrix ele-
ment Z;, '3) is shown in Fig. 4; the subtractions
and arrangements of these pair terms is the same
as that given in Aiyer eI; al. ' except that we have
tried to be more explicit in displaying exactly which
scatterings occur off the two different sites i and
j. In analogy with the single-site series, we would
like to obtain closed expressions for the sums of
the various columns; however, the corrections to
the bare-pair terms alone involve a restricted set
of scattering diagrams and cannot be conveniently
summed. For example, one of the subtractions to
the bare lowest-order pair graph is the term (see
box, Fig. 4)

—q,'v' (c,, ) (c, , ) (c,, ),
corresponding to propagation in the definite se-
quence i-j-i-j. Now the removal of the restric-
tions in the intermediate sites can by systematical-
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-A T -A A-I 6 -I AT -IIP
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FIG. 4. Rearrangement of the pair series ZI& ((Gl}. The unmarked vertices are the site i, the vertices marked 0 are
j. The first column on the right is the bare two-site t matrix, the second column is the product of two single-site t
matrices; both are weighted by c . The rest of the columns labeled Q are weighted with the appropriate corrected-cumu-
lant functions. Note that the single-site identities, when added to the pair terms, guarantee that glE possible scatterings
off both i and j occur in the correction terms. Boxed area is described in text.

ly achieved by adding in certain single-site identi-
ties which are simply rearrangements of the terms
in Fig. 3. These identities have been included in
Fig. 4 and on returning to the example given above
we note that to the pair-correction term

—Q' '&G, ) (G;;) (G

the identities have added the three terms

—Q,v [(G„)(C, ) (G;, )+(G;; ) (G,, ) (G, , )

Thus this term can be neatly represented as the
off-diagonal element of the matrix:

—Qiv' &G &(G) &G& .

Note also that just as in the single-site problem the
internal lines are renormalized —except that now
the renormalization involves all possible scatter-
ings off both sites i and j. The renormalization
is formally the same and simply requires the re-
placement of the matrix (G) by the matrix I'.

The left-hand side of Fig. 4 sums to Z„T 'I (G)}

but just as in the single-site case we will trans-
pose this to the right-hand side and combine it with
the last column to obtain —Z,~T"(I'j. Furthermore,
since Z'" is diagonal, we note that up to pairs this
is just the off-diagonal element of —Z(r}. The
remaining columns corresponding to corrections
to the bare terms involve higher powers of ZI rj,
i. e. , they are the off-diagonal matrix elements of
the series

-zLr} (G) z &r}-z(r}(G &z(r} (G) zfr }-"
Finally, the bare-pair terms (the first column on
the right-hand side of Fig. 4) yield the series

c'[ '((G;; )j (G;, )'+ r'((G;; )}(C;, )'

+r'I. (G;; &} &G;g &'+ ],
and the bare single-site terms which have been
added as part of the identities sum to

c'r'((G, , )}(G„),
where we have used the definition (10) for rf( C«)}.
Since the off-diagonal matrix element of (G„) is
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FIG. 5. Rearrangement for the diagonal pair term Ziitt'{(G)}. The markings are as in Fig. 4. Note that now two
types of identities have been added to allow for all possible scatterings off i and j in the correction terms.

zero and of (6„)' ' is (C,, )' ', the bare terms
can be represented concisely as the off-diagonal
matrix element of

c [r (&G, , )}(G„)+r ((G ~ ~ )}(G„)

+ '((G;; )}&G. )'+ ],
and thus Fig. 4 is given by

c'r'( (G;; )}(~G )(1 - r ( (G;; & }&~G &)
' i.fr dt.s

=z(gr(1 —(G)z(r}) '~„„,.,

with the appropriate identities is shown in Fig. 5.
%e can again transpose the left-hand side and com-
bine it with the correction terms on the right to ob-
tain the diagonal matrix element of

-zLr}(1- (G)z(r}) '.
The remaining bare terms are the pair series

c'[r'(&Gi;)} &G;,)'+r'(&G;;)}&G;;)'+" )]

and the single-site terms

c t(G;;)}(G,, ) +cr[(G, , )}.

The diagonal matrix element Z, ,
' '(j) together

These can be written as the diagonal matrix element
of

cr[(G«)}+c [r ((G„)}(Gg+ r ((G„)}(G„)+ r'((G;;) }(G„)+. . . ]

so that Fig. 5 is given by

cr((G;;) }+c'r'((G;~)}(G.)'(1 —r((Gii) }(G.) )
'

~,i.,
= z (r}(1- (G) z [ r})

'
~ „„ (18)
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Now c r((G «) ) is purely diagonal and c r ((G«))
&& (G„) is purely off diagonal, so that we can com-
bine (17) and (18) into the single matrix equation

"'(&G&)= Z (I') (I —(G& Z ( F) ) ', (19)

where

and to obtain Z ((G & ) we substitute (15b) for (G )
into (21) and then make the dummy variable re-
placement F-(G&, i. e. ,

Z —= Z((G))= r' '(I'')(1+ I" r' '(I") ), (22)

+ 'r'(&G &)&G0(I- ((G &)&G.&)'.

(20)

Equation (19) can be written

Z(1')= r"'(&G&)(I+&G) r"'((G&)) ', (21)

on. Furthermore, the single-site rearrangement
(Fig. 3) involves only the site i explicitly; the pair
rearrangement (Figs. 4 and 5) involves explicitly
only the sites i and j. That is to say, the expansion
depicted in Figs. 3, 4, and 5 are purely "kinematic"
expansions in that they represent identities between
certain cumulant functions which correctly account
for the fluctuations in the site energy levels. In
these identities the internal propagators appear
only incidentally as dummy variables so that each
diagram simply defines a unique fuctional Z (x)
and all the "dynamics" (by which we mean the effect
of the rest of the lattice outside the cluster) is
accounted for by setting x= (G).

Note also that the only approximation that one
makes in the entire calculation is in truncating the
series (8) for ZI . Thus if we formally restrict
ourselves to a finite system, the series (8) becomes
a finite series and the system of equations repre-
sented by the Dyson equation

where '

I"=-(G& (1+ Z (G& ) (23 )

(G)=g+gZ(G&

and the diagrammatic equations for

(25)

Other forms for Z are possible; we can, for exam-
ple, put it in the form of Eq. (63) of Ref. 10, ex-
cept that g2 is now correctly given by

q, = r'(r,')(r„')'(I r (r,') r„') ' (24)

rather than by Eq. (64) of Ref. 10.
One remark about the pair theory that was not

sufficiently stressed in Alyer et al. ' should be
made here. Note that since the momentum repre-
sentation for Z involves Z"' and Z' ' differently
[cf. Eq. (8)], we must solve both (22) for Z and
(13) for Z"' to obtain Z' '= Z —Z"'. In principle
(22) has to be solved for all pair separations R«;
however, since Z, &' ' decays asymptotically as
(G ~&&, we can expect only small R;& to contribute
significantly except possibly at isolated energies
near band edges.

V. CPA (n)

The diagrammatic derivation given in Sec.
IV is quite involved, and, although in principle it
could be extended to higher-order clusters, inprac-
tice the labor would be prohibitive. However, the
structure of the various approximations suggests
an alternative derivation which completely elimi-
nates the need for a diagrammatic expansion and
leads directly to a generalization of the CPA which
we describe below.

%e begin by noting that the approximations con-
sidered above are self-contained in the sense that
the single-site corrections involve only single-site
terms and not pairs, the pair corrections involve
only single-sites and pairs and not triplets, and so

G =g+gg& g+g e& genug+ ~ ~ ~ =g(1 —e~g)
-1

and the average G is simply

(G) = (g (1 —e~g) ').

(26)

(27)

Now (25) is the equation

g = &G) (1+ Z &G&) ',

which if we substitute into (27) yields

(G&=((G&[I-(e -Z)&G&]'&

(28)

or
(t& =0 (29)

where

t = (e& —Z) [1—(ei —Z) (G ) ] (30)

This is the standard CPA result; for a system in
which ~

&
is v and 0 with probability c and 1 —c,

respectively, (29) becomes

Z=cv [1—(v —Z)(G) ]
' . (31)

If we now put in the correct dynamics by interpret-
ing the single-site (G ) in (31) as the crystal (G«)
we get exactly (13) for Z,',".

Z=Z (&G))

become exact. Furthermore, in this finite system
we can calculate (G& in terms of g algebraically so
that we can use (25) to define Z ((G )); this enables
us to calculate this functional indePendently of the
diagrammatic summations.

The above remarks are best illustrated by ex-
ample. Consider a one-site problem in which the
exact G is given by the algebraic equation
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The extension to pairs is straightforward. We
define

(32)

and use the definitions (14) for Z and (G ). Then
the arguments leading to (29}and (30) can be car-
ried over with the simple replacement of all the
numbers by their matrix analogs. We get

+1+ I'+ l' I" + ~ . .

= c (1 —c) [2+ v(1 —v I") ' r' ]

so that (36) becomes
(t)=0,

where

t = (e —z ) [1—(e —z)(G) ]
'

(33)

(34 )

1+ Z (G ) = c (1 —v I") '+ (1 —c)

+c(1-c}[2+ v(1- vr,'} ' r']
as the defining equation for Z [(G ) }.

Equations (33) and (34) can be reduced exactly to
the form (22) as follows: We rewrite the condition
on the average f-matrix by multiplying (33) by (G)
and by adding 1 to both sides to get

1= ([1—(e —z) (G ) ] ')

= ( (1+ Z ( G) )
' (1-«') '&, (36)

where we have used the definition (23) for r'.
The only fluctuations occur in the last factor on the
right so that we rewrite (35) as

or (37)

Z (G)=c vl" (1—vI") '+c(1 —c)v (1 —vl", )
' I"

v= T(1+ I,'T) ', (G)= r'(1 Zr'} ', (38)

we obtain

Z(1 —r'Z) '=cT+c T r„(1—TI„) =T '(r'}

If we now eliminate v in favor of T and (G) in favor
of I" according to

I+ z&G&= ((I- ~ r') ').
Now ~ is given by

(36) or

z = T"'fr '}(1+r'T"'(r'}) ',
and

with probabilities c3, c(1 —c), c(1—c), and (1 —c),
respectively. The first and last terms contribute

c (1 —vl") '+ (1 —c)
to the average in (36). The remaining terms con-
tribute

which is (22). This completes our proof of the
equivalence of the generalization of CPA to the
diagrammatic techniques.

The extension of the CPA to larger clusters is
fairly obvious and again is best discussed in terms
of an example. For the triplet case we define Z

as a 3&3 matrix which consists of a triplet cluster
and all possible pair and singlet clusters. That
is, we define

(1) 0ii

o z'-'. ) oJI g (2)

(2)(~}+Z (3)(l )

(2)

(2)
ki

(2)
5$

(2)( ) ~Z (2)(I )

(2)
kj

(2)
ik

(2)
jk

and

z(3) z (3)(f }
(3) (~)

(3) (y)

(3)( )

z( '"(j)
Z,."'(3)

r.."(,, & j

0 0

the CPA (3) again reads

(G„) &G(~ & (G„)
«&= (G„) &G„) (G,, )

&G., & &G., & &G, &/

Then, with the definitions

g (1) + g (2) + g (3)
&t)= &(3-z)[1-(e-z) &G)]-')=0. (39)

and
Note that we must satisfy the lower-order CPA con-
ditions also so as to be able to separate Z into its
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Z"', Zis', and Z's' parts for use in the series (8).
General arguments can be given to justify the above
generalization; we have also explicitly checked this
particular form using the binary random-model
system considered above.

One rather important comment regarding CPA
(n) should be made here. We note that if we con-
sider the disorder problem as a power series in
v or c, then the first corrections to CPA are of
order v4 or cs; the corrections to CPA (2) are of
order v or cs; to CPA (3), v or c; and so on.
Now the increased accuracy in going from CPA to
CPA (2) could only be achieved by going from the

diagonal Z'" to the completely off diagon-al (in co-
ordinate representation) Z' '. What makes the
method described above practical is that we do not
deal anywhere with infinite (i. e. , large) matrices.
We can calculate each off-diagonal element of Z'~'

separately in a 2&&2 subspace [cf. Eq. (22)].
It is exactly this point that can be expected to

limit the usefulness of other generalizations of
CPA. If one tries to overcome these difficulties
by requiring only partial self-consistency, then
of course, the accuracy of the method is lost. An

explicit example of this can be seen in the work of
Capek. '3 If one makes a perturbation expansion of
his two-center approximation, one finds that the
terms of order v' are not correctly counted.

Vl. TWO-PARTICLE GREEN'S FUNCTION

We now turn to a discussion of one further gen-
eralization of the CPA which enables us to calcu-
late the average two-particle Green's function
(G(E,)8 G(Ea) ). Although our model Hamiltonian
(1) describes noninteracting excitations, the aver-
aging procedure introduces an effective interaction
which can be described by an irreducible scatter-
ing kernel f((G(E,)), (G(Es))}that is related to the
two-particle Green's function via

(G(Ei)8 G(Ea) ) = (G(E,) )8 (G(Ea) )

"[1+f(&G(E) ), (G(E ) )}(G(E )8 G(E ))]
(40)

A diagrammatic representation of I is shown in
Fig. 6 and, just as for the self-energy, we would
like to obtain single-site, two-site, etc, approxi-
mations.

The single-site approximation has been obtained
previously; Velicky' has shown that I"' is given
by the solution of the algebraic equation

(f(E,)f(E.) )=f"'[1—(G(E,)) (G(E ))f"'] ',
(41)

where t(E) is given by (30), and (G(E)) = (G«). To
obtain I' ' we define I=I'"+I' ', where now I is a
16-component tensor in the coordinate subspace

{i,j}. The generalization of (41) is

(t(Et) 8 t(Ea) ) =1[1—(G(Ei) )8 (G(Ea) )1], (42)

where t (E) is given by (34) and (G(E) ) by (14).
Equation (42) can be verified by arguments similar
to those leading to CPA (2) or by checking directly
with the diagrammatic expansion shown in Fig. 6.
However, even given 1 as in (42), since the solu-
tion of (40) is nontrivial [i.e. , (40) is an integral
equation in momentum space] we will not pursue
this development further.

VII. CONCLUSIONS AND SUMMARY

We have interpreted the corrected-cumulant or
self-contained approximation for pairs and higher-
order clusters and shown how to derive explicit ex-
pressions for the weight factors associated with
each term in the diagrammatic expansion of the
self-energy. Mfe have then related this method
to the diagrammatic expansion of Leath and have
clarified (and corrected) the self-consistent pair
treatment of Aiyer et al. ' The essential point here
is that one cannot arbitrarily separate pair scatter-
ings from single-site scatterings —to consistently
sum up pair effects one must also allow for all pos-
sible single-site scatterings in the intermediate
states. We have achieved this self-consistency by
adding in certain single-site scattering relations as
identities into the equations for the pair terms be-
fore we perform the diagrammatic resummations.

The main point of the above discussion, however,
has been to show that all these rather complicated
diagrammatic techniques can be very concisely
represented by a simple CPA-like algebraic con-
dition. The CPA (2) condition for pairs, for ex-
ample, requires that an average two-center I, ma-
trix be zero for every pair of sites in the system
independently of all the rest. Thus one never
deals with anything more complicated than a simple
2&& 2 matrix. Another important point is that one
must simultaneously satisfy the lower-order sin-
gle-site CPA condition to consistently separate

~ . Q2 QP QP Qg Q~
+ ) + +

A 2 2
Q2 Q2 QP Q2

+ + + +

5,. 0a
+ 4) I +

FIG. 6. Representation of I{(G(E&)), (G(E&) l}as an
expansion in single-site terms, pairs, triplets, etc.
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pair and single-site effects. In general, if we
wish to go to the nth cluster approximation we must
simultaneously satisfy all CPA (m), m & n, condi-
tions.

Finally, we have shown that this method can be
easily extended to evaluate average two-particle
Green's functions.

Note added in Proof. The recent work of Cyrot-
Lackmann and Ducastelle [Phys. Rev. Letters 2V,

429 (1971)]is different from the diagrammatic ex-
pansion given above. In particular, a perturbation
expansion of their equation (26) shows that beginning
at order v and c3, their self-energy contains terms
which correspond to removing pair renormaliza-
tions of the internal lines in Z'". The net result

is that the (G, , ) which appears in XII' is not the
fully renormalized (G) given by the solution of the
Dyson equation (i. e. , Eq. 6' with Z containing
both single site and pair terms). There are other
differences beginning at order v and c which do
not appear to have any such simple explanation. A

detailed comparison of the two methods has been
made by Ducastelle. We wish to express our grati-
tude to Dr. Ducastelle for communicating these
results to us prior to their publication.
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The electronic structure of a disordered binary alloy is discussed by using the method of
Matsubara and Yonezawa. The self-energy is evaluated in a first-order approximation. The
theory is applied to a model alloy where the host is assumed to possess a semicircular density
of states. We also calculate the density of states for o. -brass, by using the available density-
of-states curve for copper.

I. INTRODUCTION

The behavior of electrons in disordered materials
raises very complex problems, and recently this
has been the subject of intensive investigations from
many points of view. There have been several at-
tempts to formulate a theory for alloys across the
whole range of concentrations of solute atoms.
Initially a number of simple but crude models were
proposed. ' The rigid-band approximation' is the
earliest model and is based on a perturbative ap-
proach. In this approximation it is assumed that

the constant energy surfaces and the density-of-
states curve of the solvent remain unchanged on
alloying, the only effect of the addition of solute
atoms being, if its valency is greater than that of
the solvent, to add electrons to the band, thus
swelling the Fermi surface and filling the density-
of-states curve to a higher energy. Sometimes
the virtual crystal approximation (VCA) is used to
interpret experimental results. In the VCA one
approximates a disordered alloy by an equivalent
ordered alloy wherein every site is assigned a
potential equal to the concentration-weighted aver-


